xref: /openbmc/linux/drivers/iommu/amd/iommu.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/debugfs.h>
18 #include <linux/scatterlist.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/dma-direct.h>
21 #include <linux/iommu-helper.h>
22 #include <linux/delay.h>
23 #include <linux/amd-iommu.h>
24 #include <linux/notifier.h>
25 #include <linux/export.h>
26 #include <linux/irq.h>
27 #include <linux/msi.h>
28 #include <linux/irqdomain.h>
29 #include <linux/percpu.h>
30 #include <linux/io-pgtable.h>
31 #include <linux/cc_platform.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/io_apic.h>
34 #include <asm/apic.h>
35 #include <asm/hw_irq.h>
36 #include <asm/proto.h>
37 #include <asm/iommu.h>
38 #include <asm/gart.h>
39 #include <asm/dma.h>
40 
41 #include "amd_iommu.h"
42 #include "../dma-iommu.h"
43 #include "../irq_remapping.h"
44 
45 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
46 
47 #define LOOP_TIMEOUT	100000
48 
49 /* IO virtual address start page frame number */
50 #define IOVA_START_PFN		(1)
51 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
52 
53 /* Reserved IOVA ranges */
54 #define MSI_RANGE_START		(0xfee00000)
55 #define MSI_RANGE_END		(0xfeefffff)
56 #define HT_RANGE_START		(0xfd00000000ULL)
57 #define HT_RANGE_END		(0xffffffffffULL)
58 
59 #define DEFAULT_PGTABLE_LEVEL	PAGE_MODE_3_LEVEL
60 
61 static DEFINE_SPINLOCK(pd_bitmap_lock);
62 
63 LIST_HEAD(ioapic_map);
64 LIST_HEAD(hpet_map);
65 LIST_HEAD(acpihid_map);
66 
67 const struct iommu_ops amd_iommu_ops;
68 
69 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
70 int amd_iommu_max_glx_val = -1;
71 
72 /*
73  * general struct to manage commands send to an IOMMU
74  */
75 struct iommu_cmd {
76 	u32 data[4];
77 };
78 
79 struct kmem_cache *amd_iommu_irq_cache;
80 
81 static void detach_device(struct device *dev);
82 static int domain_enable_v2(struct protection_domain *domain, int pasids);
83 
84 /****************************************************************************
85  *
86  * Helper functions
87  *
88  ****************************************************************************/
89 
90 static inline int get_acpihid_device_id(struct device *dev,
91 					struct acpihid_map_entry **entry)
92 {
93 	struct acpi_device *adev = ACPI_COMPANION(dev);
94 	struct acpihid_map_entry *p;
95 
96 	if (!adev)
97 		return -ENODEV;
98 
99 	list_for_each_entry(p, &acpihid_map, list) {
100 		if (acpi_dev_hid_uid_match(adev, p->hid,
101 					   p->uid[0] ? p->uid : NULL)) {
102 			if (entry)
103 				*entry = p;
104 			return p->devid;
105 		}
106 	}
107 	return -EINVAL;
108 }
109 
110 static inline int get_device_sbdf_id(struct device *dev)
111 {
112 	int sbdf;
113 
114 	if (dev_is_pci(dev))
115 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
116 	else
117 		sbdf = get_acpihid_device_id(dev, NULL);
118 
119 	return sbdf;
120 }
121 
122 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
123 {
124 	struct dev_table_entry *dev_table;
125 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
126 
127 	BUG_ON(pci_seg == NULL);
128 	dev_table = pci_seg->dev_table;
129 	BUG_ON(dev_table == NULL);
130 
131 	return dev_table;
132 }
133 
134 static inline u16 get_device_segment(struct device *dev)
135 {
136 	u16 seg;
137 
138 	if (dev_is_pci(dev)) {
139 		struct pci_dev *pdev = to_pci_dev(dev);
140 
141 		seg = pci_domain_nr(pdev->bus);
142 	} else {
143 		u32 devid = get_acpihid_device_id(dev, NULL);
144 
145 		seg = PCI_SBDF_TO_SEGID(devid);
146 	}
147 
148 	return seg;
149 }
150 
151 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
152 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
153 {
154 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
155 
156 	pci_seg->rlookup_table[devid] = iommu;
157 }
158 
159 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
160 {
161 	struct amd_iommu_pci_seg *pci_seg;
162 
163 	for_each_pci_segment(pci_seg) {
164 		if (pci_seg->id == seg)
165 			return pci_seg->rlookup_table[devid];
166 	}
167 	return NULL;
168 }
169 
170 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
171 {
172 	u16 seg = get_device_segment(dev);
173 	int devid = get_device_sbdf_id(dev);
174 
175 	if (devid < 0)
176 		return NULL;
177 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
178 }
179 
180 static struct protection_domain *to_pdomain(struct iommu_domain *dom)
181 {
182 	return container_of(dom, struct protection_domain, domain);
183 }
184 
185 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
186 {
187 	struct iommu_dev_data *dev_data;
188 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
189 
190 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
191 	if (!dev_data)
192 		return NULL;
193 
194 	spin_lock_init(&dev_data->lock);
195 	dev_data->devid = devid;
196 	ratelimit_default_init(&dev_data->rs);
197 
198 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
199 	return dev_data;
200 }
201 
202 static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
203 {
204 	struct iommu_dev_data *dev_data;
205 	struct llist_node *node;
206 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
207 
208 	if (llist_empty(&pci_seg->dev_data_list))
209 		return NULL;
210 
211 	node = pci_seg->dev_data_list.first;
212 	llist_for_each_entry(dev_data, node, dev_data_list) {
213 		if (dev_data->devid == devid)
214 			return dev_data;
215 	}
216 
217 	return NULL;
218 }
219 
220 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
221 {
222 	struct amd_iommu *iommu;
223 	struct dev_table_entry *dev_table;
224 	u16 devid = pci_dev_id(pdev);
225 
226 	if (devid == alias)
227 		return 0;
228 
229 	iommu = rlookup_amd_iommu(&pdev->dev);
230 	if (!iommu)
231 		return 0;
232 
233 	amd_iommu_set_rlookup_table(iommu, alias);
234 	dev_table = get_dev_table(iommu);
235 	memcpy(dev_table[alias].data,
236 	       dev_table[devid].data,
237 	       sizeof(dev_table[alias].data));
238 
239 	return 0;
240 }
241 
242 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
243 {
244 	struct pci_dev *pdev;
245 
246 	if (!dev_is_pci(dev))
247 		return;
248 	pdev = to_pci_dev(dev);
249 
250 	/*
251 	 * The IVRS alias stored in the alias table may not be
252 	 * part of the PCI DMA aliases if it's bus differs
253 	 * from the original device.
254 	 */
255 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
256 
257 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
258 }
259 
260 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
261 {
262 	struct pci_dev *pdev = to_pci_dev(dev);
263 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
264 	u16 ivrs_alias;
265 
266 	/* For ACPI HID devices, there are no aliases */
267 	if (!dev_is_pci(dev))
268 		return;
269 
270 	/*
271 	 * Add the IVRS alias to the pci aliases if it is on the same
272 	 * bus. The IVRS table may know about a quirk that we don't.
273 	 */
274 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
275 	if (ivrs_alias != pci_dev_id(pdev) &&
276 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
277 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
278 
279 	clone_aliases(iommu, dev);
280 }
281 
282 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
283 {
284 	struct iommu_dev_data *dev_data;
285 
286 	dev_data = search_dev_data(iommu, devid);
287 
288 	if (dev_data == NULL) {
289 		dev_data = alloc_dev_data(iommu, devid);
290 		if (!dev_data)
291 			return NULL;
292 
293 		if (translation_pre_enabled(iommu))
294 			dev_data->defer_attach = true;
295 	}
296 
297 	return dev_data;
298 }
299 
300 /*
301 * Find or create an IOMMU group for a acpihid device.
302 */
303 static struct iommu_group *acpihid_device_group(struct device *dev)
304 {
305 	struct acpihid_map_entry *p, *entry = NULL;
306 	int devid;
307 
308 	devid = get_acpihid_device_id(dev, &entry);
309 	if (devid < 0)
310 		return ERR_PTR(devid);
311 
312 	list_for_each_entry(p, &acpihid_map, list) {
313 		if ((devid == p->devid) && p->group)
314 			entry->group = p->group;
315 	}
316 
317 	if (!entry->group)
318 		entry->group = generic_device_group(dev);
319 	else
320 		iommu_group_ref_get(entry->group);
321 
322 	return entry->group;
323 }
324 
325 static bool pci_iommuv2_capable(struct pci_dev *pdev)
326 {
327 	static const int caps[] = {
328 		PCI_EXT_CAP_ID_PRI,
329 		PCI_EXT_CAP_ID_PASID,
330 	};
331 	int i, pos;
332 
333 	if (!pci_ats_supported(pdev))
334 		return false;
335 
336 	for (i = 0; i < 2; ++i) {
337 		pos = pci_find_ext_capability(pdev, caps[i]);
338 		if (pos == 0)
339 			return false;
340 	}
341 
342 	return true;
343 }
344 
345 /*
346  * This function checks if the driver got a valid device from the caller to
347  * avoid dereferencing invalid pointers.
348  */
349 static bool check_device(struct device *dev)
350 {
351 	struct amd_iommu_pci_seg *pci_seg;
352 	struct amd_iommu *iommu;
353 	int devid, sbdf;
354 
355 	if (!dev)
356 		return false;
357 
358 	sbdf = get_device_sbdf_id(dev);
359 	if (sbdf < 0)
360 		return false;
361 	devid = PCI_SBDF_TO_DEVID(sbdf);
362 
363 	iommu = rlookup_amd_iommu(dev);
364 	if (!iommu)
365 		return false;
366 
367 	/* Out of our scope? */
368 	pci_seg = iommu->pci_seg;
369 	if (devid > pci_seg->last_bdf)
370 		return false;
371 
372 	return true;
373 }
374 
375 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
376 {
377 	struct iommu_dev_data *dev_data;
378 	int devid, sbdf;
379 
380 	if (dev_iommu_priv_get(dev))
381 		return 0;
382 
383 	sbdf = get_device_sbdf_id(dev);
384 	if (sbdf < 0)
385 		return sbdf;
386 
387 	devid = PCI_SBDF_TO_DEVID(sbdf);
388 	dev_data = find_dev_data(iommu, devid);
389 	if (!dev_data)
390 		return -ENOMEM;
391 
392 	dev_data->dev = dev;
393 	setup_aliases(iommu, dev);
394 
395 	/*
396 	 * By default we use passthrough mode for IOMMUv2 capable device.
397 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
398 	 * invalid address), we ignore the capability for the device so
399 	 * it'll be forced to go into translation mode.
400 	 */
401 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
402 	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
403 		dev_data->iommu_v2 = iommu->is_iommu_v2;
404 	}
405 
406 	dev_iommu_priv_set(dev, dev_data);
407 
408 	return 0;
409 }
410 
411 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
412 {
413 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
414 	struct dev_table_entry *dev_table = get_dev_table(iommu);
415 	int devid, sbdf;
416 
417 	sbdf = get_device_sbdf_id(dev);
418 	if (sbdf < 0)
419 		return;
420 
421 	devid = PCI_SBDF_TO_DEVID(sbdf);
422 	pci_seg->rlookup_table[devid] = NULL;
423 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
424 
425 	setup_aliases(iommu, dev);
426 }
427 
428 static void amd_iommu_uninit_device(struct device *dev)
429 {
430 	struct iommu_dev_data *dev_data;
431 
432 	dev_data = dev_iommu_priv_get(dev);
433 	if (!dev_data)
434 		return;
435 
436 	if (dev_data->domain)
437 		detach_device(dev);
438 
439 	dev_iommu_priv_set(dev, NULL);
440 
441 	/*
442 	 * We keep dev_data around for unplugged devices and reuse it when the
443 	 * device is re-plugged - not doing so would introduce a ton of races.
444 	 */
445 }
446 
447 /****************************************************************************
448  *
449  * Interrupt handling functions
450  *
451  ****************************************************************************/
452 
453 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
454 {
455 	int i;
456 	struct dev_table_entry *dev_table = get_dev_table(iommu);
457 
458 	for (i = 0; i < 4; ++i)
459 		pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
460 }
461 
462 static void dump_command(unsigned long phys_addr)
463 {
464 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
465 	int i;
466 
467 	for (i = 0; i < 4; ++i)
468 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
469 }
470 
471 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
472 {
473 	struct iommu_dev_data *dev_data = NULL;
474 	int devid, vmg_tag, flags;
475 	struct pci_dev *pdev;
476 	u64 spa;
477 
478 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
479 	vmg_tag = (event[1]) & 0xFFFF;
480 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
481 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
482 
483 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
484 					   devid & 0xff);
485 	if (pdev)
486 		dev_data = dev_iommu_priv_get(&pdev->dev);
487 
488 	if (dev_data) {
489 		if (__ratelimit(&dev_data->rs)) {
490 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
491 				vmg_tag, spa, flags);
492 		}
493 	} else {
494 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
495 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
496 			vmg_tag, spa, flags);
497 	}
498 
499 	if (pdev)
500 		pci_dev_put(pdev);
501 }
502 
503 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
504 {
505 	struct iommu_dev_data *dev_data = NULL;
506 	int devid, flags_rmp, vmg_tag, flags;
507 	struct pci_dev *pdev;
508 	u64 gpa;
509 
510 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
511 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
512 	vmg_tag   = (event[1]) & 0xFFFF;
513 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
514 	gpa       = ((u64)event[3] << 32) | event[2];
515 
516 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
517 					   devid & 0xff);
518 	if (pdev)
519 		dev_data = dev_iommu_priv_get(&pdev->dev);
520 
521 	if (dev_data) {
522 		if (__ratelimit(&dev_data->rs)) {
523 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
524 				vmg_tag, gpa, flags_rmp, flags);
525 		}
526 	} else {
527 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
528 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 			vmg_tag, gpa, flags_rmp, flags);
530 	}
531 
532 	if (pdev)
533 		pci_dev_put(pdev);
534 }
535 
536 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
537 	(((flags) & EVENT_FLAG_I) == 0)
538 
539 #define IS_WRITE_REQUEST(flags)			\
540 	((flags) & EVENT_FLAG_RW)
541 
542 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
543 					u16 devid, u16 domain_id,
544 					u64 address, int flags)
545 {
546 	struct iommu_dev_data *dev_data = NULL;
547 	struct pci_dev *pdev;
548 
549 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
550 					   devid & 0xff);
551 	if (pdev)
552 		dev_data = dev_iommu_priv_get(&pdev->dev);
553 
554 	if (dev_data) {
555 		/*
556 		 * If this is a DMA fault (for which the I(nterrupt)
557 		 * bit will be unset), allow report_iommu_fault() to
558 		 * prevent logging it.
