xref: /openbmc/linux/drivers/interconnect/core.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21 
22 #include "internal.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 static DEFINE_IDR(icc_idr);
28 static LIST_HEAD(icc_providers);
29 static DEFINE_MUTEX(icc_lock);
30 static struct dentry *icc_debugfs_dir;
31 
32 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
33 {
34 	if (!n)
35 		return;
36 
37 	seq_printf(s, "%-42s %12u %12u\n",
38 		   n->name, n->avg_bw, n->peak_bw);
39 }
40 
41 static int icc_summary_show(struct seq_file *s, void *data)
42 {
43 	struct icc_provider *provider;
44 
45 	seq_puts(s, " node                                  tag          avg         peak\n");
46 	seq_puts(s, "--------------------------------------------------------------------\n");
47 
48 	mutex_lock(&icc_lock);
49 
50 	list_for_each_entry(provider, &icc_providers, provider_list) {
51 		struct icc_node *n;
52 
53 		list_for_each_entry(n, &provider->nodes, node_list) {
54 			struct icc_req *r;
55 
56 			icc_summary_show_one(s, n);
57 			hlist_for_each_entry(r, &n->req_list, req_node) {
58 				u32 avg_bw = 0, peak_bw = 0;
59 
60 				if (!r->dev)
61 					continue;
62 
63 				if (r->enabled) {
64 					avg_bw = r->avg_bw;
65 					peak_bw = r->peak_bw;
66 				}
67 
68 				seq_printf(s, "  %-27s %12u %12u %12u\n",
69 					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
70 			}
71 		}
72 	}
73 
74 	mutex_unlock(&icc_lock);
75 
76 	return 0;
77 }
78 DEFINE_SHOW_ATTRIBUTE(icc_summary);
79 
80 static void icc_graph_show_link(struct seq_file *s, int level,
81 				struct icc_node *n, struct icc_node *m)
82 {
83 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
84 		   level == 2 ? "\t\t" : "\t",
85 		   n->id, n->name, m->id, m->name);
86 }
87 
88 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
89 {
90 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
91 		   n->id, n->name, n->id, n->name);
92 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
93 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
94 	seq_puts(s, "\"]\n");
95 }
96 
97 static int icc_graph_show(struct seq_file *s, void *data)
98 {
99 	struct icc_provider *provider;
100 	struct icc_node *n;
101 	int cluster_index = 0;
102 	int i;
103 
104 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
105 	mutex_lock(&icc_lock);
106 
107 	/* draw providers as cluster subgraphs */
108 	cluster_index = 0;
109 	list_for_each_entry(provider, &icc_providers, provider_list) {
110 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
111 		if (provider->dev)
112 			seq_printf(s, "\t\tlabel = \"%s\"\n",
113 				   dev_name(provider->dev));
114 
115 		/* draw nodes */
116 		list_for_each_entry(n, &provider->nodes, node_list)
117 			icc_graph_show_node(s, n);
118 
119 		/* draw internal links */
120 		list_for_each_entry(n, &provider->nodes, node_list)
121 			for (i = 0; i < n->num_links; ++i)
122 				if (n->provider == n->links[i]->provider)
123 					icc_graph_show_link(s, 2, n,
124 							    n->links[i]);
125 
126 		seq_puts(s, "\t}\n");
127 	}
128 
129 	/* draw external links */
130 	list_for_each_entry(provider, &icc_providers, provider_list)
131 		list_for_each_entry(n, &provider->nodes, node_list)
132 			for (i = 0; i < n->num_links; ++i)
133 				if (n->provider != n->links[i]->provider)
134 					icc_graph_show_link(s, 1, n,
135 							    n->links[i]);
136 
137 	mutex_unlock(&icc_lock);
138 	seq_puts(s, "}");
139 
140 	return 0;
141 }
142 DEFINE_SHOW_ATTRIBUTE(icc_graph);
143 
144 static struct icc_node *node_find(const int id)
145 {
146 	return idr_find(&icc_idr, id);
147 }
148 
149 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
150 				  ssize_t num_nodes)
151 {
152 	struct icc_node *node = dst;
153 	struct icc_path *path;
154 	int i;
155 
156 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
157 	if (!path)
158 		return ERR_PTR(-ENOMEM);
159 
160 	path->num_nodes = num_nodes;
161 
