1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interconnect framework core driver 4 * 5 * Copyright (c) 2017-2019, Linaro Ltd. 6 * Author: Georgi Djakov <georgi.djakov@linaro.org> 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/device.h> 11 #include <linux/idr.h> 12 #include <linux/init.h> 13 #include <linux/interconnect.h> 14 #include <linux/interconnect-provider.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/overflow.h> 21 22 #include "internal.h" 23 24 #define CREATE_TRACE_POINTS 25 #include "trace.h" 26 27 static DEFINE_IDR(icc_idr); 28 static LIST_HEAD(icc_providers); 29 static DEFINE_MUTEX(icc_lock); 30 static struct dentry *icc_debugfs_dir; 31 32 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) 33 { 34 if (!n) 35 return; 36 37 seq_printf(s, "%-42s %12u %12u\n", 38 n->name, n->avg_bw, n->peak_bw); 39 } 40 41 static int icc_summary_show(struct seq_file *s, void *data) 42 { 43 struct icc_provider *provider; 44 45 seq_puts(s, " node tag avg peak\n"); 46 seq_puts(s, "--------------------------------------------------------------------\n"); 47 48 mutex_lock(&icc_lock); 49 50 list_for_each_entry(provider, &icc_providers, provider_list) { 51 struct icc_node *n; 52 53 list_for_each_entry(n, &provider->nodes, node_list) { 54 struct icc_req *r; 55 56 icc_summary_show_one(s, n); 57 hlist_for_each_entry(r, &n->req_list, req_node) { 58 if (!r->dev) 59 continue; 60 61 seq_printf(s, " %-27s %12u %12u %12u\n", 62 dev_name(r->dev), r->tag, r->avg_bw, 63 r->peak_bw); 64 } 65 } 66 } 67 68 mutex_unlock(&icc_lock); 69 70 return 0; 71 } 72 DEFINE_SHOW_ATTRIBUTE(icc_summary); 73 74 static void icc_graph_show_link(struct seq_file *s, int level, 75 struct icc_node *n, struct icc_node *m) 76 { 77 seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n", 78 level == 2 ? "\t\t" : "\t", 79 n->id, n->name, m->id, m->name); 80 } 81 82 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n) 83 { 84 seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s", 85 n->id, n->name, n->id, n->name); 86 seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw); 87 seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw); 88 seq_puts(s, "\"]\n"); 89 } 90 91 static int icc_graph_show(struct seq_file *s, void *data) 92 { 93 struct icc_provider *provider; 94 struct icc_node *n; 95 int cluster_index = 0; 96 int i; 97 98 seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n"); 99 mutex_lock(&icc_lock); 100 101 /* draw providers as cluster subgraphs */ 102 cluster_index = 0; 103 list_for_each_entry(provider, &icc_providers, provider_list) { 104 seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index); 105 if (provider->dev) 106 seq_printf(s, "\t\tlabel = \"%s\"\n", 107 dev_name(provider->dev)); 108 109 /* draw nodes */ 110 list_for_each_entry(n, &provider->nodes, node_list) 111 icc_graph_show_node(s, n); 112 113 /* draw internal links */ 114 list_for_each_entry(n, &provider->nodes, node_list) 115 for (i = 0; i < n->num_links; ++i) 116 if (n->provider == n->links[i]->provider) 117 icc_graph_show_link(s, 2, n, 118 n->links[i]); 119 120 seq_puts(s, "\t}\n"); 121 } 122 123 /* draw external links */ 124 list_for_each_entry(provider, &icc_providers, provider_list) 125 list_for_each_entry(n, &provider->nodes, node_list) 126 for (i = 0; i < n->num_links; ++i) 127 if (n->provider != n->links[i]->provider) 128 icc_graph_show_link(s, 1, n, 129 n->links[i]); 130 131 mutex_unlock(&icc_lock); 132 seq_puts(s, "}"); 133 134 return 0; 135 } 136 DEFINE_SHOW_ATTRIBUTE(icc_graph); 137 138 static struct icc_node *node_find(const int id) 139 { 140 return idr_find(&icc_idr, id); 141 } 142 143 static struct icc_path *path_init(struct device *dev, struct icc_node *dst, 144 ssize_t num_nodes) 145 { 146 struct icc_node *node = dst; 147 struct icc_path *path; 148 int i; 149 150 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); 151 if (!path) 152 return ERR_PTR(-ENOMEM); 153 154 path->num_nodes = num_nodes; 155 156 for (i = num_nodes - 1; i >= 0; i--) { 157 node->provider->users++; 158 hlist_add_head(&path->reqs[i].req_node, &node->req_list); 159 path->reqs[i].node = node; 160 path->reqs[i].dev = dev; 161 path->reqs[i].enabled = true; 162 /* reference to previous node was saved during path traversal */ 163 node = node->reverse; 164 } 165 166 return path; 167 } 168 169 static struct icc_path *path_find(struct device *dev, struct icc_node *src, 170 struct icc_node *dst) 171 { 172 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 173 struct icc_node *n, *node = NULL; 174 struct list_head traverse_list; 175 struct list_head edge_list; 176 struct list_head visited_list; 177 size_t i, depth = 1; 178 bool found = false; 179 180 INIT_LIST_HEAD(&traverse_list); 181 INIT_LIST_HEAD(&edge_list); 182 INIT_LIST_HEAD(&visited_list); 183 184 list_add(&src->search_list, &traverse_list); 185 src->reverse = NULL; 186 187 do { 188 list_for_each_entry_safe(node, n, &traverse_list, search_list) { 189 if (node == dst) { 190 found = true; 191 list_splice_init(&edge_list, &visited_list); 192 list_splice_init(&traverse_list, &visited_list); 193 break; 194 } 195 for (i = 0; i < node->num_links; i++) { 196 struct icc_node *tmp = node->links[i]; 197 198 if (!tmp) { 199 path = ERR_PTR(-ENOENT); 200 goto out; 201 } 202 203 if (tmp->is_traversed) 204 continue; 205 206 tmp->is_traversed = true; 207 tmp->reverse = node; 208 list_add_tail(&tmp->search_list, &edge_list); 209 } 210 } 211 212 if (found) 213 break; 214 215 list_splice_init(&traverse_list, &visited_list); 216 list_splice_init(&edge_list, &traverse_list); 217 218 /* count the hops including the source */ 219 depth++; 220 221 } while (!list_empty(&traverse_list)); 222 223 out: 224 225 /* reset the traversed state */ 226 list_for_each_entry_reverse(n, &visited_list, search_list) 227 n->is_traversed = false; 228 229 if (found) 230 path = path_init(dev, dst, depth); 231 232 return path; 233 } 234 235 /* 236 * We want the path to honor all bandwidth requests, so the average and peak 237 * bandwidth requirements from each consumer are aggregated at each node. 238 * The aggregation is platform specific, so each platform can customize it by 239 * implementing its own aggregate() function. 240 */ 241 242 static int aggregate_requests(struct icc_node *node) 243 { 244 struct icc_provider *p = node->provider; 245 struct icc_req *r; 246 247 node->avg_bw = 0; 248 node->peak_bw = 0; 249 250 if (p->pre_aggregate) 251 p->pre_aggregate(node); 252 253 hlist_for_each_entry(r, &node->req_list, req_node) { 254 if (!r->enabled) 255 continue; 256 p->aggregate(node, r->tag, r->avg_bw, r->peak_bw, 257 &node->avg_bw, &node->peak_bw); 258 } 259 260 return 0; 261 } 262 263 static int apply_constraints(struct icc_path *path) 264 { 265 struct icc_node *next, *prev = NULL; 266 int ret = -EINVAL; 267 int i; 268 269 for (i = 0; i < path->num_nodes; i++) { 270 next = path->reqs[i].node; 271 272 /* 273 * Both endpoints should be valid master-slave pairs of the 274 * same interconnect provider that will be configured. 