559 		 */
560 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
561 			/* Device not attached to domain properly */
562 			if (dev_data->domain == NULL) {
563 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
564 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
565 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
566 						   PCI_FUNC(devid), domain_id);
567 				goto out;
568 			}
569 
570 			if (!report_iommu_fault(&dev_data->domain->domain,
571 						&pdev->dev, address,
572 						IS_WRITE_REQUEST(flags) ?
573 							IOMMU_FAULT_WRITE :
574 							IOMMU_FAULT_READ))
575 				goto out;
576 		}
577 
578 		if (__ratelimit(&dev_data->rs)) {
579 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
580 				domain_id, address, flags);
581 		}
582 	} else {
583 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
584 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 			domain_id, address, flags);
586 	}
587 
588 out:
589 	if (pdev)
590 		pci_dev_put(pdev);
591 }
592 
593 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
594 {
595 	struct device *dev = iommu->iommu.dev;
596 	int type, devid, flags, tag;
597 	volatile u32 *event = __evt;
598 	int count = 0;
599 	u64 address;
600 	u32 pasid;
601 
602 retry:
603 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
604 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
605 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
606 		  (event[1] & EVENT_DOMID_MASK_LO);
607 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
608 	address = (u64)(((u64)event[3]) << 32) | event[2];
609 
610 	if (type == 0) {
611 		/* Did we hit the erratum? */
612 		if (++count == LOOP_TIMEOUT) {
613 			pr_err("No event written to event log\n");
614 			return;
615 		}
616 		udelay(1);
617 		goto retry;
618 	}
619 
620 	if (type == EVENT_TYPE_IO_FAULT) {
621 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
622 		return;
623 	}
624 
625 	switch (type) {
626 	case EVENT_TYPE_ILL_DEV:
627 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
628 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
629 			pasid, address, flags);
630 		dump_dte_entry(iommu, devid);
631 		break;
632 	case EVENT_TYPE_DEV_TAB_ERR:
633 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
634 			"address=0x%llx flags=0x%04x]\n",
635 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
636 			address, flags);
637 		break;
638 	case EVENT_TYPE_PAGE_TAB_ERR:
639 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
640 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
641 			pasid, address, flags);
642 		break;
643 	case EVENT_TYPE_ILL_CMD:
644 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
645 		dump_command(address);
646 		break;
647 	case EVENT_TYPE_CMD_HARD_ERR:
648 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
649 			address, flags);
650 		break;
651 	case EVENT_TYPE_IOTLB_INV_TO:
652 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
653 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
654 			address);
655 		break;
656 	case EVENT_TYPE_INV_DEV_REQ:
657 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
658 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
659 			pasid, address, flags);
660 		break;
661 	case EVENT_TYPE_RMP_FAULT:
662 		amd_iommu_report_rmp_fault(iommu, event);
663 		break;
664 	case EVENT_TYPE_RMP_HW_ERR:
665 		amd_iommu_report_rmp_hw_error(iommu, event);
666 		break;
667 	case EVENT_TYPE_INV_PPR_REQ:
668 		pasid = PPR_PASID(*((u64 *)__evt));
669 		tag = event[1] & 0x03FF;
670 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
671 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
672 			pasid, address, flags, tag);
673 		break;
674 	default:
675 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
676 			event[0], event[1], event[2], event[3]);
677 	}
678 
679 	/*
680 	 * To detect the hardware errata 732 we need to clear the
681 	 * entry back to zero. This issue does not exist on SNP
682 	 * enabled system. Also this buffer is not writeable on
683 	 * SNP enabled system.
684 	 */
685 	if (!amd_iommu_snp_en)
686 		memset(__evt, 0, 4 * sizeof(u32));
687 }
688 
689 static void iommu_poll_events(struct amd_iommu *iommu)
690 {
691 	u32 head, tail;
692 
693 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
694 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
695 
696 	while (head != tail) {
697 		iommu_print_event(iommu, iommu->evt_buf + head);
698 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
699 	}
700 
701 	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
702 }
703 
704 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
705 {
706 	struct amd_iommu_fault fault;
707 
708 	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
709 		pr_err_ratelimited("Unknown PPR request received\n");
710 		return;
711 	}
712 
713 	fault.address   = raw[1];
714 	fault.pasid     = PPR_PASID(raw[0]);
715 	fault.sbdf      = PCI_SEG_DEVID_TO_SBDF(iommu->pci_seg->id, PPR_DEVID(raw[0]));
716 	fault.tag       = PPR_TAG(raw[0]);
717 	fault.flags     = PPR_FLAGS(raw[0]);
718 
719 	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
720 }
721 
722 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
723 {
724 	u32 head, tail;
725 
726 	if (iommu->ppr_log == NULL)
727 		return;
728 
729 	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
730 	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
731 
732 	while (head != tail) {
733 		volatile u64 *raw;
734 		u64 entry[2];
735 		int i;
736 
737 		raw = (u64 *)(iommu->ppr_log + head);
738 
739 		/*
740 		 * Hardware bug: Interrupt may arrive before the entry is
741 		 * written to memory. If this happens we need to wait for the
742 		 * entry to arrive.
743 		 */
744 		for (i = 0; i < LOOP_TIMEOUT; ++i) {
745 			if (PPR_REQ_TYPE(raw[0]) != 0)
746 				break;
747 			udelay(1);
748 		}
749 
750 		/* Avoid memcpy function-call overhead */
751 		entry[0] = raw[0];
752 		entry[1] = raw[1];
753 
754 		/*
755 		 * To detect the hardware errata 733 we need to clear the
756 		 * entry back to zero. This issue does not exist on SNP
757 		 * enabled system. Also this buffer is not writeable on
758 		 * SNP enabled system.
759 		 */
760 		if (!amd_iommu_snp_en)
761 			raw[0] = raw[1] = 0UL;
762 
763 		/* Update head pointer of hardware ring-buffer */
764 		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
765 		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
766 
767 		/* Handle PPR entry */
768 		iommu_handle_ppr_entry(iommu, entry);
769 
770 		/* Refresh ring-buffer information */
771 		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
772 		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
773 	}
774 }
775 
776 #ifdef CONFIG_IRQ_REMAP
777 static int (*iommu_ga_log_notifier)(u32);
778 
779 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
780 {
781 	iommu_ga_log_notifier = notifier;
782 
783 	return 0;
784 }
785 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
786 
787 static void iommu_poll_ga_log(struct amd_iommu *iommu)
788 {
789 	u32 head, tail;
790 
791 	if (iommu->ga_log == NULL)
792 		return;
793 
794 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
795 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
796 
797 	while (head != tail) {
798 		volatile u64 *raw;
799 		u64 log_entry;
800 
801 		raw = (u64 *)(iommu->ga_log + head);
802 
803 		/* Avoid memcpy function-call overhead */
804 		log_entry = *raw;
805 
806 		/* Update head pointer of hardware ring-buffer */
807 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
808 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
809 
810 		/* Handle GA entry */
811 		switch (GA_REQ_TYPE(log_entry)) {
812 		case GA_GUEST_NR:
813 			if (!iommu_ga_log_notifier)
814 				break;
815 
816 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
817 				 __func__, GA_DEVID(log_entry),
818 				 GA_TAG(log_entry));
819 
820 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
821 				pr_err("GA log notifier failed.\n");
822 			break;
823 		default:
824 			break;
825 		}
826 	}
827 }
828 
829 static void
830 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
831 {
832 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
833 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
834 		return;
835 
836 	dev_set_msi_domain(dev, iommu->ir_domain);
837 }
838 
839 #else /* CONFIG_IRQ_REMAP */
840 static inline void
841 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
842 #endif /* !CONFIG_IRQ_REMAP */
843 
844 static void amd_iommu_handle_irq(void *data, const char *evt_type,
845 				 u32 int_mask, u32 overflow_mask,
846 				 void (*int_handler)(struct amd_iommu *),
847 				 void (*overflow_handler)(struct amd_iommu *))
848 {
849 	struct amd_iommu *iommu = (struct amd_iommu *) data;
850 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
851 	u32 mask = int_mask | overflow_mask;
852 
853 	while (status & mask) {
854 		/* Enable interrupt sources again */
855 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
856 
857 		if (int_handler) {
858 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
859 				 iommu->index, evt_type);
860 			int_handler(iommu);
861 		}
862 
863 		if ((status & overflow_mask) && overflow_handler)
864 			overflow_handler(iommu);
865 
866 		/*
867 		 * Hardware bug: ERBT1312
868 		 * When re-enabling interrupt (by writing 1
869 		 * to clear the bit), the hardware might also try to set
870 		 * the interrupt bit in the event status register.
871 		 * In this scenario, the bit will be set, and disable
872 		 * subsequent interrupts.
873 		 *
874 		 * Workaround: The IOMMU driver should read back the
875 		 * status register and check if the interrupt bits are cleared.
876 		 * If not, driver will need to go through the interrupt handler
877 		 * again and re-clear the bits
878 		 */
879 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
880 	}
881 }
882 
883 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
884 {
885 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
886 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
887 			     iommu_poll_events, amd_iommu_restart_event_logging);
888 
889 	return IRQ_HANDLED;
890 }
891 
892 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
893 {
894 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
895 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
896 			     iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
897 
898 	return IRQ_HANDLED;
899 }
900 
901 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
902 {
903 #ifdef CONFIG_IRQ_REMAP
904 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
905 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
906 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
907 #endif
908 
909 	return IRQ_HANDLED;
910 }
911 
912 irqreturn_t amd_iommu_int_thread(int irq, void *data)
913 {
914 	amd_iommu_int_thread_evtlog(irq, data);
915 	amd_iommu_int_thread_pprlog(irq, data);
916 	amd_iommu_int_thread_galog(irq, data);
917 
918 	return IRQ_HANDLED;
919 }
920 
921 irqreturn_t amd_iommu_int_handler(int irq, void *data)
922 {
923 	return IRQ_WAKE_THREAD;
924 }
925 
926 /****************************************************************************
927  *
928  * IOMMU command queuing functions
929  *
930  ****************************************************************************/
931 
932 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
933 {
934 	int i = 0;
935 
936 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
937 		udelay(1);
938 		i += 1;
939 	}
940 
941 	if (i == LOOP_TIMEOUT) {
942 		pr_alert("Completion-Wait loop timed out\n");
943 		return -EIO;
944 	}
945 
946 	return 0;
947 }
948 
949 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
950 			       struct iommu_cmd *cmd)
951 {
952 	u8 *target;
953 	u32 tail;
954 
955 	/* Copy command to buffer */
956 	tail = iommu->cmd_buf_tail;
957 	target = iommu->cmd_buf + tail;
958 	memcpy(target, cmd, sizeof(*cmd));
959 
960 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
961 	iommu->cmd_buf_tail = tail;
962 
963 	/* Tell the IOMMU about it */
964 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
965 }
966 
967 static void build_completion_wait(struct iommu_cmd *cmd,
968 				  struct amd_iommu *iommu,
969 				  u64 data)
970 {
971 	u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
972 
973 	memset(cmd, 0, sizeof(*cmd));
974 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
975 	cmd->data[1] = upper_32_bits(paddr);
976 	cmd->data[2] = lower_32_bits(data);
977 	cmd->data[3] = upper_32_bits(data);
978 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
979 }
980 
981 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
982 {
983 	memset(cmd, 0, sizeof(*cmd));
984 	cmd->data[0] = devid;
985 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
986 }
987 
988 /*
989  * Builds an invalidation address which is suitable for one page or multiple
990  * pages. Sets the size bit (S) as needed is more than one page is flushed.
991  */
992 static inline u64 build_inv_address(u64 address, size_t size)
993 {
994 	u64 pages, end, msb_diff;
995 
996 	pages = iommu_num_pages(address, size, PAGE_SIZE);
997 
998 	if (pages == 1)
999 		return address & PAGE_MASK;
1000 
1001 	end = address + size - 1;
1002 
1003 	/*
1004 	 * msb_diff would hold the index of the most significant bit that
1005 	 * flipped between the start and end.
1006 	 */
1007 	msb_diff = fls64(end ^ address) - 1;
1008 
1009 	/*
1010 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1011 	 * between the start and the end, invalidate everything.
1012 	 */
1013 	if (unlikely(msb_diff > 51)) {
1014 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1015 	} else {
1016 		/*
1017 		 * The msb-bit must be clear on the address. Just set all the
1018 		 * lower bits.