162 	for (i = num_nodes - 1; i >= 0; i--) {
163 		node->provider->users++;
164 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
165 		path->reqs[i].node = node;
166 		path->reqs[i].dev = dev;
167 		path->reqs[i].enabled = true;
168 		/* reference to previous node was saved during path traversal */
169 		node = node->reverse;
170 	}
171 
172 	return path;
173 }
174 
175 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
176 				  struct icc_node *dst)
177 {
178 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
179 	struct icc_node *n, *node = NULL;
180 	struct list_head traverse_list;
181 	struct list_head edge_list;
182 	struct list_head visited_list;
183 	size_t i, depth = 1;
184 	bool found = false;
185 
186 	INIT_LIST_HEAD(&traverse_list);
187 	INIT_LIST_HEAD(&edge_list);
188 	INIT_LIST_HEAD(&visited_list);
189 
190 	list_add(&src->search_list, &traverse_list);
191 	src->reverse = NULL;
192 
193 	do {
194 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
195 			if (node == dst) {
196 				found = true;
197 				list_splice_init(&edge_list, &visited_list);
198 				list_splice_init(&traverse_list, &visited_list);
199 				break;
200 			}
201 			for (i = 0; i < node->num_links; i++) {
202 				struct icc_node *tmp = node->links[i];
203 
204 				if (!tmp) {
205 					path = ERR_PTR(-ENOENT);
206 					goto out;
207 				}
208 
209 				if (tmp->is_traversed)
210 					continue;
211 
212 				tmp->is_traversed = true;
213 				tmp->reverse = node;
214 				list_add_tail(&tmp->search_list, &edge_list);
215 			}
216 		}
217 
218 		if (found)
219 			break;
220 
221 		list_splice_init(&traverse_list, &visited_list);
222 		list_splice_init(&edge_list, &traverse_list);
223 
224 		/* count the hops including the source */
225 		depth++;
226 
227 	} while (!list_empty(&traverse_list));
228 
229 out:
230 
231 	/* reset the traversed state */
232 	list_for_each_entry_reverse(n, &visited_list, search_list)
233 		n->is_traversed = false;
234 
235 	if (found)
236 		path = path_init(dev, dst, depth);
237 
238 	return path;
239 }
240 
241 /*
242  * We want the path to honor all bandwidth requests, so the average and peak
243  * bandwidth requirements from each consumer are aggregated at each node.
244  * The aggregation is platform specific, so each platform can customize it by
245  * implementing its own aggregate() function.
246  */
247 
248 static int aggregate_requests(struct icc_node *node)
249 {
250 	struct icc_provider *p = node->provider;
251 	struct icc_req *r;
252 	u32 avg_bw, peak_bw;
253 
254 	node->avg_bw = 0;
255 	node->peak_bw = 0;
256 
257 	if (p->pre_aggregate)
258 		p->pre_aggregate(node);
259 
260 	hlist_for_each_entry(r, &node->req_list, req_node) {
261 		if (r->enabled) {
262 			avg_bw = r->avg_bw;
263 			peak_bw = r->peak_bw;
264 		} else {
265 			avg_bw = 0;
266 			peak_bw = 0;
267 		}
268 		p->aggregate(node, r->tag, avg_bw, peak_bw,
269 			     &node->avg_bw, &node->peak_bw);
270 	}
271 
272 	return 0;
273 }
274 
275 static int apply_constraints(struct icc_path *path)
276 {
277 	struct icc_node *next, *prev = NULL;
278 	struct icc_provider *p;
279 	int ret = -EINVAL;
280 	int i;
281 
282 	for (i = 0; i < path->num_nodes; i++) {
283 		next = path->reqs[i].node;
284 		p = next->provider;
285 
286 		/* both endpoints should be valid master-slave pairs */
287 		if (!prev || (p != prev->provider && !p->inter_set)) {
288 			prev = next;
289 			continue;
290 		}
291 
292 		/* set the constraints */
293 		ret = p->set(prev, next);
294 		if (ret)
295 			goto out;
296 
297 		prev = next;
298 	}
299 out:
300 	return ret;
301 }
302 
303 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
304 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
305 {
306 	*agg_avg += avg_bw;
307 	*agg_peak = max(*agg_peak, peak_bw);
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL_GPL(icc_std_aggregate);
312 
313 /* of_icc_xlate_onecell() - Translate function using a single index.
