xref: /openbmc/linux/drivers/iommu/amd/io_pgtable.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPU-agnostic AMD IO page table allocator.
4  *
5  * Copyright (C) 2020 Advanced Micro Devices, Inc.
6  * Author: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
7  */
8 
9 #define pr_fmt(fmt)     "AMD-Vi: " fmt
10 #define dev_fmt(fmt)    pr_fmt(fmt)
11 
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/io-pgtable.h>
15 #include <linux/kernel.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/dma-mapping.h>
20 
21 #include <asm/barrier.h>
22 
23 #include "amd_iommu_types.h"
24 #include "amd_iommu.h"
25 
26 static void v1_tlb_flush_all(void *cookie)
27 {
28 }
29 
30 static void v1_tlb_flush_walk(unsigned long iova, size_t size,
31 				  size_t granule, void *cookie)
32 {
33 }
34 
35 static void v1_tlb_add_page(struct iommu_iotlb_gather *gather,
36 					 unsigned long iova, size_t granule,
37 					 void *cookie)
38 {
39 }
40 
41 static const struct iommu_flush_ops v1_flush_ops = {
42 	.tlb_flush_all	= v1_tlb_flush_all,
43 	.tlb_flush_walk = v1_tlb_flush_walk,
44 	.tlb_add_page	= v1_tlb_add_page,
45 };
46 
47 /*
48  * Helper function to get the first pte of a large mapping
49  */
50 static u64 *first_pte_l7(u64 *pte, unsigned long *page_size,
51 			 unsigned long *count)
52 {
53 	unsigned long pte_mask, pg_size, cnt;
54 	u64 *fpte;
55 
56 	pg_size  = PTE_PAGE_SIZE(*pte);
57 	cnt      = PAGE_SIZE_PTE_COUNT(pg_size);
58 	pte_mask = ~((cnt << 3) - 1);
59 	fpte     = (u64 *)(((unsigned long)pte) & pte_mask);
60 
61 	if (page_size)
62 		*page_size = pg_size;
63 
64 	if (count)
65 		*count = cnt;
66 
67 	return fpte;
68 }
69 
70 /****************************************************************************
71  *
72  * The functions below are used the create the page table mappings for
73  * unity mapped regions.
74  *
75  ****************************************************************************/
76 
77 static void free_pt_page(u64 *pt, struct list_head *freelist)
78 {
79 	struct page *p = virt_to_page(pt);
80 
81 	list_add_tail(&p->lru, freelist);
82 }
83 
84 static void free_pt_lvl(u64 *pt, struct list_head *freelist, int lvl)
85 {
86 	u64 *p;
87 	int i;
88 
89 	for (i = 0; i < 512; ++i) {
90 		/* PTE present? */
91 		if (!IOMMU_PTE_PRESENT(pt[i]))
92 			continue;
93 
94 		/* Large PTE? */
95 		if (PM_PTE_LEVEL(pt[i]) == 0 ||
96 		    PM_PTE_LEVEL(pt[i]) == 7)
97 			continue;
98 
99 		/*
100 		 * Free the next level. No need to look at l1 tables here since
101 		 * they can only contain leaf PTEs; just free them directly.
102 		 */
103 		p = IOMMU_PTE_PAGE(pt[i]);
104 		if (lvl > 2)
105 			free_pt_lvl(p, freelist, lvl - 1);
106 		else
107 			free_pt_page(p, freelist);
108 	}
109 
110 	free_pt_page(pt, freelist);
111 }
112 
113 static void free_sub_pt(u64 *root, int mode, struct list_head *freelist)
114 {
115 	switch (mode) {
116 	case PAGE_MODE_NONE:
117 	case PAGE_MODE_7_LEVEL:
118 		break;
119 	case PAGE_MODE_1_LEVEL:
120 		free_pt_page(root, freelist);
121 		break;
122 	case PAGE_MODE_2_LEVEL:
123 	case PAGE_MODE_3_LEVEL:
124 	case PAGE_MODE_4_LEVEL:
125 	case PAGE_MODE_5_LEVEL:
126 	case PAGE_MODE_6_LEVEL:
127 		free_pt_lvl(root, freelist, mode);
128 		break;
129 	default:
130 		BUG();
131 	}
132 }
133 
134 void amd_iommu_domain_set_pgtable(struct protection_domain *domain,
135 				  u64 *root, int mode)
136 {
137 	u64 pt_root;
138 
139 	/* lowest 3 bits encode pgtable mode */
140 	pt_root = mode & 7;
141 	pt_root |= (u64)root;
142 
143 	amd_iommu_domain_set_pt_root(domain, pt_root);
144 }
145 
146 /*
147  * This function is used to add another level to an IO page table. Adding
148  * another level increases the size of the address space by 9 bits to a size up
149  * to 64 bits.