1019 		 */
1020 		address |= (1ull << msb_diff) - 1;
1021 	}
1022 
1023 	/* Clear bits 11:0 */
1024 	address &= PAGE_MASK;
1025 
1026 	/* Set the size bit - we flush more than one 4kb page */
1027 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1028 }
1029 
1030 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1031 				  size_t size, u16 domid, int pde)
1032 {
1033 	u64 inv_address = build_inv_address(address, size);
1034 
1035 	memset(cmd, 0, sizeof(*cmd));
1036 	cmd->data[1] |= domid;
1037 	cmd->data[2]  = lower_32_bits(inv_address);
1038 	cmd->data[3]  = upper_32_bits(inv_address);
1039 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1040 	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
1041 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1042 }
1043 
1044 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1045 				  u64 address, size_t size)
1046 {
1047 	u64 inv_address = build_inv_address(address, size);
1048 
1049 	memset(cmd, 0, sizeof(*cmd));
1050 	cmd->data[0]  = devid;
1051 	cmd->data[0] |= (qdep & 0xff) << 24;
1052 	cmd->data[1]  = devid;
1053 	cmd->data[2]  = lower_32_bits(inv_address);
1054 	cmd->data[3]  = upper_32_bits(inv_address);
1055 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1056 }
1057 
1058 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid,
1059 				  u64 address, bool size)
1060 {
1061 	memset(cmd, 0, sizeof(*cmd));
1062 
1063 	address &= ~(0xfffULL);
1064 
1065 	cmd->data[0]  = pasid;
1066 	cmd->data[1]  = domid;
1067 	cmd->data[2]  = lower_32_bits(address);
1068 	cmd->data[3]  = upper_32_bits(address);
1069 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1070 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1071 	if (size)
1072 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1073 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1074 }
1075 
1076 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1077 				  int qdep, u64 address, bool size)
1078 {
1079 	memset(cmd, 0, sizeof(*cmd));
1080 
1081 	address &= ~(0xfffULL);
1082 
1083 	cmd->data[0]  = devid;
1084 	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1085 	cmd->data[0] |= (qdep  & 0xff) << 24;
1086 	cmd->data[1]  = devid;
1087 	cmd->data[1] |= (pasid & 0xff) << 16;
1088 	cmd->data[2]  = lower_32_bits(address);
1089 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1090 	cmd->data[3]  = upper_32_bits(address);
1091 	if (size)
1092 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
1093 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1094 }
1095 
1096 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1097 			       int status, int tag, bool gn)
1098 {
1099 	memset(cmd, 0, sizeof(*cmd));
1100 
1101 	cmd->data[0]  = devid;
1102 	if (gn) {
1103 		cmd->data[1]  = pasid;
1104 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1105 	}
1106 	cmd->data[3]  = tag & 0x1ff;
1107 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1108 
1109 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1110 }
1111 
1112 static void build_inv_all(struct iommu_cmd *cmd)
1113 {
1114 	memset(cmd, 0, sizeof(*cmd));
1115 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1116 }
1117 
1118 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1119 {
1120 	memset(cmd, 0, sizeof(*cmd));
1121 	cmd->data[0] = devid;
1122 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1123 }
1124 
1125 /*
1126  * Writes the command to the IOMMUs command buffer and informs the
1127  * hardware about the new command.
1128  */
1129 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1130 				      struct iommu_cmd *cmd,
1131 				      bool sync)
1132 {
1133 	unsigned int count = 0;
1134 	u32 left, next_tail;
1135 
1136 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1137 again:
1138 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1139 
1140 	if (left <= 0x20) {
1141 		/* Skip udelay() the first time around */
1142 		if (count++) {
1143 			if (count == LOOP_TIMEOUT) {
1144 				pr_err("Command buffer timeout\n");
1145 				return -EIO;
1146 			}
1147 
1148 			udelay(1);
1149 		}
1150 
1151 		/* Update head and recheck remaining space */
1152 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1153 					    MMIO_CMD_HEAD_OFFSET);
1154 
1155 		goto again;
1156 	}
1157 
1158 	copy_cmd_to_buffer(iommu, cmd);
1159 
1160 	/* Do we need to make sure all commands are processed? */
1161 	iommu->need_sync = sync;
1162 
1163 	return 0;
1164 }
1165 
1166 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1167 				    struct iommu_cmd *cmd,
1168 				    bool sync)
1169 {
1170 	unsigned long flags;
1171 	int ret;
1172 
1173 	raw_spin_lock_irqsave(&iommu->lock, flags);
1174 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1175 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1176 
1177 	return ret;
1178 }
1179 
1180 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1181 {
1182 	return iommu_queue_command_sync(iommu, cmd, true);
1183 }
1184 
1185 /*
1186  * This function queues a completion wait command into the command
1187  * buffer of an IOMMU
1188  */
1189 static int iommu_completion_wait(struct amd_iommu *iommu)
1190 {
1191 	struct iommu_cmd cmd;
1192 	unsigned long flags;
1193 	int ret;
1194 	u64 data;
1195 
1196 	if (!iommu->need_sync)
1197 		return 0;
1198 
1199 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
1200 	build_completion_wait(&cmd, iommu, data);
1201 
1202 	raw_spin_lock_irqsave(&iommu->lock, flags);
1203 
1204 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1205 	if (ret)
1206 		goto out_unlock;
1207 
1208 	ret = wait_on_sem(iommu, data);
1209 
1210 out_unlock:
1211 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1212 
1213 	return ret;
1214 }
1215 
1216 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1217 {
1218 	struct iommu_cmd cmd;
1219 
1220 	build_inv_dte(&cmd, devid);
1221 
1222 	return iommu_queue_command(iommu, &cmd);
1223 }
1224 
1225 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1226 {
1227 	u32 devid;
1228 	u16 last_bdf = iommu->pci_seg->last_bdf;
1229 
1230 	for (devid = 0; devid <= last_bdf; ++devid)
1231 		iommu_flush_dte(iommu, devid);
1232 
1233 	iommu_completion_wait(iommu);
1234 }
1235 
1236 /*
1237  * This function uses heavy locking and may disable irqs for some time. But
1238  * this is no issue because it is only called during resume.
1239  */
1240 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1241 {
1242 	u32 dom_id;
1243 	u16 last_bdf = iommu->pci_seg->last_bdf;
1244 
1245 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1246 		struct iommu_cmd cmd;
1247 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1248 				      dom_id, 1);
1249 		iommu_queue_command(iommu, &cmd);
1250 	}
1251 
1252 	iommu_completion_wait(iommu);
1253 }
1254 
1255 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1256 {
1257 	struct iommu_cmd cmd;
1258 
1259 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1260 			      dom_id, 1);
1261 	iommu_queue_command(iommu, &cmd);
1262 
1263 	iommu_completion_wait(iommu);
1264 }
1265 
1266 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1267 {
1268 	struct iommu_cmd cmd;
1269 
1270 	build_inv_all(&cmd);
1271 
1272 	iommu_queue_command(iommu, &cmd);
1273 	iommu_completion_wait(iommu);
1274 }
1275 
1276 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1277 {
1278 	struct iommu_cmd cmd;
1279 
1280 	build_inv_irt(&cmd, devid);
1281 
1282 	iommu_queue_command(iommu, &cmd);
1283 }
1284 
1285 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1286 {
1287 	u32 devid;
1288 	u16 last_bdf = iommu->pci_seg->last_bdf;
1289 
1290 	if (iommu->irtcachedis_enabled)
1291 		return;
1292 
1293 	for (devid = 0; devid <= last_bdf; devid++)
1294 		iommu_flush_irt(iommu, devid);
1295 
1296 	iommu_completion_wait(iommu);
1297 }
1298 
1299 void iommu_flush_all_caches(struct amd_iommu *iommu)
1300 {
1301 	if (iommu_feature(iommu, FEATURE_IA)) {
1302 		amd_iommu_flush_all(iommu);
1303 	} else {
1304 		amd_iommu_flush_dte_all(iommu);
1305 		amd_iommu_flush_irt_all(iommu);
1306 		amd_iommu_flush_tlb_all(iommu);
1307 	}
1308 }
1309 
1310 /*
1311  * Command send function for flushing on-device TLB
1312  */
1313 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1314 			      u64 address, size_t size)
1315 {
1316 	struct amd_iommu *iommu;
1317 	struct iommu_cmd cmd;
1318 	int qdep;
1319 
1320 	qdep     = dev_data->ats.qdep;
1321 	iommu    = rlookup_amd_iommu(dev_data->dev);
1322 	if (!iommu)
1323 		return -EINVAL;
1324 
1325 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1326 
1327 	return iommu_queue_command(iommu, &cmd);
1328 }
1329 
1330 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1331 {
1332 	struct amd_iommu *iommu = data;
1333 
1334 	return iommu_flush_dte(iommu, alias);
1335 }
1336 
1337 /*
1338  * Command send function for invalidating a device table entry
1339  */
1340 static int device_flush_dte(struct iommu_dev_data *dev_data)
1341 {
1342 	struct amd_iommu *iommu;
1343 	struct pci_dev *pdev = NULL;
1344 	struct amd_iommu_pci_seg *pci_seg;
1345 	u16 alias;
1346 	int ret;
1347 
1348 	iommu = rlookup_amd_iommu(dev_data->dev);
1349 	if (!iommu)
1350 		return -EINVAL;
1351 
1352 	if (dev_is_pci(dev_data->dev))
1353 		pdev = to_pci_dev(dev_data->dev);
1354 
1355 	if (pdev)
1356 		ret = pci_for_each_dma_alias(pdev,
1357 					     device_flush_dte_alias, iommu);
1358 	else
1359 		ret = iommu_flush_dte(iommu, dev_data->devid);
1360 	if (ret)
1361 		return ret;
1362 
1363 	pci_seg = iommu->pci_seg;
1364 	alias = pci_seg->alias_table[dev_data->devid];
1365 	if (alias != dev_data->devid) {
1366 		ret = iommu_flush_dte(iommu, alias);
1367 		if (ret)
1368 			return ret;
1369 	}
1370 
1371 	if (dev_data->ats.enabled)
1372 		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1373 
1374 	return ret;
1375 }
1376 
1377 /*
1378  * TLB invalidation function which is called from the mapping functions.
1379  * It invalidates a single PTE if the range to flush is within a single
1380  * page. Otherwise it flushes the whole TLB of the IOMMU.
1381  */
1382 static void __domain_flush_pages(struct protection_domain *domain,
1383 				 u64 address, size_t size, int pde)
1384 {
1385 	struct iommu_dev_data *dev_data;
1386 	struct iommu_cmd cmd;
1387 	int ret = 0, i;
1388 
1389 	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1390 
1391 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1392 		if (!domain->dev_iommu[i])
1393 			continue;
1394 
1395 		/*
1396 		 * Devices of this domain are behind this IOMMU
1397 		 * We need a TLB flush
1398 		 */
1399 		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1400 	}
1401 
1402 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1403 
1404 		if (!dev_data->ats.enabled)
1405 			continue;
1406 
1407 		ret |= device_flush_iotlb(dev_data, address, size);
1408 	}
1409 
1410 	WARN_ON(ret);
1411 }
1412 
1413 static void domain_flush_pages(struct protection_domain *domain,
1414 			       u64 address, size_t size, int pde)
1415 {
1416 	if (likely(!amd_iommu_np_cache)) {
1417 		__domain_flush_pages(domain, address, size, pde);
1418 		return;
1419 	}
1420 
1421 	/*
1422 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1423 	 * In such setups it is best to avoid flushes of ranges which are not
1424 	 * naturally aligned, since it would lead to flushes of unmodified
1425 	 * PTEs. Such flushes would require the hypervisor to do more work than
1426 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1427 	 * until you cover the range. Each iteration flushes the smaller
1428 	 * between the natural alignment of the address that we flush and the
1429 	 * greatest naturally aligned region that fits in the range.
1430 	 */
1431 	while (size != 0) {
1432 		int addr_alignment = __ffs(address);
1433 		int size_alignment = __fls(size);
1434 		int min_alignment;
1435 		size_t flush_size;
1436 
1437 		/*
1438 		 * size is always non-zero, but address might be zero, causing
1439 		 * addr_alignment to be negative. As the casting of the
1440 		 * argument in __ffs(address) to long might trim the high bits
1441 		 * of the address on x86-32, cast to long when doing the check.
1442 		 */
1443 		if (likely((unsigned long)address != 0))
1444 			min_alignment = min(addr_alignment, size_alignment);
1445 		else
1446 			min_alignment = size_alignment;
1447 
1448 		flush_size = 1ul << min_alignment;
1449 
1450 		__domain_flush_pages(domain, address, flush_size, pde);
1451 		address += flush_size;
1452 		size -= flush_size;
1453 	}
1454 }
1455 
1456 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1457 void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain)
1458 {
1459 	domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1460 }
1461 
1462 void amd_iommu_domain_flush_complete(struct protection_domain *domain)
1463 {
1464 	int i;
1465 
1466 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1467 		if (domain && !domain->dev_iommu[i])
1468 			continue;
1469 
1470 		/*
1471 		 * Devices of this domain are behind this IOMMU
1472 		 * We need to wait for completion of all commands.
1473 		 */
1474 		iommu_completion_wait(amd_iommus[i]);
1475 	}
1476 }
1477 
1478 /* Flush the not present cache if it exists */
1479 static void domain_flush_np_cache(struct protection_domain *domain,
1480 		dma_addr_t iova, size_t size)
1481 {
1482 	if (unlikely(amd_iommu_np_cache)) {
1483 		unsigned long flags;
1484 
1485 		spin_lock_irqsave(&domain->lock, flags);
1486 		domain_flush_pages(domain, iova, size, 1);
1487 		amd_iommu_domain_flush_complete(domain);
1488 		spin_unlock_irqrestore(&domain->lock, flags);
1489 	}
1490 }
1491 
1492 
1493 /*
1494  * This function flushes the DTEs for all devices in domain
1495  */
1496 static void domain_flush_devices(struct protection_domain *domain)
1497 {
1498 	struct iommu_dev_data *dev_data;
1499 
1500 	list_for_each_entry(dev_data, &domain->dev_list, list)
1501 		device_flush_dte(dev_data);
1502 }
1503 
1504 /****************************************************************************
1505  *
1506  * The next functions belong to the domain allocation. A domain is
1507  * allocated for every IOMMU as the default domain. If device isolation
1508  * is enabled, every device get its own domain. The most important thing
1509  * about domains is the page table mapping the DMA address space they
1510  * contain.