314  * @spec: OF phandle args to map into an interconnect node.
315  * @data: private data (pointer to struct icc_onecell_data)
316  *
317  * This is a generic translate function that can be used to model simple
318  * interconnect providers that have one device tree node and provide
319  * multiple interconnect nodes. A single cell is used as an index into
320  * an array of icc nodes specified in the icc_onecell_data struct when
321  * registering the provider.
322  */
323 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
324 				      void *data)
325 {
326 	struct icc_onecell_data *icc_data = data;
327 	unsigned int idx = spec->args[0];
328 
329 	if (idx >= icc_data->num_nodes) {
330 		pr_err("%s: invalid index %u\n", __func__, idx);
331 		return ERR_PTR(-EINVAL);
332 	}
333 
334 	return icc_data->nodes[idx];
335 }
336 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
337 
338 /**
339  * of_icc_get_from_provider() - Look-up interconnect node
340  * @spec: OF phandle args to use for look-up
341  *
342  * Looks for interconnect provider under the node specified by @spec and if
343  * found, uses xlate function of the provider to map phandle args to node.
344  *
345  * Returns a valid pointer to struct icc_node on success or ERR_PTR()
346  * on failure.
347  */
348 struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
349 {
350 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
351 	struct icc_provider *provider;
352 
353 	if (!spec)
354 		return ERR_PTR(-EINVAL);
355 
356 	mutex_lock(&icc_lock);
357 	list_for_each_entry(provider, &icc_providers, provider_list) {
358 		if (provider->dev->of_node == spec->np)
359 			node = provider->xlate(spec, provider->data);
360 		if (!IS_ERR(node))
361 			break;
362 	}
363 	mutex_unlock(&icc_lock);
364 
365 	return node;
366 }
367 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
368 
369 static void devm_icc_release(struct device *dev, void *res)
370 {
371 	icc_put(*(struct icc_path **)res);
372 }
373 
374 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
375 {
376 	struct icc_path **ptr, *path;
377 
378 	ptr = devres_alloc(devm_icc_release, sizeof(**ptr), GFP_KERNEL);
379 	if (!ptr)
380 		return ERR_PTR(-ENOMEM);
381 
382 	path = of_icc_get(dev, name);
383 	if (!IS_ERR(path)) {
384 		*ptr = path;
385 		devres_add(dev, ptr);
386 	} else {
387 		devres_free(ptr);
388 	}
389 
390 	return path;
391 }
392 EXPORT_SYMBOL_GPL(devm_of_icc_get);
393 
394 /**
395  * of_icc_get_by_index() - get a path handle from a DT node based on index
396  * @dev: device pointer for the consumer device
397  * @idx: interconnect path index
398  *
399  * This function will search for a path between two endpoints and return an
400  * icc_path handle on success. Use icc_put() to release constraints when they
401  * are not needed anymore.
402  * If the interconnect API is disabled, NULL is returned and the consumer
403  * drivers will still build. Drivers are free to handle this specifically,
404  * but they don't have to.