275 */ 276 if (!prev || next->provider != prev->provider) { 277 prev = next; 278 continue; 279 } 280 281 /* set the constraints */ 282 ret = next->provider->set(prev, next); 283 if (ret) 284 goto out; 285 286 prev = next; 287 } 288 out: 289 return ret; 290 } 291 292 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw, 293 u32 peak_bw, u32 *agg_avg, u32 *agg_peak) 294 { 295 *agg_avg += avg_bw; 296 *agg_peak = max(*agg_peak, peak_bw); 297 298 return 0; 299 } 300 EXPORT_SYMBOL_GPL(icc_std_aggregate); 301 302 /* of_icc_xlate_onecell() - Translate function using a single index. 303 * @spec: OF phandle args to map into an interconnect node. 304 * @data: private data (pointer to struct icc_onecell_data) 305 * 306 * This is a generic translate function that can be used to model simple 307 * interconnect providers that have one device tree node and provide 308 * multiple interconnect nodes. A single cell is used as an index into 309 * an array of icc nodes specified in the icc_onecell_data struct when 310 * registering the provider. 311 */ 312 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec, 313 void *data) 314 { 315 struct icc_onecell_data *icc_data = data; 316 unsigned int idx = spec->args[0]; 317 318 if (idx >= icc_data->num_nodes) { 319 pr_err("%s: invalid index %u\n", __func__, idx); 320 return ERR_PTR(-EINVAL); 321 } 322 323 return icc_data->nodes[idx]; 324 } 325 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); 326 327 /** 328 * of_icc_get_from_provider() - Look-up interconnect node 329 * @spec: OF phandle args to use for look-up 330 * 331 * Looks for interconnect provider under the node specified by @spec and if 332 * found, uses xlate function of the provider to map phandle args to node. 333 * 334 * Returns a valid pointer to struct icc_node on success or ERR_PTR() 335 * on failure. 336 */ 337 static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec) 338 { 339 struct icc_node *node = ERR_PTR(-EPROBE_DEFER); 340 struct icc_provider *provider; 341 342 if (!spec || spec->args_count != 1) 343 return ERR_PTR(-EINVAL); 344 345 mutex_lock(&icc_lock); 346 list_for_each_entry(provider, &icc_providers, provider_list) { 347 if (provider->dev->of_node == spec->np) 348 node = provider->xlate(spec, provider->data); 349 if (!IS_ERR(node)) 350 break; 351 } 352 mutex_unlock(&icc_lock); 353 354 return node; 355 } 356 357 static void devm_icc_release(struct device *dev, void *res) 358 { 359 icc_put(*(struct icc_path **)res); 360 } 361 362 struct icc_path *devm_of_icc_get(struct device *dev, const char *name) 363 { 364 struct icc_path **ptr, *path; 365 366 ptr = devres_alloc(devm_icc_release, sizeof(**ptr), GFP_KERNEL); 367 if (!ptr) 368 return ERR_PTR(-ENOMEM); 369 370 path = of_icc_get(dev, name); 371 if (!IS_ERR(path)) { 372 *ptr = path; 373 devres_add(dev, ptr); 374 } else { 375 devres_free(ptr); 376 } 377 378 return path; 379 } 380 EXPORT_SYMBOL_GPL(devm_of_icc_get); 381 382 /** 383 * of_icc_get_by_index() - get a path handle from a DT node based on index 384 * @dev: device pointer for the consumer device 385 * @idx: interconnect path index 386 * 387 * This function will search for a path between two endpoints and return an 388 * icc_path handle on success. Use icc_put() to release constraints when they 389 * are not needed anymore. 390 * If the interconnect API is disabled, NULL is returned and the consumer 391 * drivers will still build. Drivers are free to handle this specifically, 392 * but they don't have to. 393 * 394 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 395 * when the API is disabled or the "interconnects" DT property is missing. 