1511  *
1512  ****************************************************************************/
1513 
1514 static u16 domain_id_alloc(void)
1515 {
1516 	int id;
1517 
1518 	spin_lock(&pd_bitmap_lock);
1519 	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1520 	BUG_ON(id == 0);
1521 	if (id > 0 && id < MAX_DOMAIN_ID)
1522 		__set_bit(id, amd_iommu_pd_alloc_bitmap);
1523 	else
1524 		id = 0;
1525 	spin_unlock(&pd_bitmap_lock);
1526 
1527 	return id;
1528 }
1529 
1530 static void domain_id_free(int id)
1531 {
1532 	spin_lock(&pd_bitmap_lock);
1533 	if (id > 0 && id < MAX_DOMAIN_ID)
1534 		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1535 	spin_unlock(&pd_bitmap_lock);
1536 }
1537 
1538 static void free_gcr3_tbl_level1(u64 *tbl)
1539 {
1540 	u64 *ptr;
1541 	int i;
1542 
1543 	for (i = 0; i < 512; ++i) {
1544 		if (!(tbl[i] & GCR3_VALID))
1545 			continue;
1546 
1547 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1548 
1549 		free_page((unsigned long)ptr);
1550 	}
1551 }
1552 
1553 static void free_gcr3_tbl_level2(u64 *tbl)
1554 {
1555 	u64 *ptr;
1556 	int i;
1557 
1558 	for (i = 0; i < 512; ++i) {
1559 		if (!(tbl[i] & GCR3_VALID))
1560 			continue;
1561 
1562 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1563 
1564 		free_gcr3_tbl_level1(ptr);
1565 	}
1566 }
1567 
1568 static void free_gcr3_table(struct protection_domain *domain)
1569 {
1570 	if (domain->glx == 2)
1571 		free_gcr3_tbl_level2(domain->gcr3_tbl);
1572 	else if (domain->glx == 1)
1573 		free_gcr3_tbl_level1(domain->gcr3_tbl);
1574 	else
1575 		BUG_ON(domain->glx != 0);
1576 
1577 	free_page((unsigned long)domain->gcr3_tbl);
1578 }
1579 
1580 static void set_dte_entry(struct amd_iommu *iommu, u16 devid,
1581 			  struct protection_domain *domain, bool ats, bool ppr)
1582 {
1583 	u64 pte_root = 0;
1584 	u64 flags = 0;
1585 	u32 old_domid;
1586 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1587 
1588 	if (domain->iop.mode != PAGE_MODE_NONE)
1589 		pte_root = iommu_virt_to_phys(domain->iop.root);
1590 
1591 	pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1592 		    << DEV_ENTRY_MODE_SHIFT;
1593 
1594 	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1595 
1596 	/*
1597 	 * When SNP is enabled, Only set TV bit when IOMMU
1598 	 * page translation is in use.
1599 	 */
1600 	if (!amd_iommu_snp_en || (domain->id != 0))
1601 		pte_root |= DTE_FLAG_TV;
1602 
1603 	flags = dev_table[devid].data[1];
1604 
1605 	if (ats)
1606 		flags |= DTE_FLAG_IOTLB;
1607 
1608 	if (ppr) {
1609 		if (iommu_feature(iommu, FEATURE_EPHSUP))
1610 			pte_root |= 1ULL << DEV_ENTRY_PPR;
1611 	}
1612 
1613 	if (domain->flags & PD_IOMMUV2_MASK) {
1614 		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1615 		u64 glx  = domain->glx;
1616 		u64 tmp;
1617 
1618 		pte_root |= DTE_FLAG_GV;
1619 		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1620 
1621 		/* First mask out possible old values for GCR3 table */
1622 		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1623 		flags    &= ~tmp;
1624 
1625 		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1626 		flags    &= ~tmp;
1627 
1628 		/* Encode GCR3 table into DTE */
1629 		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1630 		pte_root |= tmp;
1631 
1632 		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1633 		flags    |= tmp;
1634 
1635 		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1636 		flags    |= tmp;
1637 
1638 		if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1639 			dev_table[devid].data[2] |=
1640 				((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1641 		}
1642 
1643 		if (domain->flags & PD_GIOV_MASK)
1644 			pte_root |= DTE_FLAG_GIOV;
1645 	}
1646 
1647 	flags &= ~DEV_DOMID_MASK;
1648 	flags |= domain->id;
1649 
1650 	old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1651 	dev_table[devid].data[1]  = flags;
1652 	dev_table[devid].data[0]  = pte_root;
1653 
1654 	/*
1655 	 * A kdump kernel might be replacing a domain ID that was copied from
1656 	 * the previous kernel--if so, it needs to flush the translation cache
1657 	 * entries for the old domain ID that is being overwritten
1658 	 */
1659 	if (old_domid) {
1660 		amd_iommu_flush_tlb_domid(iommu, old_domid);
1661 	}
1662 }
1663 
1664 static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1665 {
1666 	struct dev_table_entry *dev_table = get_dev_table(iommu);
1667 
1668 	/* remove entry from the device table seen by the hardware */
1669 	dev_table[devid].data[0]  = DTE_FLAG_V;
1670 
1671 	if (!amd_iommu_snp_en)
1672 		dev_table[devid].data[0] |= DTE_FLAG_TV;
1673 
1674 	dev_table[devid].data[1] &= DTE_FLAG_MASK;
1675 
1676 	amd_iommu_apply_erratum_63(iommu, devid);
1677 }
1678 
1679 static void do_attach(struct iommu_dev_data *dev_data,
1680 		      struct protection_domain *domain)
1681 {
1682 	struct amd_iommu *iommu;
1683 	bool ats;
1684 
1685 	iommu = rlookup_amd_iommu(dev_data->dev);
1686 	if (!iommu)
1687 		return;
1688 	ats   = dev_data->ats.enabled;
1689 
1690 	/* Update data structures */
1691 	dev_data->domain = domain;
1692 	list_add(&dev_data->list, &domain->dev_list);
1693 
1694 	/* Update NUMA Node ID */
1695 	if (domain->nid == NUMA_NO_NODE)
1696 		domain->nid = dev_to_node(dev_data->dev);
1697 
1698 	/* Do reference counting */
1699 	domain->dev_iommu[iommu->index] += 1;
1700 	domain->dev_cnt                 += 1;
1701 
1702 	/* Update device table */
1703 	set_dte_entry(iommu, dev_data->devid, domain,
1704 		      ats, dev_data->iommu_v2);
1705 	clone_aliases(iommu, dev_data->dev);
1706 
1707 	device_flush_dte(dev_data);
1708 }
1709 
1710 static void do_detach(struct iommu_dev_data *dev_data)
1711 {
1712 	struct protection_domain *domain = dev_data->domain;
1713 	struct amd_iommu *iommu;
1714 
1715 	iommu = rlookup_amd_iommu(dev_data->dev);
1716 	if (!iommu)
1717 		return;
1718 
1719 	/* Update data structures */
1720 	dev_data->domain = NULL;
1721 	list_del(&dev_data->list);
1722 	clear_dte_entry(iommu, dev_data->devid);
1723 	clone_aliases(iommu, dev_data->dev);
1724 
1725 	/* Flush the DTE entry */
1726 	device_flush_dte(dev_data);
1727 
1728 	/* Flush IOTLB */
1729 	amd_iommu_domain_flush_tlb_pde(domain);
1730 
1731 	/* Wait for the flushes to finish */
1732 	amd_iommu_domain_flush_complete(domain);
1733 
1734 	/* decrease reference counters - needs to happen after the flushes */
1735 	domain->dev_iommu[iommu->index] -= 1;
1736 	domain->dev_cnt                 -= 1;
1737 }
1738 
1739 static void pdev_iommuv2_disable(struct pci_dev *pdev)
1740 {
1741 	pci_disable_ats(pdev);
1742 	pci_disable_pri(pdev);
1743 	pci_disable_pasid(pdev);
1744 }
1745 
1746 static int pdev_pri_ats_enable(struct pci_dev *pdev)
1747 {
1748 	int ret;
1749 
1750 	/* Only allow access to user-accessible pages */
1751 	ret = pci_enable_pasid(pdev, 0);
1752 	if (ret)
1753 		return ret;
1754 
1755 	/* First reset the PRI state of the device */
1756 	ret = pci_reset_pri(pdev);
1757 	if (ret)
1758 		goto out_err_pasid;
1759 
1760 	/* Enable PRI */
1761 	/* FIXME: Hardcode number of outstanding requests for now */
1762 	ret = pci_enable_pri(pdev, 32);
1763 	if (ret)
1764 		goto out_err_pasid;
1765 
1766 	ret = pci_enable_ats(pdev, PAGE_SHIFT);
1767 	if (ret)
1768 		goto out_err_pri;
1769 
1770 	return 0;
1771 
1772 out_err_pri:
1773 	pci_disable_pri(pdev);
1774 
1775 out_err_pasid:
1776 	pci_disable_pasid(pdev);
1777 
1778 	return ret;
1779 }
1780 
1781 /*
1782  * If a device is not yet associated with a domain, this function makes the
1783  * device visible in the domain
1784  */
1785 static int attach_device(struct device *dev,
1786 			 struct protection_domain *domain)
1787 {
1788 	struct iommu_dev_data *dev_data;
1789 	struct pci_dev *pdev;
1790 	unsigned long flags;
1791 	int ret;
1792 
1793 	spin_lock_irqsave(&domain->lock, flags);
1794 
1795 	dev_data = dev_iommu_priv_get(dev);
1796 
1797 	spin_lock(&dev_data->lock);
1798 
1799 	ret = -EBUSY;
1800 	if (dev_data->domain != NULL)
1801 		goto out;
1802 
1803 	if (!dev_is_pci(dev))
1804 		goto skip_ats_check;
1805 
1806 	pdev = to_pci_dev(dev);
1807 	if (domain->flags & PD_IOMMUV2_MASK) {
1808 		struct iommu_domain *def_domain = iommu_get_dma_domain(dev);
1809 
1810 		ret = -EINVAL;
1811 
1812 		/*
1813 		 * In case of using AMD_IOMMU_V1 page table mode and the device
1814 		 * is enabling for PPR/ATS support (using v2 table),
1815 		 * we need to make sure that the domain type is identity map.
1816 		 */
1817 		if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
1818 		    def_domain->type != IOMMU_DOMAIN_IDENTITY) {
1819 			goto out;
1820 		}
1821 
1822 		if (dev_data->iommu_v2) {
1823 			if (pdev_pri_ats_enable(pdev) != 0)
1824 				goto out;
1825 
1826 			dev_data->ats.enabled = true;
1827 			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1828 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
1829 		}
1830 	} else if (amd_iommu_iotlb_sup &&
1831 		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1832 		dev_data->ats.enabled = true;
1833 		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
1834 	}
1835 
1836 skip_ats_check:
1837 	ret = 0;
1838 
1839 	do_attach(dev_data, domain);
1840 
1841 	/*
1842 	 * We might boot into a crash-kernel here. The crashed kernel
1843 	 * left the caches in the IOMMU dirty. So we have to flush
1844 	 * here to evict all dirty stuff.
1845 	 */
1846 	amd_iommu_domain_flush_tlb_pde(domain);
1847 
1848 	amd_iommu_domain_flush_complete(domain);
1849 
1850 out:
1851 	spin_unlock(&dev_data->lock);
1852 
1853 	spin_unlock_irqrestore(&domain->lock, flags);
1854 
1855 	return ret;
1856 }
1857 
1858 /*
1859  * Removes a device from a protection domain (with devtable_lock held)
1860  */
1861 static void detach_device(struct device *dev)
1862 {
1863 	struct protection_domain *domain;
1864 	struct iommu_dev_data *dev_data;
1865 	unsigned long flags;
1866 
1867 	dev_data = dev_iommu_priv_get(dev);
1868 	domain   = dev_data->domain;
1869 
1870 	spin_lock_irqsave(&domain->lock, flags);
1871 
1872 	spin_lock(&dev_data->lock);
1873 
1874 	/*
1875 	 * First check if the device is still attached. It might already
1876 	 * be detached from its domain because the generic
1877 	 * iommu_detach_group code detached it and we try again here in
1878 	 * our alias handling.
1879 	 */
1880 	if (WARN_ON(!dev_data->domain))
1881 		goto out;
1882 
1883 	do_detach(dev_data);
1884 
1885 	if (!dev_is_pci(dev))
1886 		goto out;
1887 
1888 	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
1889 		pdev_iommuv2_disable(to_pci_dev(dev));
1890 	else if (dev_data->ats.enabled)
1891 		pci_disable_ats(to_pci_dev(dev));
1892 
1893 	dev_data->ats.enabled = false;
1894 
1895 out:
1896 	spin_unlock(&dev_data->lock);
1897 
1898 	spin_unlock_irqrestore(&domain->lock, flags);
1899 }
1900 
1901 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
1902 {
1903 	struct iommu_device *iommu_dev;
1904 	struct amd_iommu *iommu;
1905 	int ret;
1906 
1907 	if (!check_device(dev))
1908 		return ERR_PTR(-ENODEV);
1909 
1910 	iommu = rlookup_amd_iommu(dev);
1911 	if (!iommu)
1912 		return ERR_PTR(-ENODEV);
1913 
1914 	/* Not registered yet? */
1915 	if (!iommu->iommu.ops)
1916 		return ERR_PTR(-ENODEV);
1917 
1918 	if (dev_iommu_priv_get(dev))
1919 		return &iommu->iommu;
1920 
1921 	ret = iommu_init_device(iommu, dev);
1922 	if (ret) {
1923 		if (ret != -ENOTSUPP)
1924 			dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
1925 		iommu_dev = ERR_PTR(ret);
1926 		iommu_ignore_device(iommu, dev);
1927 	} else {
1928 		amd_iommu_set_pci_msi_domain(dev, iommu);
1929 		iommu_dev = &iommu->iommu;
1930 	}
1931 
1932 	iommu_completion_wait(iommu);
1933 
1934 	return iommu_dev;
1935 }
1936 
1937 static void amd_iommu_probe_finalize(struct device *dev)
1938 {
1939 	/* Domains are initialized for this device - have a look what we ended up with */
1940 	set_dma_ops(dev, NULL);
1941 	iommu_setup_dma_ops(dev, 0, U64_MAX);
1942 }
1943 
1944 static void amd_iommu_release_device(struct device *dev)
1945 {
1946 	struct amd_iommu *iommu;
1947 
1948 	if (!check_device(dev))
1949 		return;
1950 
1951 	iommu = rlookup_amd_iommu(dev);
1952 	if (!iommu)
1953 		return;
1954 
1955 	amd_iommu_uninit_device(dev);
1956 	iommu_completion_wait(iommu);
1957 }
1958 
1959 static struct iommu_group *amd_iommu_device_group(struct device *dev)
1960 {
1961 	if (dev_is_pci(dev))
1962 		return pci_device_group(dev);
1963 
1964 	return acpihid_device_group(dev);
1965 }
1966 
1967 /*****************************************************************************
1968  *
1969  * The next functions belong to the dma_ops mapping/unmapping code.