405  *
406  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
407  * when the API is disabled or the "interconnects" DT property is missing.
408  */
409 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
410 {
411 	struct icc_path *path;
412 	struct icc_node *src_node, *dst_node;
413 	struct device_node *np;
414 	struct of_phandle_args src_args, dst_args;
415 	int ret;
416 
417 	if (!dev || !dev->of_node)
418 		return ERR_PTR(-ENODEV);
419 
420 	np = dev->of_node;
421 
422 	/*
423 	 * When the consumer DT node do not have "interconnects" property
424 	 * return a NULL path to skip setting constraints.
425 	 */
426 	if (!of_find_property(np, "interconnects", NULL))
427 		return NULL;
428 
429 	/*
430 	 * We use a combination of phandle and specifier for endpoint. For now
431 	 * lets support only global ids and extend this in the future if needed
432 	 * without breaking DT compatibility.
433 	 */
434 	ret = of_parse_phandle_with_args(np, "interconnects",
435 					 "#interconnect-cells", idx * 2,
436 					 &src_args);
437 	if (ret)
438 		return ERR_PTR(ret);
439 
440 	of_node_put(src_args.np);
441 
442 	ret = of_parse_phandle_with_args(np, "interconnects",
443 					 "#interconnect-cells", idx * 2 + 1,
444 					 &dst_args);
445 	if (ret)
446 		return ERR_PTR(ret);
447 
448 	of_node_put(dst_args.np);
449 
450 	src_node = of_icc_get_from_provider(&src_args);
451 
452 	if (IS_ERR(src_node)) {
453 		if (PTR_ERR(src_node) != -EPROBE_DEFER)
454 			dev_err(dev, "error finding src node: %ld\n",
455 				PTR_ERR(src_node));
456 		return ERR_CAST(src_node);
457 	}
458 
459 	dst_node = of_icc_get_from_provider(&dst_args);
460 
461 	if (IS_ERR(dst_node)) {
462 		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
463 			dev_err(dev, "error finding dst node: %ld\n",
464 				PTR_ERR(dst_node));
465 		return ERR_CAST(dst_node);
466 	}
467 
468 	mutex_lock(&icc_lock);
469 	path = path_find(dev, src_node, dst_node);
470 	mutex_unlock(&icc_lock);
471 	if (IS_ERR(path)) {
472 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
473 		return path;
474 	}
475 
476 	path->name = kasprintf(GFP_KERNEL, "%s-%s",
477 			       src_node->name, dst_node->name);
478 	if (!path->name) {
479 		kfree(path);
480 		return ERR_PTR(-ENOMEM);
481 	}
482 
483 	return path;
484 }
485 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
486 
487 /**
488  * of_icc_get() - get a path handle from a DT node based on name
489  * @dev: device pointer for the consumer device
490  * @name: interconnect path name
491  *
492  * This function will search for a path between two endpoints and return an
493  * icc_path handle on success. Use icc_put() to release constraints when they
494  * are not needed anymore.
495  * If the interconnect API is disabled, NULL is returned and the consumer
496  * drivers will still build. Drivers are free to handle this specifically,
497  * but they don't have to.
498  *
499  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
500  * when the API is disabled or the "interconnects" DT property is missing.
501  */
502 struct icc_path *of_icc_get(struct device *dev, const char *name)
503 {
504 	struct device_node *np;
505 	int idx = 0;
506 
507 	if (!dev || !dev->of_node)
508 		return ERR_PTR(-ENODEV);
509 
510 	np = dev->of_node;
511 
512 	/*
513 	 * When the consumer DT node do not have "interconnects" property
514 	 * return a NULL path to skip setting constraints.
515 	 */
516 	if (!of_find_property(np, "interconnects", NULL))
517 		return NULL;
518 
519 	/*
520 	 * We use a combination of phandle and specifier for endpoint. For now
521 	 * lets support only global ids and extend this in the future if needed
522 	 * without breaking DT compatibility.