150  */
151 static bool increase_address_space(struct protection_domain *domain,
152 				   unsigned long address,
153 				   gfp_t gfp)
154 {
155 	unsigned long flags;
156 	bool ret = true;
157 	u64 *pte;
158 
159 	pte = (void *)get_zeroed_page(gfp);
160 	if (!pte)
161 		return false;
162 
163 	spin_lock_irqsave(&domain->lock, flags);
164 
165 	if (address <= PM_LEVEL_SIZE(domain->iop.mode))
166 		goto out;
167 
168 	ret = false;
169 	if (WARN_ON_ONCE(domain->iop.mode == PAGE_MODE_6_LEVEL))
170 		goto out;
171 
172 	*pte = PM_LEVEL_PDE(domain->iop.mode, iommu_virt_to_phys(domain->iop.root));
173 
174 	domain->iop.root  = pte;
175 	domain->iop.mode += 1;
176 	amd_iommu_update_and_flush_device_table(domain);
177 	amd_iommu_domain_flush_complete(domain);
178 
179 	/*
180 	 * Device Table needs to be updated and flushed before the new root can
181 	 * be published.
182 	 */
183 	amd_iommu_domain_set_pgtable(domain, pte, domain->iop.mode);
184 
185 	pte = NULL;
186 	ret = true;
187 
188 out:
189 	spin_unlock_irqrestore(&domain->lock, flags);
190 	free_page((unsigned long)pte);
191 
192 	return ret;
193 }
194 
195 static u64 *alloc_pte(struct protection_domain *domain,
196 		      unsigned long address,
197 		      unsigned long page_size,
198 		      u64 **pte_page,
199 		      gfp_t gfp,
200 		      bool *updated)
201 {
202 	int level, end_lvl;
203 	u64 *pte, *page;
204 
205 	BUG_ON(!is_power_of_2(page_size));
206 
207 	while (address > PM_LEVEL_SIZE(domain->iop.mode)) {
208 		/*
209 		 * Return an error if there is no memory to update the
210 		 * page-table.
211 		 */
212 		if (!increase_address_space(domain, address, gfp))
213 			return NULL;
214 	}
215 
216 
217 	level   = domain->iop.mode - 1;
218 	pte     = &domain->iop.root[PM_LEVEL_INDEX(level, address)];
219 	address = PAGE_SIZE_ALIGN(address, page_size);
220 	end_lvl = PAGE_SIZE_LEVEL(page_size);
221 
222 	while (level > end_lvl) {
223 		u64 __pte, __npte;
224 		int pte_level;
225 
226 		__pte     = *pte;
227 		pte_level = PM_PTE_LEVEL(__pte);
228 
229 		/*
230 		 * If we replace a series of large PTEs, we need
231 		 * to tear down all of them.
232 		 */
233 		if (IOMMU_PTE_PRESENT(__pte) &&
234 		    pte_level == PAGE_MODE_7_LEVEL) {
235 			unsigned long count, i;
236 			u64 *lpte;
237 
238 			lpte = first_pte_l7(pte, NULL, &count);
239 
240 			/*
241 			 * Unmap the replicated PTEs that still match the
242 			 * original large mapping
243 			 */
244 			for (i = 0; i < count; ++i)
245 				cmpxchg64(&lpte[i], __pte, 0ULL);
246 
247 			*updated = true;
248 			continue;
249 		}
250 
251 		if (!IOMMU_PTE_PRESENT(__pte) ||
252 		    pte_level == PAGE_MODE_NONE) {
253 			page = (u64 *)get_zeroed_page(gfp);
254 
255 			if (!page)
256 				return NULL;
257 
258 			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
259 
260 			/* pte could have been changed somewhere. */
261 			if (!try_cmpxchg64(pte, &__pte, __npte))
262 				free_page((unsigned long)page);
263 			else if (IOMMU_PTE_PRESENT(__pte))
264 				*updated = true;
265 
266 			continue;
267 		}
268 
269 		/* No level skipping support yet */
270 		if (pte_level != level)
271 			return NULL;
272 
273 		level -= 1;
274 
275 		pte = IOMMU_PTE_PAGE(__pte);
276 
277 		if (pte_page && level == end_lvl)
278 			*pte_page = pte;
279 
280 		pte = &pte[PM_LEVEL_INDEX(level, address)];
281 	}
282 
283 	return pte;
284 }
285 
286 /*
287  * This function checks if there is a PTE for a given dma address. If
288  * there is one, it returns the pointer to it.