1970  *
1971  *****************************************************************************/
1972 
1973 static void update_device_table(struct protection_domain *domain)
1974 {
1975 	struct iommu_dev_data *dev_data;
1976 
1977 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1978 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1979 
1980 		if (!iommu)
1981 			continue;
1982 		set_dte_entry(iommu, dev_data->devid, domain,
1983 			      dev_data->ats.enabled, dev_data->iommu_v2);
1984 		clone_aliases(iommu, dev_data->dev);
1985 	}
1986 }
1987 
1988 void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1989 {
1990 	update_device_table(domain);
1991 	domain_flush_devices(domain);
1992 }
1993 
1994 void amd_iommu_domain_update(struct protection_domain *domain)
1995 {
1996 	/* Update device table */
1997 	amd_iommu_update_and_flush_device_table(domain);
1998 
1999 	/* Flush domain TLB(s) and wait for completion */
2000 	amd_iommu_domain_flush_tlb_pde(domain);
2001 	amd_iommu_domain_flush_complete(domain);
2002 }
2003 
2004 /*****************************************************************************
2005  *
2006  * The following functions belong to the exported interface of AMD IOMMU
2007  *
2008  * This interface allows access to lower level functions of the IOMMU
2009  * like protection domain handling and assignement of devices to domains
2010  * which is not possible with the dma_ops interface.
2011  *
2012  *****************************************************************************/
2013 
2014 static void cleanup_domain(struct protection_domain *domain)
2015 {
2016 	struct iommu_dev_data *entry;
2017 	unsigned long flags;
2018 
2019 	spin_lock_irqsave(&domain->lock, flags);
2020 
2021 	while (!list_empty(&domain->dev_list)) {
2022 		entry = list_first_entry(&domain->dev_list,
2023 					 struct iommu_dev_data, list);
2024 		BUG_ON(!entry->domain);
2025 		do_detach(entry);
2026 	}
2027 
2028 	spin_unlock_irqrestore(&domain->lock, flags);
2029 }
2030 
2031 static void protection_domain_free(struct protection_domain *domain)
2032 {
2033 	if (!domain)
2034 		return;
2035 
2036 	if (domain->iop.pgtbl_cfg.tlb)
2037 		free_io_pgtable_ops(&domain->iop.iop.ops);
2038 
2039 	if (domain->id)
2040 		domain_id_free(domain->id);
2041 
2042 	kfree(domain);
2043 }
2044 
2045 static int protection_domain_init_v1(struct protection_domain *domain, int mode)
2046 {
2047 	u64 *pt_root = NULL;
2048 
2049 	BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL);
2050 
2051 	spin_lock_init(&domain->lock);
2052 	domain->id = domain_id_alloc();
2053 	if (!domain->id)
2054 		return -ENOMEM;
2055 	INIT_LIST_HEAD(&domain->dev_list);
2056 
2057 	if (mode != PAGE_MODE_NONE) {
2058 		pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2059 		if (!pt_root) {
2060 			domain_id_free(domain->id);
2061 			return -ENOMEM;
2062 		}
2063 	}
2064 
2065 	amd_iommu_domain_set_pgtable(domain, pt_root, mode);
2066 
2067 	return 0;
2068 }
2069 
2070 static int protection_domain_init_v2(struct protection_domain *domain)
2071 {
2072 	spin_lock_init(&domain->lock);
2073 	domain->id = domain_id_alloc();
2074 	if (!domain->id)
2075 		return -ENOMEM;
2076 	INIT_LIST_HEAD(&domain->dev_list);
2077 
2078 	domain->flags |= PD_GIOV_MASK;
2079 
2080 	domain->domain.pgsize_bitmap = AMD_IOMMU_PGSIZES_V2;
2081 
2082 	if (domain_enable_v2(domain, 1)) {
2083 		domain_id_free(domain->id);
2084 		return -ENOMEM;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static struct protection_domain *protection_domain_alloc(unsigned int type)
2091 {
2092 	struct io_pgtable_ops *pgtbl_ops;
2093 	struct protection_domain *domain;
2094 	int pgtable;
2095 	int mode = DEFAULT_PGTABLE_LEVEL;
2096 	int ret;
2097 
2098 	/*
2099 	 * Force IOMMU v1 page table when iommu=pt and
2100 	 * when allocating domain for pass-through devices.
2101 	 */
2102 	if (type == IOMMU_DOMAIN_IDENTITY) {
2103 		pgtable = AMD_IOMMU_V1;
2104 		mode = PAGE_MODE_NONE;
2105 	} else if (type == IOMMU_DOMAIN_UNMANAGED) {
2106 		pgtable = AMD_IOMMU_V1;
2107 	} else if (type == IOMMU_DOMAIN_DMA || type == IOMMU_DOMAIN_DMA_FQ) {
2108 		pgtable = amd_iommu_pgtable;
2109 	} else {
2110 		return NULL;
2111 	}
2112 
2113 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2114 	if (!domain)
2115 		return NULL;
2116 
2117 	switch (pgtable) {
2118 	case AMD_IOMMU_V1:
2119 		ret = protection_domain_init_v1(domain, mode);
2120 		break;
2121 	case AMD_IOMMU_V2:
2122 		ret = protection_domain_init_v2(domain);
2123 		break;
2124 	default:
2125 		ret = -EINVAL;
2126 	}
2127 
2128 	if (ret)
2129 		goto out_err;
2130 
2131 	/* No need to allocate io pgtable ops in passthrough mode */
2132 	if (type == IOMMU_DOMAIN_IDENTITY)
2133 		return domain;
2134 
2135 	domain->nid = NUMA_NO_NODE;
2136 
2137 	pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain);
2138 	if (!pgtbl_ops) {
2139 		domain_id_free(domain->id);
2140 		goto out_err;
2141 	}
2142 
2143 	return domain;
2144 out_err:
2145 	kfree(domain);
2146 	return NULL;
2147 }
2148 
2149 static inline u64 dma_max_address(void)
2150 {
2151 	if (amd_iommu_pgtable == AMD_IOMMU_V1)
2152 		return ~0ULL;
2153 
2154 	/* V2 with 4/5 level page table */
2155 	return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2156 }
2157 
2158 static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2159 {
2160 	struct protection_domain *domain;
2161 
2162 	/*
2163 	 * Since DTE[Mode]=0 is prohibited on SNP-enabled system,
2164 	 * default to use IOMMU_DOMAIN_DMA[_FQ].
2165 	 */
2166 	if (amd_iommu_snp_en && (type == IOMMU_DOMAIN_IDENTITY))
2167 		return NULL;
2168 
2169 	domain = protection_domain_alloc(type);
2170 	if (!domain)
2171 		return NULL;
2172 
2173 	domain->domain.geometry.aperture_start = 0;
2174 	domain->domain.geometry.aperture_end   = dma_max_address();
2175 	domain->domain.geometry.force_aperture = true;
2176 
2177 	return &domain->domain;
2178 }
2179 
2180 static void amd_iommu_domain_free(struct iommu_domain *dom)
2181 {
2182 	struct protection_domain *domain;
2183 
2184 	domain = to_pdomain(dom);
2185 
2186 	if (domain->dev_cnt > 0)
2187 		cleanup_domain(domain);
2188 
2189 	BUG_ON(domain->dev_cnt != 0);
2190 
2191 	if (!dom)
2192 		return;
2193 
2194 	if (domain->flags & PD_IOMMUV2_MASK)
2195 		free_gcr3_table(domain);
2196 
2197 	protection_domain_free(domain);
2198 }
2199 
2200 static int amd_iommu_attach_device(struct iommu_domain *dom,
2201 				   struct device *dev)
2202 {
2203 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2204 	struct protection_domain *domain = to_pdomain(dom);
2205 	struct amd_iommu *iommu = rlookup_amd_iommu(dev);
2206 	int ret;
2207 
2208 	/*
2209 	 * Skip attach device to domain if new domain is same as
2210 	 * devices current domain
2211 	 */
2212 	if (dev_data->domain == domain)
2213 		return 0;
2214 
2215 	dev_data->defer_attach = false;
2216 
2217 	if (dev_data->domain)
2218 		detach_device(dev);
2219 
2220 	ret = attach_device(dev, domain);
2221 
2222 #ifdef CONFIG_IRQ_REMAP
2223 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2224 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2225 			dev_data->use_vapic = 1;
2226 		else
2227 			dev_data->use_vapic = 0;
2228 	}
2229 #endif
2230 
2231 	iommu_completion_wait(iommu);
2232 
2233 	return ret;
2234 }
2235 
2236 static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2237 				     unsigned long iova, size_t size)
2238 {
2239 	struct protection_domain *domain = to_pdomain(dom);
2240 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2241 
2242 	if (ops->map_pages)
2243 		domain_flush_np_cache(domain, iova, size);
2244 }
2245 
2246 static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2247 			       phys_addr_t paddr, size_t pgsize, size_t pgcount,
2248 			       int iommu_prot, gfp_t gfp, size_t *mapped)
2249 {
2250 	struct protection_domain *domain = to_pdomain(dom);
2251 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2252 	int prot = 0;
2253 	int ret = -EINVAL;
2254 
2255 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2256 	    (domain->iop.mode == PAGE_MODE_NONE))
2257 		return -EINVAL;
2258 
2259 	if (iommu_prot & IOMMU_READ)
2260 		prot |= IOMMU_PROT_IR;
2261 	if (iommu_prot & IOMMU_WRITE)
2262 		prot |= IOMMU_PROT_IW;
2263 
2264 	if (ops->map_pages) {
2265 		ret = ops->map_pages(ops, iova, paddr, pgsize,
2266 				     pgcount, prot, gfp, mapped);
2267 	}
2268 
2269 	return ret;
2270 }
2271 
2272 static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2273 					    struct iommu_iotlb_gather *gather,
2274 					    unsigned long iova, size_t size)
2275 {
2276 	/*
2277 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2278 	 * Unless we run in a virtual machine, which can be inferred according
2279 	 * to whether "non-present cache" is on, it is probably best to prefer
2280 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2281 	 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2282 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2283 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2284 	 * should be avoided.
2285 	 */
2286 	if (amd_iommu_np_cache &&
2287 	    iommu_iotlb_gather_is_disjoint(gather, iova, size))
2288 		iommu_iotlb_sync(domain, gather);
2289 
2290 	iommu_iotlb_gather_add_range(gather, iova, size);
2291 }
2292 
2293 static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2294 				    size_t pgsize, size_t pgcount,
2295 				    struct iommu_iotlb_gather *gather)
2296 {
2297 	struct protection_domain *domain = to_pdomain(dom);
2298 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2299 	size_t r;
2300 
2301 	if ((amd_iommu_pgtable == AMD_IOMMU_V1) &&
2302 	    (domain->iop.mode == PAGE_MODE_NONE))
2303 		return 0;
2304 
2305 	r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2306 
2307 	if (r)
2308 		amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2309 
2310 	return r;
2311 }
2312 
2313 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2314 					  dma_addr_t iova)
2315 {
2316 	struct protection_domain *domain = to_pdomain(dom);
2317 	struct io_pgtable_ops *ops = &domain->iop.iop.ops;
2318 
2319 	return ops->iova_to_phys(ops, iova);
2320 }
2321 
2322 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2323 {
2324 	switch (cap) {
2325 	case IOMMU_CAP_CACHE_COHERENCY:
2326 		return true;
2327 	case IOMMU_CAP_NOEXEC:
2328 		return false;
2329 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2330 		return amdr_ivrs_remap_support;
2331 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2332 		return true;
2333 	case IOMMU_CAP_DEFERRED_FLUSH:
2334 		return true;
2335 	default:
2336 		break;
2337 	}
2338 
2339 	return false;
2340 }
2341 
2342 static void amd_iommu_get_resv_regions(struct device *dev,
2343 				       struct list_head *head)
2344 {
2345 	struct iommu_resv_region *region;
2346 	struct unity_map_entry *entry;
2347 	struct amd_iommu *iommu;
2348 	struct amd_iommu_pci_seg *pci_seg;
2349 	int devid, sbdf;
2350 
2351 	sbdf = get_device_sbdf_id(dev);
2352 	if (sbdf < 0)
2353 		return;
2354 
2355 	devid = PCI_SBDF_TO_DEVID(sbdf);
2356 	iommu = rlookup_amd_iommu(dev);
2357 	if (!iommu)
2358 		return;
2359 	pci_seg = iommu->pci_seg;
2360 
2361 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2362 		int type, prot = 0;
2363 		size_t length;
2364 
2365 		if (devid < entry->devid_start || devid > entry->devid_end)
2366 			continue;
2367 
2368 		type   = IOMMU_RESV_DIRECT;
2369 		length = entry->address_end - entry->address_start;
2370 		if (entry->prot & IOMMU_PROT_IR)
2371 			prot |= IOMMU_READ;
2372 		if (entry->prot & IOMMU_PROT_IW)
2373 			prot |= IOMMU_WRITE;
2374 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2375 			/* Exclusion range */
2376 			type = IOMMU_RESV_RESERVED;
2377 
2378 		region = iommu_alloc_resv_region(entry->address_start,
2379 						 length, prot, type,
2380 						 GFP_KERNEL);
2381 		if (!region) {
2382 			dev_err(dev, "Out of memory allocating dm-regions\n");
2383 			return;
2384 		}
2385 		list_add_tail(&region->list, head);
2386 	}
2387 
2388 	region = iommu_alloc_resv_region(MSI_RANGE_START,
2389 					 MSI_RANGE_END - MSI_RANGE_START + 1,
2390 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
2391 	if (!region)
2392 		return;
2393 	list_add_tail(&region->list, head);
2394 
2395 	region = iommu_alloc_resv_region(HT_RANGE_START,
2396 					 HT_RANGE_END - HT_RANGE_START + 1,
2397 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2398 	if (!region)
2399 		return;
2400 	list_add_tail(&region->list, head);
2401 }
2402 
2403 bool amd_iommu_is_attach_deferred(struct device *dev)
2404 {
2405 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2406 
2407 	return dev_data->defer_attach;
2408 }
2409 EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred);
2410 
2411 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2412 {
2413 	struct protection_domain *dom = to_pdomain(domain);
2414 	unsigned long flags;
2415 
2416 	spin_lock_irqsave(&dom->lock, flags);
2417 	amd_iommu_domain_flush_tlb_pde(dom);
2418 	amd_iommu_domain_flush_complete(dom);
2419 	spin_unlock_irqrestore(&dom->lock, flags);
2420 }
2421 
2422 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2423 				 struct iommu_iotlb_gather *gather)
2424 {
2425 	struct protection_domain *dom = to_pdomain(domain);
2426 	unsigned long flags;
2427 
2428 	spin_lock_irqsave(&dom->lock, flags);
2429 	domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1);
2430 	amd_iommu_domain_flush_complete(dom);
2431 	spin_unlock_irqrestore(&dom->lock, flags);
2432 }
2433 
2434 static int amd_iommu_def_domain_type(struct device *dev)
2435 {
2436 	struct iommu_dev_data *dev_data;
2437 
2438 	dev_data = dev_iommu_priv_get(dev);
2439 	if (!dev_data)
2440 		return 0;
2441 
2442 	/*
2443 	 * Do not identity map IOMMUv2 capable devices when:
2444 	 *  - memory encryption is active, because some of those devices
2445 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
2446 	 *    and require remapping.