523 	 */
524 	if (name) {
525 		idx = of_property_match_string(np, "interconnect-names", name);
526 		if (idx < 0)
527 			return ERR_PTR(idx);
528 	}
529 
530 	return of_icc_get_by_index(dev, idx);
531 }
532 EXPORT_SYMBOL_GPL(of_icc_get);
533 
534 /**
535  * icc_set_tag() - set an optional tag on a path
536  * @path: the path we want to tag
537  * @tag: the tag value
538  *
539  * This function allows consumers to append a tag to the requests associated
540  * with a path, so that a different aggregation could be done based on this tag.
541  */
542 void icc_set_tag(struct icc_path *path, u32 tag)
543 {
544 	int i;
545 
546 	if (!path)
547 		return;
548 
549 	mutex_lock(&icc_lock);
550 
551 	for (i = 0; i < path->num_nodes; i++)
552 		path->reqs[i].tag = tag;
553 
554 	mutex_unlock(&icc_lock);
555 }
556 EXPORT_SYMBOL_GPL(icc_set_tag);
557 
558 /**
559  * icc_get_name() - Get name of the icc path
560  * @path: reference to the path returned by icc_get()
561  *
562  * This function is used by an interconnect consumer to get the name of the icc
563  * path.
564  *
565  * Returns a valid pointer on success, or NULL otherwise.
566  */
567 const char *icc_get_name(struct icc_path *path)
568 {
569 	if (!path)
570 		return NULL;
571 
572 	return path->name;
573 }
574 EXPORT_SYMBOL_GPL(icc_get_name);
575 
576 /**
577  * icc_set_bw() - set bandwidth constraints on an interconnect path
578  * @path: reference to the path returned by icc_get()
579  * @avg_bw: average bandwidth in kilobytes per second
580  * @peak_bw: peak bandwidth in kilobytes per second
581  *
582  * This function is used by an interconnect consumer to express its own needs
583  * in terms of bandwidth for a previously requested path between two endpoints.
584  * The requests are aggregated and each node is updated accordingly. The entire
585  * path is locked by a mutex to ensure that the set() is completed.
586  * The @path can be NULL when the "interconnects" DT properties is missing,
587  * which will mean that no constraints will be set.
588  *
589  * Returns 0 on success, or an appropriate error code otherwise.
590  */
591 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
592 {
593 	struct icc_node *node;
594 	u32 old_avg, old_peak;
595 	size_t i;
596 	int ret;
597 
598 	if (!path)
599 		return 0;
600 
601 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
602 		return -EINVAL;
603 
604 	mutex_lock(&icc_lock);
605 
606 	old_avg = path->reqs[0].avg_bw;
607 	old_peak = path->reqs[0].peak_bw;
608 
609 	for (i = 0; i < path->num_nodes; i++) {
610 		node = path->reqs[i].node;
611 
612 		/* update the consumer request for this path */
613 		path->reqs[i].avg_bw = avg_bw;
614 		path->reqs[i].peak_bw = peak_bw;
615 
616 		/* aggregate requests for this node */
617 		aggregate_requests(node);
618 
619 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
620 	}
621 
622 	ret = apply_constraints(path);
623 	if (ret) {
624 		pr_debug("interconnect: error applying constraints (%d)\n",
625 			 ret);
626 
627 		for (i = 0; i < path->num_nodes; i++) {
628 			node = path->reqs[i].node;
629 			path->reqs[i].avg_bw = old_avg;
630 			path->reqs[i].peak_bw = old_peak;
631 			aggregate_requests(node);
632 		}
633 		apply_constraints(path);
634 	}
635 
636 	mutex_unlock(&icc_lock);
637 
638 	trace_icc_set_bw_end(path, ret);
639 
640 	return ret;
641 }
642 EXPORT_SYMBOL_GPL(icc_set_bw);
643 