396 */ 397 struct icc_path *of_icc_get_by_index(struct device *dev, int idx) 398 { 399 struct icc_path *path; 400 struct icc_node *src_node, *dst_node; 401 struct device_node *np; 402 struct of_phandle_args src_args, dst_args; 403 int ret; 404 405 if (!dev || !dev->of_node) 406 return ERR_PTR(-ENODEV); 407 408 np = dev->of_node; 409 410 /* 411 * When the consumer DT node do not have "interconnects" property 412 * return a NULL path to skip setting constraints. 413 */ 414 if (!of_find_property(np, "interconnects", NULL)) 415 return NULL; 416 417 /* 418 * We use a combination of phandle and specifier for endpoint. For now 419 * lets support only global ids and extend this in the future if needed 420 * without breaking DT compatibility. 421 */ 422 ret = of_parse_phandle_with_args(np, "interconnects", 423 "#interconnect-cells", idx * 2, 424 &src_args); 425 if (ret) 426 return ERR_PTR(ret); 427 428 of_node_put(src_args.np); 429 430 ret = of_parse_phandle_with_args(np, "interconnects", 431 "#interconnect-cells", idx * 2 + 1, 432 &dst_args); 433 if (ret) 434 return ERR_PTR(ret); 435 436 of_node_put(dst_args.np); 437 438 src_node = of_icc_get_from_provider(&src_args); 439 440 if (IS_ERR(src_node)) { 441 if (PTR_ERR(src_node) != -EPROBE_DEFER) 442 dev_err(dev, "error finding src node: %ld\n", 443 PTR_ERR(src_node)); 444 return ERR_CAST(src_node); 445 } 446 447 dst_node = of_icc_get_from_provider(&dst_args); 448 449 if (IS_ERR(dst_node)) { 450 if (PTR_ERR(dst_node) != -EPROBE_DEFER) 451 dev_err(dev, "error finding dst node: %ld\n", 452 PTR_ERR(dst_node)); 453 return ERR_CAST(dst_node); 454 } 455 456 mutex_lock(&icc_lock); 457 path = path_find(dev, src_node, dst_node); 458 mutex_unlock(&icc_lock); 459 if (IS_ERR(path)) { 460 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 461 return path; 462 } 463 464 path->name = kasprintf(GFP_KERNEL, "%s-%s", 465 src_node->name, dst_node->name); 466 if (!path->name) { 467 kfree(path); 468 return ERR_PTR(-ENOMEM); 469 } 470 471 return path; 472 } 473 EXPORT_SYMBOL_GPL(of_icc_get_by_index); 474 475 /** 476 * of_icc_get() - get a path handle from a DT node based on name 477 * @dev: device pointer for the consumer device 478 * @name: interconnect path name 479 * 480 * This function will search for a path between two endpoints and return an 481 * icc_path handle on success. Use icc_put() to release constraints when they 482 * are not needed anymore. 483 * If the interconnect API is disabled, NULL is returned and the consumer 484 * drivers will still build. Drivers are free to handle this specifically, 485 * but they don't have to. 486 * 487 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 488 * when the API is disabled or the "interconnects" DT property is missing. 489 */ 490 struct icc_path *of_icc_get(struct device *dev, const char *name) 491 { 492 struct device_node *np; 493 int idx = 0; 494 495 if (!dev || !dev->of_node) 496 return ERR_PTR(-ENODEV); 497 498 np = dev->of_node; 499 500 /* 501 * When the consumer DT node do not have "interconnects" property 502 * return a NULL path to skip setting constraints. 503 */ 504 if (!of_find_property(np, "interconnects", NULL)) 505 return NULL; 506 507 /* 508 * We use a combination of phandle and specifier for endpoint. For now 509 * lets support only global ids and extend this in the future if needed 510 * without breaking DT compatibility. 