2447 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
2448 	 */
2449 	if (dev_data->iommu_v2 &&
2450 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2451 	    !amd_iommu_snp_en) {
2452 		return IOMMU_DOMAIN_IDENTITY;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2459 {
2460 	/* IOMMU_PTE_FC is always set */
2461 	return true;
2462 }
2463 
2464 const struct iommu_ops amd_iommu_ops = {
2465 	.capable = amd_iommu_capable,
2466 	.domain_alloc = amd_iommu_domain_alloc,
2467 	.probe_device = amd_iommu_probe_device,
2468 	.release_device = amd_iommu_release_device,
2469 	.probe_finalize = amd_iommu_probe_finalize,
2470 	.device_group = amd_iommu_device_group,
2471 	.get_resv_regions = amd_iommu_get_resv_regions,
2472 	.is_attach_deferred = amd_iommu_is_attach_deferred,
2473 	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
2474 	.def_domain_type = amd_iommu_def_domain_type,
2475 	.default_domain_ops = &(const struct iommu_domain_ops) {
2476 		.attach_dev	= amd_iommu_attach_device,
2477 		.map_pages	= amd_iommu_map_pages,
2478 		.unmap_pages	= amd_iommu_unmap_pages,
2479 		.iotlb_sync_map	= amd_iommu_iotlb_sync_map,
2480 		.iova_to_phys	= amd_iommu_iova_to_phys,
2481 		.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2482 		.iotlb_sync	= amd_iommu_iotlb_sync,
2483 		.free		= amd_iommu_domain_free,
2484 		.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2485 	}
2486 };
2487 
2488 /*****************************************************************************
2489  *
2490  * The next functions do a basic initialization of IOMMU for pass through
2491  * mode
2492  *
2493  * In passthrough mode the IOMMU is initialized and enabled but not used for
2494  * DMA-API translation.
2495  *
2496  *****************************************************************************/
2497 
2498 /* IOMMUv2 specific functions */
2499 int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
2500 {
2501 	return atomic_notifier_chain_register(&ppr_notifier, nb);
2502 }
2503 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
2504 
2505 int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
2506 {
2507 	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
2508 }
2509 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
2510 
2511 void amd_iommu_domain_direct_map(struct iommu_domain *dom)
2512 {
2513 	struct protection_domain *domain = to_pdomain(dom);
2514 	unsigned long flags;
2515 
2516 	spin_lock_irqsave(&domain->lock, flags);
2517 
2518 	if (domain->iop.pgtbl_cfg.tlb)
2519 		free_io_pgtable_ops(&domain->iop.iop.ops);
2520 
2521 	spin_unlock_irqrestore(&domain->lock, flags);
2522 }
2523 EXPORT_SYMBOL(amd_iommu_domain_direct_map);
2524 
2525 /* Note: This function expects iommu_domain->lock to be held prior calling the function. */
2526 static int domain_enable_v2(struct protection_domain *domain, int pasids)
2527 {
2528 	int levels;
2529 
2530 	/* Number of GCR3 table levels required */
2531 	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
2532 		levels += 1;
2533 
2534 	if (levels > amd_iommu_max_glx_val)
2535 		return -EINVAL;
2536 
2537 	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
2538 	if (domain->gcr3_tbl == NULL)
2539 		return -ENOMEM;
2540 
2541 	domain->glx      = levels;
2542 	domain->flags   |= PD_IOMMUV2_MASK;
2543 
2544 	amd_iommu_domain_update(domain);
2545 
2546 	return 0;
2547 }
2548 
2549 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
2550 {
2551 	struct protection_domain *pdom = to_pdomain(dom);
2552 	unsigned long flags;
2553 	int ret;
2554 
2555 	spin_lock_irqsave(&pdom->lock, flags);
2556 
2557 	/*
2558 	 * Save us all sanity checks whether devices already in the
2559 	 * domain support IOMMUv2. Just force that the domain has no
2560 	 * devices attached when it is switched into IOMMUv2 mode.
2561 	 */
2562 	ret = -EBUSY;
2563 	if (pdom->dev_cnt > 0 || pdom->flags & PD_IOMMUV2_MASK)
2564 		goto out;
2565 
2566 	if (!pdom->gcr3_tbl)
2567 		ret = domain_enable_v2(pdom, pasids);
2568 
2569 out:
2570 	spin_unlock_irqrestore(&pdom->lock, flags);
2571 	return ret;
2572 }
2573 EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
2574 
2575 static int __flush_pasid(struct protection_domain *domain, u32 pasid,
2576 			 u64 address, bool size)
2577 {
2578 	struct iommu_dev_data *dev_data;
2579 	struct iommu_cmd cmd;
2580 	int i, ret;
2581 
2582 	if (!(domain->flags & PD_IOMMUV2_MASK))
2583 		return -EINVAL;
2584 
2585 	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
2586 
2587 	/*
2588 	 * IOMMU TLB needs to be flushed before Device TLB to
2589 	 * prevent device TLB refill from IOMMU TLB
2590 	 */
2591 	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
2592 		if (domain->dev_iommu[i] == 0)
2593 			continue;
2594 
2595 		ret = iommu_queue_command(amd_iommus[i], &cmd);
2596 		if (ret != 0)
2597 			goto out;
2598 	}
2599 
2600 	/* Wait until IOMMU TLB flushes are complete */
2601 	amd_iommu_domain_flush_complete(domain);
2602 
2603 	/* Now flush device TLBs */
2604 	list_for_each_entry(dev_data, &domain->dev_list, list) {
2605 		struct amd_iommu *iommu;
2606 		int qdep;
2607 
2608 		/*
2609 		   There might be non-IOMMUv2 capable devices in an IOMMUv2
2610 		 * domain.
2611 		 */
2612 		if (!dev_data->ats.enabled)
2613 			continue;
2614 
2615 		qdep  = dev_data->ats.qdep;
2616 		iommu = rlookup_amd_iommu(dev_data->dev);
2617 		if (!iommu)
2618 			continue;
2619 		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
2620 				      qdep, address, size);
2621 
2622 		ret = iommu_queue_command(iommu, &cmd);
2623 		if (ret != 0)
2624 			goto out;
2625 	}
2626 
2627 	/* Wait until all device TLBs are flushed */
2628 	amd_iommu_domain_flush_complete(domain);
2629 
2630 	ret = 0;
2631 
2632 out:
2633 
2634 	return ret;
2635 }
2636 
2637 static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid,
2638 				  u64 address)
2639 {
2640 	return __flush_pasid(domain, pasid, address, false);
2641 }
2642 
2643 int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid,
2644 			 u64 address)
2645 {
2646 	struct protection_domain *domain = to_pdomain(dom);
2647 	unsigned long flags;
2648 	int ret;
2649 
2650 	spin_lock_irqsave(&domain->lock, flags);
2651 	ret = __amd_iommu_flush_page(domain, pasid, address);
2652 	spin_unlock_irqrestore(&domain->lock, flags);
2653 
2654 	return ret;
2655 }
2656 EXPORT_SYMBOL(amd_iommu_flush_page);
2657 
2658 static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid)
2659 {
2660 	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
2661 			     true);
2662 }
2663 
2664 int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid)
2665 {
2666 	struct protection_domain *domain = to_pdomain(dom);
2667 	unsigned long flags;
2668 	int ret;
2669 
2670 	spin_lock_irqsave(&domain->lock, flags);
2671 	ret = __amd_iommu_flush_tlb(domain, pasid);
2672 	spin_unlock_irqrestore(&domain->lock, flags);
2673 
2674 	return ret;
2675 }
2676 EXPORT_SYMBOL(amd_iommu_flush_tlb);
2677 
2678 static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc)
2679 {
2680 	int index;
2681 	u64 *pte;
2682 
2683 	while (true) {
2684 
2685 		index = (pasid >> (9 * level)) & 0x1ff;
2686 		pte   = &root[index];
2687 
2688 		if (level == 0)
2689 			break;
2690 
2691 		if (!(*pte & GCR3_VALID)) {
2692 			if (!alloc)
2693 				return NULL;
2694 
2695 			root = (void *)get_zeroed_page(GFP_ATOMIC);
2696 			if (root == NULL)
2697 				return NULL;
2698 
2699 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
2700 		}
2701 
2702 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
2703 
2704 		level -= 1;
2705 	}
2706 
2707 	return pte;
2708 }
2709 
2710 static int __set_gcr3(struct protection_domain *domain, u32 pasid,
2711 		      unsigned long cr3)
2712 {
2713 	u64 *pte;
2714 
2715 	if (domain->iop.mode != PAGE_MODE_NONE)
2716 		return -EINVAL;
2717 
2718 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
2719 	if (pte == NULL)
2720 		return -ENOMEM;
2721 
2722 	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;
2723 
2724 	return __amd_iommu_flush_tlb(domain, pasid);
2725 }
2726 
2727 static int __clear_gcr3(struct protection_domain *domain, u32 pasid)
2728 {
2729 	u64 *pte;
2730 
2731 	if (domain->iop.mode != PAGE_MODE_NONE)
2732 		return -EINVAL;
2733 
2734 	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
2735 	if (pte == NULL)
2736 		return 0;
2737 
2738 	*pte = 0;
2739 
2740 	return __amd_iommu_flush_tlb(domain, pasid);
2741 }
2742 
2743 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid,
2744 			      unsigned long cr3)
2745 {
2746 	struct protection_domain *domain = to_pdomain(dom);
2747 	unsigned long flags;
2748 	int ret;
2749 
2750 	spin_lock_irqsave(&domain->lock, flags);
2751 	ret = __set_gcr3(domain, pasid, cr3);
2752 	spin_unlock_irqrestore(&domain->lock, flags);
2753 
2754 	return ret;
2755 }
2756 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
2757 
2758 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid)
2759 {
2760 	struct protection_domain *domain = to_pdomain(dom);
2761 	unsigned long flags;
2762 	int ret;
2763 
2764 	spin_lock_irqsave(&domain->lock, flags);
2765 	ret = __clear_gcr3(domain, pasid);
2766 	spin_unlock_irqrestore(&domain->lock, flags);
2767 
2768 	return ret;
2769 }
2770 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
2771 
2772 int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid,
2773 			   int status, int tag)
2774 {
2775 	struct iommu_dev_data *dev_data;
2776 	struct amd_iommu *iommu;
2777 	struct iommu_cmd cmd;
2778 
2779 	dev_data = dev_iommu_priv_get(&pdev->dev);
2780 	iommu    = rlookup_amd_iommu(&pdev->dev);
2781 	if (!iommu)
2782 		return -ENODEV;
2783 
2784 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
2785 			   tag, dev_data->pri_tlp);
2786 
2787 	return iommu_queue_command(iommu, &cmd);
2788 }
2789 EXPORT_SYMBOL(amd_iommu_complete_ppr);
2790 
2791 int amd_iommu_device_info(struct pci_dev *pdev,
2792                           struct amd_iommu_device_info *info)
2793 {
2794 	int max_pasids;
2795 	int pos;
2796 
2797 	if (pdev == NULL || info == NULL)
2798 		return -EINVAL;
2799 
2800 	if (!amd_iommu_v2_supported())
2801 		return -EINVAL;
2802 
2803 	memset(info, 0, sizeof(*info));
2804 
2805 	if (pci_ats_supported(pdev))
2806 		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
2807 
2808 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2809 	if (pos)
2810 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
2811 
2812 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
2813 	if (pos) {
2814 		int features;
2815 
2816 		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
2817 		max_pasids = min(max_pasids, (1 << 20));
2818 
2819 		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
2820 		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
2821 
2822 		features = pci_pasid_features(pdev);
2823 		if (features & PCI_PASID_CAP_EXEC)
2824 			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
2825 		if (features & PCI_PASID_CAP_PRIV)
2826 			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
2827 	}
2828 
2829 	return 0;
2830 }
2831 EXPORT_SYMBOL(amd_iommu_device_info);
2832 
2833 #ifdef CONFIG_IRQ_REMAP
2834 
2835 /*****************************************************************************
2836  *
2837  * Interrupt Remapping Implementation
2838  *
2839  *****************************************************************************/
2840 
2841 static struct irq_chip amd_ir_chip;
2842 static DEFINE_SPINLOCK(iommu_table_lock);
2843 
2844 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2845 {
2846 	int ret;
2847 	u64 data;
2848 	unsigned long flags;
2849 	struct iommu_cmd cmd, cmd2;
2850 
2851 	if (iommu->irtcachedis_enabled)
2852 		return;
2853 
2854 	build_inv_irt(&cmd, devid);
2855 	data = atomic64_add_return(1, &iommu->cmd_sem_val);
2856 	build_completion_wait(&cmd2, iommu, data);
2857 
2858 	raw_spin_lock_irqsave(&iommu->lock, flags);
2859 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
2860 	if (ret)
2861 		goto out;
2862 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2863 	if (ret)
2864 		goto out;
2865 	wait_on_sem(iommu, data);
2866 out:
2867 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
2868 }
2869 
2870 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2871 			      struct irq_remap_table *table)
2872 {
2873 	u64 dte;
2874 	struct dev_table_entry *dev_table = get_dev_table(iommu);
2875 
2876 	dte	= dev_table[devid].data[2];
2877 	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
2878 	dte	|= iommu_virt_to_phys(table->table);
2879 	dte	|= DTE_IRQ_REMAP_INTCTL;
2880 	dte	|= DTE_INTTABLEN;
2881 	dte	|= DTE_IRQ_REMAP_ENABLE;
2882 
2883 	dev_table[devid].data[2] = dte;
2884 }
2885 
2886 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2887 {
2888 	struct irq_remap_table *table;
2889 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2890 
2891 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2892 		      "%s: no iommu for devid %x:%x\n",
2893 		      __func__, pci_seg->id, devid))
2894 		return NULL;
2895 
2896 	table = pci_seg->irq_lookup_table[devid];
2897 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2898 		      __func__, pci_seg->id, devid))
2899 		return NULL;
2900 
2901 	return table;
2902 }
2903 
2904 static struct irq_remap_table *__alloc_irq_table(void)
2905 {
2906 	struct irq_remap_table *table;
2907 
2908 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2909 	if (!table)
2910 		return NULL;
2911 
2912 	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2913 	if (!table->table) {
2914 		kfree(table);
2915 		return NULL;
2916 	}
2917 	raw_spin_lock_init(&table->lock);
2918 
2919 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2920 		memset(table->table, 0,