289  */
290 static u64 *fetch_pte(struct amd_io_pgtable *pgtable,
291 		      unsigned long address,
292 		      unsigned long *page_size)
293 {
294 	int level;
295 	u64 *pte;
296 
297 	*page_size = 0;
298 
299 	if (address > PM_LEVEL_SIZE(pgtable->mode))
300 		return NULL;
301 
302 	level	   =  pgtable->mode - 1;
303 	pte	   = &pgtable->root[PM_LEVEL_INDEX(level, address)];
304 	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
305 
306 	while (level > 0) {
307 
308 		/* Not Present */
309 		if (!IOMMU_PTE_PRESENT(*pte))
310 			return NULL;
311 
312 		/* Large PTE */
313 		if (PM_PTE_LEVEL(*pte) == 7 ||
314 		    PM_PTE_LEVEL(*pte) == 0)
315 			break;
316 
317 		/* No level skipping support yet */
318 		if (PM_PTE_LEVEL(*pte) != level)
319 			return NULL;
320 
321 		level -= 1;
322 
323 		/* Walk to the next level */
324 		pte	   = IOMMU_PTE_PAGE(*pte);
325 		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
326 		*page_size = PTE_LEVEL_PAGE_SIZE(level);
327 	}
328 
329 	/*
330 	 * If we have a series of large PTEs, make
331 	 * sure to return a pointer to the first one.
332 	 */
333 	if (PM_PTE_LEVEL(*pte) == PAGE_MODE_7_LEVEL)
334 		pte = first_pte_l7(pte, page_size, NULL);
335 
336 	return pte;
337 }
338 
339 static void free_clear_pte(u64 *pte, u64 pteval, struct list_head *freelist)
340 {
341 	u64 *pt;
342 	int mode;
343 
344 	while (!try_cmpxchg64(pte, &pteval, 0))
345 		pr_warn("AMD-Vi: IOMMU pte changed since we read it\n");
346 
347 	if (!IOMMU_PTE_PRESENT(pteval))
348 		return;
349 
350 	pt   = IOMMU_PTE_PAGE(pteval);
351 	mode = IOMMU_PTE_MODE(pteval);
352 
353 	free_sub_pt(pt, mode, freelist);
354 }
355 
356 /*
357  * Generic mapping functions. It maps a physical address into a DMA
358  * address space. It allocates the page table pages if necessary.
359  * In the future it can be extended to a generic mapping function
360  * supporting all features of AMD IOMMU page tables like level skipping
361  * and full 64 bit address spaces.
362  */
363 static int iommu_v1_map_page(struct io_pgtable_ops *ops, unsigned long iova,
364 			  phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
365 {
366 	struct protection_domain *dom = io_pgtable_ops_to_domain(ops);
367 	LIST_HEAD(freelist);
368 	bool updated = false;
369 	u64 __pte, *pte;
370 	int ret, i, count;
371 
372 	BUG_ON(!IS_ALIGNED(iova, size));
373 	BUG_ON(!IS_ALIGNED(paddr, size));
374 
375 	ret = -EINVAL;
376 	if (!(prot & IOMMU_PROT_MASK))
377 		goto out;
378 
379 	count = PAGE_SIZE_PTE_COUNT(size);
380 	pte   = alloc_pte(dom, iova, size, NULL, gfp, &updated);
381 
382 	ret = -ENOMEM;
383 	if (!pte)
384 		goto out;
385 
386 	for (i = 0; i < count; ++i)
387 		free_clear_pte(&pte[i], pte[i], &freelist);
388 
389 	if (!list_empty(&freelist))
390 		updated = true;
391 
392 	if (count > 1) {
393 		__pte = PAGE_SIZE_PTE(__sme_set(paddr), size);
394 		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
395 	} else
396 		__pte = __sme_set(paddr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
397 
398 	if (prot & IOMMU_PROT_IR)
399 		__pte |= IOMMU_PTE_IR;
400 	if (prot & IOMMU_PROT_IW)
401 		__pte |= IOMMU_PTE_IW;
402 
403 	for (i = 0; i < count; ++i)
404 		pte[i] = __pte;
405 
406 	ret = 0;
407 
408 out:
409 	if (updated) {
410 		unsigned long flags;
411 
412 		spin_lock_irqsave(&dom->lock, flags);
413 		/*
414 		 * Flush domain TLB(s) and wait for completion. Any Device-Table
415 		 * Updates and flushing already happened in
416 		 * increase_address_space().