644 static int __icc_enable(struct icc_path *path, bool enable)
645 {
646 	int i;
647 
648 	if (!path)
649 		return 0;
650 
651 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
652 		return -EINVAL;
653 
654 	mutex_lock(&icc_lock);
655 
656 	for (i = 0; i < path->num_nodes; i++)
657 		path->reqs[i].enabled = enable;
658 
659 	mutex_unlock(&icc_lock);
660 
661 	return icc_set_bw(path, path->reqs[0].avg_bw,
662 			  path->reqs[0].peak_bw);
663 }
664 
665 int icc_enable(struct icc_path *path)
666 {
667 	return __icc_enable(path, true);
668 }
669 EXPORT_SYMBOL_GPL(icc_enable);
670 
671 int icc_disable(struct icc_path *path)
672 {
673 	return __icc_enable(path, false);
674 }
675 EXPORT_SYMBOL_GPL(icc_disable);
676 
677 /**
678  * icc_get() - return a handle for path between two endpoints
679  * @dev: the device requesting the path
680  * @src_id: source device port id
681  * @dst_id: destination device port id
682  *
683  * This function will search for a path between two endpoints and return an
684  * icc_path handle on success. Use icc_put() to release
685  * constraints when they are not needed anymore.
686  * If the interconnect API is disabled, NULL is returned and the consumer
687  * drivers will still build. Drivers are free to handle this specifically,
688  * but they don't have to.
689  *
690  * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
691  * interconnect API is disabled.
692  */
693 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
694 {
695 	struct icc_node *src, *dst;
696 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
697 
698 	mutex_lock(&icc_lock);
699 
700 	src = node_find(src_id);
701 	if (!src)
702 		goto out;
703 
704 	dst = node_find(dst_id);
705 	if (!dst)
706 		goto out;
707 
708 	path = path_find(dev, src, dst);
709 	if (IS_ERR(path)) {
710 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
711 		goto out;
712 	}
713 
714 	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
715 	if (!path->name) {
716 		kfree(path);
717 		path = ERR_PTR(-ENOMEM);
718 	}
719 out:
720 	mutex_unlock(&icc_lock);
721 	return path;
722 }
723 EXPORT_SYMBOL_GPL(icc_get);
724 
725 /**
726  * icc_put() - release the reference to the icc_path
727  * @path: interconnect path
728  *
729  * Use this function to release the constraints on a path when the path is
730  * no longer needed. The constraints will be re-aggregated.
731  */
732 void icc_put(struct icc_path *path)
733 {
734 	struct icc_node *node;
735 	size_t i;
736 	int ret;
737 
738 	if (!path || WARN_ON(IS_ERR(path)))
739 		return;
740 
741 	ret = icc_set_bw(path, 0, 0);
742 	if (ret)
743 		pr_err("%s: error (%d)\n", __func__, ret);
744 
745 	mutex_lock(&icc_lock);
746 	for (i = 0; i < path->num_nodes; i++) {
747 		node = path->reqs[i].node;
748 		hlist_del(&path->reqs[i].req_node);
749 		if (!WARN_ON(!node->provider->users))
750 			node->provider->users--;
751 	}
752 	mutex_unlock(&icc_lock);
753 
754 	kfree_const(path->name);
755 	kfree(path);
756 }
757 EXPORT_SYMBOL_GPL(icc_put);
758 
759 static struct icc_node *icc_node_create_nolock(int id)
760 {
761 	struct icc_node *node;
762 
763 	/* check if node already exists */
764 	node = node_find(id);
765 	if (node)
766 		return node;
767 
768 	node = kzalloc(sizeof(*node), GFP_KERNEL);
769 	if (!node)
770 		return ERR_PTR(-ENOMEM);
771 
772 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
773 	if (id < 0) {