2921 		       MAX_IRQS_PER_TABLE * sizeof(u32));
2922 	else
2923 		memset(table->table, 0,
2924 		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2925 	return table;
2926 }
2927 
2928 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2929 				  struct irq_remap_table *table)
2930 {
2931 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2932 
2933 	pci_seg->irq_lookup_table[devid] = table;
2934 	set_dte_irq_entry(iommu, devid, table);
2935 	iommu_flush_dte(iommu, devid);
2936 }
2937 
2938 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2939 				       void *data)
2940 {
2941 	struct irq_remap_table *table = data;
2942 	struct amd_iommu_pci_seg *pci_seg;
2943 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2944 
2945 	if (!iommu)
2946 		return -EINVAL;
2947 
2948 	pci_seg = iommu->pci_seg;
2949 	pci_seg->irq_lookup_table[alias] = table;
2950 	set_dte_irq_entry(iommu, alias, table);
2951 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2952 
2953 	return 0;
2954 }
2955 
2956 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2957 					       u16 devid, struct pci_dev *pdev)
2958 {
2959 	struct irq_remap_table *table = NULL;
2960 	struct irq_remap_table *new_table = NULL;
2961 	struct amd_iommu_pci_seg *pci_seg;
2962 	unsigned long flags;
2963 	u16 alias;
2964 
2965 	spin_lock_irqsave(&iommu_table_lock, flags);
2966 
2967 	pci_seg = iommu->pci_seg;
2968 	table = pci_seg->irq_lookup_table[devid];
2969 	if (table)
2970 		goto out_unlock;
2971 
2972 	alias = pci_seg->alias_table[devid];
2973 	table = pci_seg->irq_lookup_table[alias];
2974 	if (table) {
2975 		set_remap_table_entry(iommu, devid, table);
2976 		goto out_wait;
2977 	}
2978 	spin_unlock_irqrestore(&iommu_table_lock, flags);
2979 
2980 	/* Nothing there yet, allocate new irq remapping table */
2981 	new_table = __alloc_irq_table();
2982 	if (!new_table)
2983 		return NULL;
2984 
2985 	spin_lock_irqsave(&iommu_table_lock, flags);
2986 
2987 	table = pci_seg->irq_lookup_table[devid];
2988 	if (table)
2989 		goto out_unlock;
2990 
2991 	table = pci_seg->irq_lookup_table[alias];
2992 	if (table) {
2993 		set_remap_table_entry(iommu, devid, table);
2994 		goto out_wait;
2995 	}
2996 
2997 	table = new_table;
2998 	new_table = NULL;
2999 
3000 	if (pdev)
3001 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3002 				       table);
3003 	else
3004 		set_remap_table_entry(iommu, devid, table);
3005 
3006 	if (devid != alias)
3007 		set_remap_table_entry(iommu, alias, table);
3008 
3009 out_wait:
3010 	iommu_completion_wait(iommu);
3011 
3012 out_unlock:
3013 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3014 
3015 	if (new_table) {
3016 		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3017 		kfree(new_table);
3018 	}
3019 	return table;
3020 }
3021 
3022 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3023 			   bool align, struct pci_dev *pdev)
3024 {
3025 	struct irq_remap_table *table;
3026 	int index, c, alignment = 1;
3027 	unsigned long flags;
3028 
3029 	table = alloc_irq_table(iommu, devid, pdev);
3030 	if (!table)
3031 		return -ENODEV;
3032 
3033 	if (align)
3034 		alignment = roundup_pow_of_two(count);
3035 
3036 	raw_spin_lock_irqsave(&table->lock, flags);
3037 
3038 	/* Scan table for free entries */
3039 	for (index = ALIGN(table->min_index, alignment), c = 0;
3040 	     index < MAX_IRQS_PER_TABLE;) {
3041 		if (!iommu->irte_ops->is_allocated(table, index)) {
3042 			c += 1;
3043 		} else {
3044 			c     = 0;
3045 			index = ALIGN(index + 1, alignment);
3046 			continue;
3047 		}
3048 
3049 		if (c == count)	{
3050 			for (; c != 0; --c)
3051 				iommu->irte_ops->set_allocated(table, index - c + 1);
3052 
3053 			index -= count - 1;
3054 			goto out;
3055 		}
3056 
3057 		index++;
3058 	}
3059 
3060 	index = -ENOSPC;
3061 
3062 out:
3063 	raw_spin_unlock_irqrestore(&table->lock, flags);
3064 
3065 	return index;
3066 }
3067 
3068 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3069 			  struct irte_ga *irte)
3070 {
3071 	struct irq_remap_table *table;
3072 	struct irte_ga *entry;
3073 	unsigned long flags;
3074 	u128 old;
3075 
3076 	table = get_irq_table(iommu, devid);
3077 	if (!table)
3078 		return -ENOMEM;
3079 
3080 	raw_spin_lock_irqsave(&table->lock, flags);
3081 
3082 	entry = (struct irte_ga *)table->table;
3083 	entry = &entry[index];
3084 
3085 	/*
3086 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3087 	 * and it cannot be updated by the hardware or other processors
3088 	 * behind us, so the return value of cmpxchg16 should be the
3089 	 * same as the old value.
3090 	 */
3091 	old = entry->irte;
3092 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3093 
3094 	raw_spin_unlock_irqrestore(&table->lock, flags);
3095 
3096 	iommu_flush_irt_and_complete(iommu, devid);
3097 
3098 	return 0;
3099 }
3100 
3101 static int modify_irte(struct amd_iommu *iommu,
3102 		       u16 devid, int index, union irte *irte)
3103 {
3104 	struct irq_remap_table *table;
3105 	unsigned long flags;
3106 
3107 	table = get_irq_table(iommu, devid);
3108 	if (!table)
3109 		return -ENOMEM;
3110 
3111 	raw_spin_lock_irqsave(&table->lock, flags);
3112 	table->table[index] = irte->val;
3113 	raw_spin_unlock_irqrestore(&table->lock, flags);
3114 
3115 	iommu_flush_irt_and_complete(iommu, devid);
3116 
3117 	return 0;
3118 }
3119 
3120 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3121 {
3122 	struct irq_remap_table *table;
3123 	unsigned long flags;
3124 
3125 	table = get_irq_table(iommu, devid);
3126 	if (!table)
3127 		return;
3128 
3129 	raw_spin_lock_irqsave(&table->lock, flags);
3130 	iommu->irte_ops->clear_allocated(table, index);
3131 	raw_spin_unlock_irqrestore(&table->lock, flags);
3132 
3133 	iommu_flush_irt_and_complete(iommu, devid);
3134 }
3135 
3136 static void irte_prepare(void *entry,
3137 			 u32 delivery_mode, bool dest_mode,
3138 			 u8 vector, u32 dest_apicid, int devid)
3139 {
3140 	union irte *irte = (union irte *) entry;
3141 
3142 	irte->val                = 0;
3143 	irte->fields.vector      = vector;
3144 	irte->fields.int_type    = delivery_mode;
3145 	irte->fields.destination = dest_apicid;
3146 	irte->fields.dm          = dest_mode;
3147 	irte->fields.valid       = 1;
3148 }
3149 
3150 static void irte_ga_prepare(void *entry,
3151 			    u32 delivery_mode, bool dest_mode,
3152 			    u8 vector, u32 dest_apicid, int devid)
3153 {
3154 	struct irte_ga *irte = (struct irte_ga *) entry;
3155 
3156 	irte->lo.val                      = 0;
3157 	irte->hi.val                      = 0;
3158 	irte->lo.fields_remap.int_type    = delivery_mode;
3159 	irte->lo.fields_remap.dm          = dest_mode;
3160 	irte->hi.fields.vector            = vector;
3161 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3162 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3163 	irte->lo.fields_remap.valid       = 1;
3164 }
3165 
3166 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3167 {
3168 	union irte *irte = (union irte *) entry;
3169 
3170 	irte->fields.valid = 1;
3171 	modify_irte(iommu, devid, index, irte);
3172 }
3173 
3174 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3175 {
3176 	struct irte_ga *irte = (struct irte_ga *) entry;
3177 
3178 	irte->lo.fields_remap.valid = 1;
3179 	modify_irte_ga(iommu, devid, index, irte);
3180 }
3181 
3182 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3183 {
3184 	union irte *irte = (union irte *) entry;
3185 
3186 	irte->fields.valid = 0;
3187 	modify_irte(iommu, devid, index, irte);
3188 }
3189 
3190 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3191 {
3192 	struct irte_ga *irte = (struct irte_ga *) entry;
3193 
3194 	irte->lo.fields_remap.valid = 0;
3195 	modify_irte_ga(iommu, devid, index, irte);
3196 }
3197 
3198 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3199 			      u8 vector, u32 dest_apicid)
3200 {
3201 	union irte *irte = (union irte *) entry;
3202 
3203 	irte->fields.vector = vector;
3204 	irte->fields.destination = dest_apicid;
3205 	modify_irte(iommu, devid, index, irte);
3206 }
3207 
3208 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3209 				 u8 vector, u32 dest_apicid)
3210 {
3211 	struct irte_ga *irte = (struct irte_ga *) entry;
3212 
3213 	if (!irte->lo.fields_remap.guest_mode) {
3214 		irte->hi.fields.vector = vector;
3215 		irte->lo.fields_remap.destination =
3216 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3217 		irte->hi.fields.destination =
3218 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3219 		modify_irte_ga(iommu, devid, index, irte);
3220 	}
3221 }
3222 
3223 #define IRTE_ALLOCATED (~1U)
3224 static void irte_set_allocated(struct irq_remap_table *table, int index)
3225 {
3226 	table->table[index] = IRTE_ALLOCATED;
3227 }
3228 
3229 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3230 {
3231 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3232 	struct irte_ga *irte = &ptr[index];
3233 
3234 	memset(&irte->lo.val, 0, sizeof(u64));
3235 	memset(&irte->hi.val, 0, sizeof(u64));
3236 	irte->hi.fields.vector = 0xff;
3237 }
3238 
3239 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3240 {
3241 	union irte *ptr = (union irte *)table->table;
3242 	union irte *irte = &ptr[index];
3243 
3244 	return irte->val != 0;
3245 }
3246 
3247 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3248 {
3249 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3250 	struct irte_ga *irte = &ptr[index];
3251 
3252 	return irte->hi.fields.vector != 0;
3253 }
3254 
3255 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3256 {
3257 	table->table[index] = 0;
3258 }
3259 
3260 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3261 {
3262 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3263 	struct irte_ga *irte = &ptr[index];
3264 
3265 	memset(&irte->lo.val, 0, sizeof(u64));
3266 	memset(&irte->hi.val, 0, sizeof(u64));
3267 }
3268 
3269 static int get_devid(struct irq_alloc_info *info)
3270 {
3271 	switch (info->type) {
3272 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3273 		return get_ioapic_devid(info->devid);
3274 	case X86_IRQ_ALLOC_TYPE_HPET:
3275 		return get_hpet_devid(info->devid);
3276 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3277 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3278 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3279 	default:
3280 		WARN_ON_ONCE(1);
3281 		return -1;
3282 	}
3283 }
3284 
3285 struct irq_remap_ops amd_iommu_irq_ops = {
3286 	.prepare		= amd_iommu_prepare,
3287 	.enable			= amd_iommu_enable,
3288 	.disable		= amd_iommu_disable,
3289 	.reenable		= amd_iommu_reenable,
3290 	.enable_faulting	= amd_iommu_enable_faulting,
3291 };
3292 
3293 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3294 {
3295 	msg->data = index;
3296 	msg->address_lo = 0;
3297 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3298 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3299 }
3300 
3301 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3302 				       struct irq_cfg *irq_cfg,
3303 				       struct irq_alloc_info *info,
3304 				       int devid, int index, int sub_handle)
3305 {
3306 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3307 	struct amd_iommu *iommu = data->iommu;
3308 
3309 	if (!iommu)
3310 		return;
3311 
3312 	data->irq_2_irte.devid = devid;
3313 	data->irq_2_irte.index = index + sub_handle;
3314 	iommu->irte_ops->prepare(data->entry, apic->delivery_mode,
3315 				 apic->dest_mode_logical, irq_cfg->vector,
3316 				 irq_cfg->dest_apicid, devid);
3317 
3318 	switch (info->type) {
3319 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3320 	case X86_IRQ_ALLOC_TYPE_HPET:
3321 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3322 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3323 		fill_msi_msg(&data->msi_entry, irte_info->index);
3324 		break;
3325 
3326 	default:
3327 		BUG_ON(1);
3328 		break;
3329 	}
3330 }
3331 
3332 struct amd_irte_ops irte_32_ops = {
3333 	.prepare = irte_prepare,
3334 	.activate = irte_activate,
3335 	.deactivate = irte_deactivate,
3336 	.set_affinity = irte_set_affinity,
3337 	.set_allocated = irte_set_allocated,
3338 	.is_allocated = irte_is_allocated,
3339 	.clear_allocated = irte_clear_allocated,
3340 };
3341 
3342 struct amd_irte_ops irte_128_ops = {
3343 	.prepare = irte_ga_prepare,
3344 	.activate = irte_ga_activate,
3345 	.deactivate = irte_ga_deactivate,
3346 	.set_affinity = irte_ga_set_affinity,
3347 	.set_allocated = irte_ga_set_allocated,
3348 	.is_allocated = irte_ga_is_allocated,
3349 	.clear_allocated = irte_ga_clear_allocated,
3350 };
3351 
3352 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3353 			       unsigned int nr_irqs, void *arg)
3354 {
3355 	struct irq_alloc_info *info = arg;
3356 	struct irq_data *irq_data;
3357 	struct amd_ir_data *data = NULL;
3358 	struct amd_iommu *iommu;
3359 	struct irq_cfg *cfg;
3360 	int i, ret, devid, seg, sbdf;
3361 	int index;
3362 
3363 	if (!info)
3364 		return -EINVAL;
3365 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3366 		return -EINVAL;
3367 
3368 	sbdf = get_devid(info);
3369 	if (sbdf < 0)
3370 		return -EINVAL;
3371 
3372 	seg = PCI_SBDF_TO_SEGID(sbdf);
3373 	devid = PCI_SBDF_TO_DEVID(sbdf);
3374 	iommu = __rlookup_amd_iommu(seg, devid);
3375 	if (!iommu)
3376 		return -EINVAL;
3377 
3378 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3379 	if (ret < 0)
3380 		return ret;
3381 
3382 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3383 		struct irq_remap_table *table;
3384 
3385 		table = alloc_irq_table(iommu, devid, NULL);
3386 		if (table) {
3387 			if (!table->min_index) {
3388 				/*
3389 				 * Keep the first 32 indexes free for IOAPIC
3390 				 * interrupts.