417 		 */
418 		amd_iommu_domain_flush_tlb_pde(dom);
419 		amd_iommu_domain_flush_complete(dom);
420 		spin_unlock_irqrestore(&dom->lock, flags);
421 	}
422 
423 	/* Everything flushed out, free pages now */
424 	put_pages_list(&freelist);
425 
426 	return ret;
427 }
428 
429 static unsigned long iommu_v1_unmap_page(struct io_pgtable_ops *ops,
430 				      unsigned long iova,
431 				      size_t size,
432 				      struct iommu_iotlb_gather *gather)
433 {
434 	struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
435 	unsigned long long unmapped;
436 	unsigned long unmap_size;
437 	u64 *pte;
438 
439 	BUG_ON(!is_power_of_2(size));
440 
441 	unmapped = 0;
442 
443 	while (unmapped < size) {
444 		pte = fetch_pte(pgtable, iova, &unmap_size);
445 		if (pte) {
446 			int i, count;
447 
448 			count = PAGE_SIZE_PTE_COUNT(unmap_size);
449 			for (i = 0; i < count; i++)
450 				pte[i] = 0ULL;
451 		}
452 
453 		iova = (iova & ~(unmap_size - 1)) + unmap_size;
454 		unmapped += unmap_size;
455 	}
456 
457 	BUG_ON(unmapped && !is_power_of_2(unmapped));
458 
459 	return unmapped;
460 }
461 
462 static phys_addr_t iommu_v1_iova_to_phys(struct io_pgtable_ops *ops, unsigned long iova)
463 {
464 	struct amd_io_pgtable *pgtable = io_pgtable_ops_to_data(ops);
465 	unsigned long offset_mask, pte_pgsize;
466 	u64 *pte, __pte;
467 
468 	pte = fetch_pte(pgtable, iova, &pte_pgsize);
469 
470 	if (!pte || !IOMMU_PTE_PRESENT(*pte))
471 		return 0;
472 
473 	offset_mask = pte_pgsize - 1;
474 	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
475 
476 	return (__pte & ~offset_mask) | (iova & offset_mask);
477 }
478 
479 /*
480  * ----------------------------------------------------
481  */
482 static void v1_free_pgtable(struct io_pgtable *iop)
483 {
484 	struct amd_io_pgtable *pgtable = container_of(iop, struct amd_io_pgtable, iop);
485 	struct protection_domain *dom;
486 	LIST_HEAD(freelist);
487 
488 	if (pgtable->mode == PAGE_MODE_NONE)
489 		return;
490 
491 	dom = container_of(pgtable, struct protection_domain, iop);
492 
493 	/* Page-table is not visible to IOMMU anymore, so free it */
494 	BUG_ON(pgtable->mode < PAGE_MODE_NONE ||
495 	       pgtable->mode > PAGE_MODE_6_LEVEL);
496 
497 	free_sub_pt(pgtable->root, pgtable->mode, &freelist);
498 
499 	/* Update data structure */
500 	amd_iommu_domain_clr_pt_root(dom);
501 
502 	/* Make changes visible to IOMMUs */
503 	amd_iommu_domain_update(dom);
504 
505 	put_pages_list(&freelist);
506 }
507 
508 static struct io_pgtable *v1_alloc_pgtable(struct io_pgtable_cfg *cfg, void *cookie)
509 {
510 	struct amd_io_pgtable *pgtable = io_pgtable_cfg_to_data(cfg);
511 
512 	cfg->pgsize_bitmap  = AMD_IOMMU_PGSIZES,
513 	cfg->ias            = IOMMU_IN_ADDR_BIT_SIZE,
514 	cfg->oas            = IOMMU_OUT_ADDR_BIT_SIZE,
515 	cfg->tlb            = &v1_flush_ops;
516 
517 	pgtable->iop.ops.map          = iommu_v1_map_page;
518 	pgtable->iop.ops.unmap        = iommu_v1_unmap_page;
519 	pgtable->iop.ops.iova_to_phys = iommu_v1_iova_to_phys;
520 
521 	return &pgtable->iop;
522 }
523 
524 struct io_pgtable_init_fns io_pgtable_amd_iommu_v1_init_fns = {
525 	.alloc	= v1_alloc_pgtable,
526 	.free	= v1_free_pgtable,
527 };
528