774 		WARN(1, "%s: couldn't get idr\n", __func__);
775 		kfree(node);
776 		return ERR_PTR(id);
777 	}
778 
779 	node->id = id;
780 
781 	return node;
782 }
783 
784 /**
785  * icc_node_create() - create a node
786  * @id: node id
787  *
788  * Return: icc_node pointer on success, or ERR_PTR() on error
789  */
790 struct icc_node *icc_node_create(int id)
791 {
792 	struct icc_node *node;
793 
794 	mutex_lock(&icc_lock);
795 
796 	node = icc_node_create_nolock(id);
797 
798 	mutex_unlock(&icc_lock);
799 
800 	return node;
801 }
802 EXPORT_SYMBOL_GPL(icc_node_create);
803 
804 /**
805  * icc_node_destroy() - destroy a node
806  * @id: node id
807  */
808 void icc_node_destroy(int id)
809 {
810 	struct icc_node *node;
811 
812 	mutex_lock(&icc_lock);
813 
814 	node = node_find(id);
815 	if (node) {
816 		idr_remove(&icc_idr, node->id);
817 		WARN_ON(!hlist_empty(&node->req_list));
818 	}
819 
820 	mutex_unlock(&icc_lock);
821 
822 	kfree(node);
823 }
824 EXPORT_SYMBOL_GPL(icc_node_destroy);
825 
826 /**
827  * icc_link_create() - create a link between two nodes
828  * @node: source node id
829  * @dst_id: destination node id
830  *
831  * Create a link between two nodes. The nodes might belong to different
832  * interconnect providers and the @dst_id node might not exist (if the
833  * provider driver has not probed yet). So just create the @dst_id node
834  * and when the actual provider driver is probed, the rest of the node
835  * data is filled.
836  *
837  * Return: 0 on success, or an error code otherwise
838  */
839 int icc_link_create(struct icc_node *node, const int dst_id)
840 {
841 	struct icc_node *dst;
842 	struct icc_node **new;
843 	int ret = 0;
844 
845 	if (!node->provider)
846 		return -EINVAL;
847 
848 	mutex_lock(&icc_lock);
849 
850 	dst = node_find(dst_id);
851 	if (!dst) {
852 		dst = icc_node_create_nolock(dst_id);
853 
854 		if (IS_ERR(dst)) {
855 			ret = PTR_ERR(dst);
856 			goto out;
857 		}
858 	}
859 
860 	new = krealloc(node->links,
861 		       (node->num_links + 1) * sizeof(*node->links),
862 		       GFP_KERNEL);
863 	if (!new) {
864 		ret = -ENOMEM;
865 		goto out;
866 	}
867 
868 	node->links = new;
869 	node->links[node->num_links++] = dst;
870 
871 out:
872 	mutex_unlock(&icc_lock);
873 
874 	return ret;
875 }
876 EXPORT_SYMBOL_GPL(icc_link_create);
877 
878 /**
879  * icc_link_destroy() - destroy a link between two nodes
880  * @src: pointer to source node
881  * @dst: pointer to destination node
882  *
883  * Return: 0 on success, or an error code otherwise
884  */
885 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
886 {
887 	struct icc_node **new;
888 	size_t slot;
889 	int ret = 0;
890 
891 	if (IS_ERR_OR_NULL(src))
892 		return -EINVAL;
893 
894 	if (IS_ERR_OR_NULL(dst))
895 		return -EINVAL;
896 
897 	mutex_lock(&icc_lock);
898 
899 	for (slot = 0; slot < src->num_links; slot++)
900 		if (src->links[slot] == dst)
901 			break;
902 
903 	if (WARN_ON(slot == src->num_links)) {
904 		ret = -ENXIO;
905 		goto out;
906 	}
907 
908 	src->links[slot] = src->links[--src->num_links];
909 
910 	new = krealloc(src->links, src->num_links * sizeof(*src->links),
911 		       GFP_KERNEL);
912 	if (new)
913 		src->links = new;
914 
915 out:
916 	mutex_unlock(&icc_lock);
917 
918 	return ret;
919 }
920 EXPORT_SYMBOL_GPL(icc_link_destroy);
921 
922 /**
923  * icc_node_add() - add interconnect node to interconnect provider