3391 				 */
3392 				table->min_index = 32;
3393 				for (i = 0; i < 32; ++i)
3394 					iommu->irte_ops->set_allocated(table, i);
3395 			}
3396 			WARN_ON(table->min_index != 32);
3397 			index = info->ioapic.pin;
3398 		} else {
3399 			index = -ENOMEM;
3400 		}
3401 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3402 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3403 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3404 
3405 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3406 					msi_desc_to_pci_dev(info->desc));
3407 	} else {
3408 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3409 	}
3410 
3411 	if (index < 0) {
3412 		pr_warn("Failed to allocate IRTE\n");
3413 		ret = index;
3414 		goto out_free_parent;
3415 	}
3416 
3417 	for (i = 0; i < nr_irqs; i++) {
3418 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3419 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3420 		if (!cfg) {
3421 			ret = -EINVAL;
3422 			goto out_free_data;
3423 		}
3424 
3425 		ret = -ENOMEM;
3426 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3427 		if (!data)
3428 			goto out_free_data;
3429 
3430 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3431 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3432 		else
3433 			data->entry = kzalloc(sizeof(struct irte_ga),
3434 						     GFP_KERNEL);
3435 		if (!data->entry) {
3436 			kfree(data);
3437 			goto out_free_data;
3438 		}
3439 
3440 		data->iommu = iommu;
3441 		irq_data->hwirq = (devid << 16) + i;
3442 		irq_data->chip_data = data;
3443 		irq_data->chip = &amd_ir_chip;
3444 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3445 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3446 	}
3447 
3448 	return 0;
3449 
3450 out_free_data:
3451 	for (i--; i >= 0; i--) {
3452 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3453 		if (irq_data)
3454 			kfree(irq_data->chip_data);
3455 	}
3456 	for (i = 0; i < nr_irqs; i++)
3457 		free_irte(iommu, devid, index + i);
3458 out_free_parent:
3459 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3460 	return ret;
3461 }
3462 
3463 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3464 			       unsigned int nr_irqs)
3465 {
3466 	struct irq_2_irte *irte_info;
3467 	struct irq_data *irq_data;
3468 	struct amd_ir_data *data;
3469 	int i;
3470 
3471 	for (i = 0; i < nr_irqs; i++) {
3472 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3473 		if (irq_data && irq_data->chip_data) {
3474 			data = irq_data->chip_data;
3475 			irte_info = &data->irq_2_irte;
3476 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3477 			kfree(data->entry);
3478 			kfree(data);
3479 		}
3480 	}
3481 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3482 }
3483 
3484 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3485 			       struct amd_ir_data *ir_data,
3486 			       struct irq_2_irte *irte_info,
3487 			       struct irq_cfg *cfg);
3488 
3489 static int irq_remapping_activate(struct irq_domain *domain,
3490 				  struct irq_data *irq_data, bool reserve)
3491 {
3492 	struct amd_ir_data *data = irq_data->chip_data;
3493 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3494 	struct amd_iommu *iommu = data->iommu;
3495 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3496 
3497 	if (!iommu)
3498 		return 0;
3499 
3500 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3501 				  irte_info->index);
3502 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3503 	return 0;
3504 }
3505 
3506 static void irq_remapping_deactivate(struct irq_domain *domain,
3507 				     struct irq_data *irq_data)
3508 {
3509 	struct amd_ir_data *data = irq_data->chip_data;
3510 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3511 	struct amd_iommu *iommu = data->iommu;
3512 
3513 	if (iommu)
3514 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3515 					    irte_info->index);
3516 }
3517 
3518 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3519 				enum irq_domain_bus_token bus_token)
3520 {
3521 	struct amd_iommu *iommu;
3522 	int devid = -1;
3523 
3524 	if (!amd_iommu_irq_remap)
3525 		return 0;
3526 
3527 	if (x86_fwspec_is_ioapic(fwspec))
3528 		devid = get_ioapic_devid(fwspec->param[0]);
3529 	else if (x86_fwspec_is_hpet(fwspec))
3530 		devid = get_hpet_devid(fwspec->param[0]);
3531 
3532 	if (devid < 0)
3533 		return 0;
3534 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3535 
3536 	return iommu && iommu->ir_domain == d;
3537 }
3538 
3539 static const struct irq_domain_ops amd_ir_domain_ops = {
3540 	.select = irq_remapping_select,
3541 	.alloc = irq_remapping_alloc,
3542 	.free = irq_remapping_free,
3543 	.activate = irq_remapping_activate,
3544 	.deactivate = irq_remapping_deactivate,
3545 };
3546 
3547 int amd_iommu_activate_guest_mode(void *data)
3548 {
3549 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3550 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3551 	u64 valid;
3552 
3553 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3554 		return 0;
3555 
3556 	valid = entry->lo.fields_vapic.valid;
3557 
3558 	entry->lo.val = 0;
3559 	entry->hi.val = 0;
3560 
3561 	entry->lo.fields_vapic.valid       = valid;
3562 	entry->lo.fields_vapic.guest_mode  = 1;
3563 	entry->lo.fields_vapic.ga_log_intr = 1;
3564 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3565 	entry->hi.fields.vector            = ir_data->ga_vector;
3566 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3567 
3568 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3569 			      ir_data->irq_2_irte.index, entry);
3570 }
3571 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3572 
3573 int amd_iommu_deactivate_guest_mode(void *data)
3574 {
3575 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3576 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3577 	struct irq_cfg *cfg = ir_data->cfg;
3578 	u64 valid;
3579 
3580 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3581 	    !entry || !entry->lo.fields_vapic.guest_mode)
3582 		return 0;
3583 
3584 	valid = entry->lo.fields_remap.valid;
3585 
3586 	entry->lo.val = 0;
3587 	entry->hi.val = 0;
3588 
3589 	entry->lo.fields_remap.valid       = valid;
3590 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3591 	entry->lo.fields_remap.int_type    = apic->delivery_mode;
3592 	entry->hi.fields.vector            = cfg->vector;
3593 	entry->lo.fields_remap.destination =
3594 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3595 	entry->hi.fields.destination =
3596 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3597 
3598 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3599 			      ir_data->irq_2_irte.index, entry);
3600 }
3601 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3602 
3603 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3604 {
3605 	int ret;
3606 	struct amd_iommu_pi_data *pi_data = vcpu_info;
3607 	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3608 	struct amd_ir_data *ir_data = data->chip_data;
3609 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3610 	struct iommu_dev_data *dev_data;
3611 
3612 	if (ir_data->iommu == NULL)
3613 		return -EINVAL;
3614 
3615 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3616 
3617 	/* Note:
3618 	 * This device has never been set up for guest mode.
3619 	 * we should not modify the IRTE
3620 	 */
3621 	if (!dev_data || !dev_data->use_vapic)
3622 		return 0;
3623 
3624 	ir_data->cfg = irqd_cfg(data);
3625 	pi_data->ir_data = ir_data;
3626 
3627 	/* Note:
3628 	 * SVM tries to set up for VAPIC mode, but we are in
3629 	 * legacy mode. So, we force legacy mode instead.
3630 	 */
3631 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3632 		pr_debug("%s: Fall back to using intr legacy remap\n",
3633 			 __func__);
3634 		pi_data->is_guest_mode = false;
3635 	}
3636 
3637 	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3638 	if (pi_data->is_guest_mode) {
3639 		ir_data->ga_root_ptr = (pi_data->base >> 12);
3640 		ir_data->ga_vector = vcpu_pi_info->vector;
3641 		ir_data->ga_tag = pi_data->ga_tag;
3642 		ret = amd_iommu_activate_guest_mode(ir_data);
3643 		if (!ret)
3644 			ir_data->cached_ga_tag = pi_data->ga_tag;
3645 	} else {
3646 		ret = amd_iommu_deactivate_guest_mode(ir_data);
3647 
3648 		/*
3649 		 * This communicates the ga_tag back to the caller
3650 		 * so that it can do all the necessary clean up.
3651 		 */
3652 		if (!ret)
3653 			ir_data->cached_ga_tag = 0;
3654 	}
3655 
3656 	return ret;
3657 }
3658 
3659 
3660 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3661 			       struct amd_ir_data *ir_data,
3662 			       struct irq_2_irte *irte_info,
3663 			       struct irq_cfg *cfg)
3664 {
3665 
3666 	/*
3667 	 * Atomically updates the IRTE with the new destination, vector
3668 	 * and flushes the interrupt entry cache.
3669 	 */
3670 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3671 				      irte_info->index, cfg->vector,
3672 				      cfg->dest_apicid);
3673 }
3674 
3675 static int amd_ir_set_affinity(struct irq_data *data,
3676 			       const struct cpumask *mask, bool force)
3677 {
3678 	struct amd_ir_data *ir_data = data->chip_data;
3679 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3680 	struct irq_cfg *cfg = irqd_cfg(data);
3681 	struct irq_data *parent = data->parent_data;
3682 	struct amd_iommu *iommu = ir_data->iommu;
3683 	int ret;
3684 
3685 	if (!iommu)
3686 		return -ENODEV;
3687 
3688 	ret = parent->chip->irq_set_affinity(parent, mask, force);
3689 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3690 		return ret;
3691 
3692 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3693 	/*
3694 	 * After this point, all the interrupts will start arriving
3695 	 * at the new destination. So, time to cleanup the previous
3696 	 * vector allocation.
3697 	 */
3698 	vector_schedule_cleanup(cfg);
3699 
3700 	return IRQ_SET_MASK_OK_DONE;
3701 }
3702 
3703 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3704 {
3705 	struct amd_ir_data *ir_data = irq_data->chip_data;
3706 
3707 	*msg = ir_data->msi_entry;
3708 }
3709 
3710 static struct irq_chip amd_ir_chip = {
3711 	.name			= "AMD-IR",
3712 	.irq_ack		= apic_ack_irq,
3713 	.irq_set_affinity	= amd_ir_set_affinity,
3714 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
3715 	.irq_compose_msi_msg	= ir_compose_msi_msg,
3716 };
3717 
3718 static const struct msi_parent_ops amdvi_msi_parent_ops = {
3719 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3720 				  MSI_FLAG_MULTI_PCI_MSI |
3721 				  MSI_FLAG_PCI_IMS,
3722 	.prefix			= "IR-",
3723 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3724 };
3725 
3726 static const struct msi_parent_ops virt_amdvi_msi_parent_ops = {
3727 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
3728 				  MSI_FLAG_MULTI_PCI_MSI,
3729 	.prefix			= "vIR-",
3730 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
3731 };
3732 
3733 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3734 {
3735 	struct fwnode_handle *fn;
3736 
3737 	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3738 	if (!fn)
3739 		return -ENOMEM;
3740 	iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3741 						       fn, &amd_ir_domain_ops, iommu);
3742 	if (!iommu->ir_domain) {
3743 		irq_domain_free_fwnode(fn);
3744 		return -ENOMEM;
3745 	}
3746 
3747 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_AMDVI);
3748 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3749 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3750 
3751 	if (amd_iommu_np_cache)
3752 		iommu->ir_domain->msi_parent_ops = &virt_amdvi_msi_parent_ops;
3753 	else
3754 		iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3755 
3756 	return 0;
3757 }
3758 
3759 int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3760 {
3761 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3762 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3763 
3764 	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3765 	    !entry || !entry->lo.fields_vapic.guest_mode)
3766 		return 0;
3767 
3768 	if (!ir_data->iommu)
3769 		return -ENODEV;
3770 
3771 	if (cpu >= 0) {
3772 		entry->lo.fields_vapic.destination =
3773 					APICID_TO_IRTE_DEST_LO(cpu);
3774 		entry->hi.fields.destination =
3775 					APICID_TO_IRTE_DEST_HI(cpu);
3776 	}
3777 	entry->lo.fields_vapic.is_run = is_run;
3778 
3779 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3780 			      ir_data->irq_2_irte.index, entry);
3781 }
3782 EXPORT_SYMBOL(amd_iommu_update_ga);
3783 #endif
3784