924  * @node: pointer to the interconnect node
925  * @provider: pointer to the interconnect provider
926  */
927 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
928 {
929 	mutex_lock(&icc_lock);
930 
931 	node->provider = provider;
932 	list_add_tail(&node->node_list, &provider->nodes);
933 
934 	mutex_unlock(&icc_lock);
935 }
936 EXPORT_SYMBOL_GPL(icc_node_add);
937 
938 /**
939  * icc_node_del() - delete interconnect node from interconnect provider
940  * @node: pointer to the interconnect node
941  */
942 void icc_node_del(struct icc_node *node)
943 {
944 	mutex_lock(&icc_lock);
945 
946 	list_del(&node->node_list);
947 
948 	mutex_unlock(&icc_lock);
949 }
950 EXPORT_SYMBOL_GPL(icc_node_del);
951 
952 /**
953  * icc_nodes_remove() - remove all previously added nodes from provider
954  * @provider: the interconnect provider we are removing nodes from
955  *
956  * Return: 0 on success, or an error code otherwise
957  */
958 int icc_nodes_remove(struct icc_provider *provider)
959 {
960 	struct icc_node *n, *tmp;
961 
962 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
963 		return -EINVAL;
964 
965 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
966 		icc_node_del(n);
967 		icc_node_destroy(n->id);
968 	}
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL_GPL(icc_nodes_remove);
973 
974 /**
975  * icc_provider_add() - add a new interconnect provider
976  * @provider: the interconnect provider that will be added into topology
977  *
978  * Return: 0 on success, or an error code otherwise
979  */
980 int icc_provider_add(struct icc_provider *provider)
981 {
982 	if (WARN_ON(!provider->set))
983 		return -EINVAL;
984 	if (WARN_ON(!provider->xlate))
985 		return -EINVAL;
986 
987 	mutex_lock(&icc_lock);
988 
989 	INIT_LIST_HEAD(&provider->nodes);
990 	list_add_tail(&provider->provider_list, &icc_providers);
991 
992 	mutex_unlock(&icc_lock);
993 
994 	dev_dbg(provider->dev, "interconnect provider added to topology\n");
995 
996 	return 0;
997 }
998 EXPORT_SYMBOL_GPL(icc_provider_add);
999 
1000 /**
1001  * icc_provider_del() - delete previously added interconnect provider
1002  * @provider: the interconnect provider that will be removed from topology
1003  *
1004  * Return: 0 on success, or an error code otherwise
1005  */
1006 int icc_provider_del(struct icc_provider *provider)
1007 {
1008 	mutex_lock(&icc_lock);
1009 	if (provider->users) {
1010 		pr_warn("interconnect provider still has %d users\n",
1011 			provider->users);
1012 		mutex_unlock(&icc_lock);
1013 		return -EBUSY;
1014 	}
1015 
1016 	if (!list_empty(&provider->nodes)) {
1017 		pr_warn("interconnect provider still has nodes\n");
1018 		mutex_unlock(&icc_lock);
1019 		return -EBUSY;
1020 	}
1021 
1022 	list_del(&provider->provider_list);
1023 	mutex_unlock(&icc_lock);
1024 
1025 	return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(icc_provider_del);
1028 
1029 static int __init icc_init(void)
1030 {
1031 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1032 	debugfs_create_file("interconnect_summary", 0444,
1033 			    icc_debugfs_dir, NULL, &icc_summary_fops);
1034 	debugfs_create_file("interconnect_graph", 0444,
1035 			    icc_debugfs_dir, NULL, &icc_graph_fops);
1036 	return 0;
1037 }
1038 
1039 device_initcall(icc_init);
1040 
1041 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
1042 MODULE_DESCRIPTION("Interconnect Driver Core");
1043 MODULE_LICENSE("GPL v2");
1044