511 */ 512 if (name) { 513 idx = of_property_match_string(np, "interconnect-names", name); 514 if (idx < 0) 515 return ERR_PTR(idx); 516 } 517 518 return of_icc_get_by_index(dev, idx); 519 } 520 EXPORT_SYMBOL_GPL(of_icc_get); 521 522 /** 523 * icc_set_tag() - set an optional tag on a path 524 * @path: the path we want to tag 525 * @tag: the tag value 526 * 527 * This function allows consumers to append a tag to the requests associated 528 * with a path, so that a different aggregation could be done based on this tag. 529 */ 530 void icc_set_tag(struct icc_path *path, u32 tag) 531 { 532 int i; 533 534 if (!path) 535 return; 536 537 mutex_lock(&icc_lock); 538 539 for (i = 0; i < path->num_nodes; i++) 540 path->reqs[i].tag = tag; 541 542 mutex_unlock(&icc_lock); 543 } 544 EXPORT_SYMBOL_GPL(icc_set_tag); 545 546 /** 547 * icc_get_name() - Get name of the icc path 548 * @path: reference to the path returned by icc_get() 549 * 550 * This function is used by an interconnect consumer to get the name of the icc 551 * path. 552 * 553 * Returns a valid pointer on success, or NULL otherwise. 554 */ 555 const char *icc_get_name(struct icc_path *path) 556 { 557 if (!path) 558 return NULL; 559 560 return path->name; 561 } 562 EXPORT_SYMBOL_GPL(icc_get_name); 563 564 /** 565 * icc_set_bw() - set bandwidth constraints on an interconnect path 566 * @path: reference to the path returned by icc_get() 567 * @avg_bw: average bandwidth in kilobytes per second 568 * @peak_bw: peak bandwidth in kilobytes per second 569 * 570 * This function is used by an interconnect consumer to express its own needs 571 * in terms of bandwidth for a previously requested path between two endpoints. 572 * The requests are aggregated and each node is updated accordingly. The entire 573 * path is locked by a mutex to ensure that the set() is completed. 574 * The @path can be NULL when the "interconnects" DT properties is missing, 575 * which will mean that no constraints will be set. 576 * 577 * Returns 0 on success, or an appropriate error code otherwise. 578 */ 579 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) 580 { 581 struct icc_node *node; 582 u32 old_avg, old_peak; 583 size_t i; 584 int ret; 585 586 if (!path) 587 return 0; 588 589 if (WARN_ON(IS_ERR(path) || !path->num_nodes)) 590 return -EINVAL; 591 592 mutex_lock(&icc_lock); 593 594 old_avg = path->reqs[0].avg_bw; 595 old_peak = path->reqs[0].peak_bw; 596 597 for (i = 0; i < path->num_nodes; i++) { 598 node = path->reqs[i].node; 599 600 /* update the consumer request for this path */ 601 path->reqs[i].avg_bw = avg_bw; 602 path->reqs[i].peak_bw = peak_bw; 603 604 /* aggregate requests for this node */ 605 aggregate_requests(node); 606 607 trace_icc_set_bw(path, node, i, avg_bw, peak_bw); 608 } 609 610 ret = apply_constraints(path); 611 if (ret) { 612 pr_debug("interconnect: error applying constraints (%d)\n", 613 ret); 614 615 for (i = 0; i < path->num_nodes; i++) { 616 node = path->reqs[i].node; 617 path->reqs[i].avg_bw = old_avg; 618 path->reqs[i].peak_bw = old_peak; 619 aggregate_requests(node); 620 } 621 apply_constraints(path); 622 } 623 624 mutex_unlock(&icc_lock); 625 626 trace_icc_set_bw_end(path, ret); 627 628 return ret; 629 } 630 EXPORT_SYMBOL_GPL(icc_set_bw); 631 632 static int __icc_enable(struct icc_path *path, bool enable) 633 { 634 int i; 635 636 if (!path) 637 return 0; 638 639 if (WARN_ON(IS_ERR(path) || !path->num_nodes)) 640 return -EINVAL; 641 642 mutex_lock(&icc_lock); 643 644 for (i = 0; i < path->num_nodes; i++) 645 path->reqs[i].enabled = enable; 646 647 mutex_unlock(&icc_lock); 648 649 return icc_set_bw(path, path->reqs[0].avg_bw, 650 path->reqs[0].peak_bw); 651 } 652 653 int icc_enable(struct icc_path *path) 654 { 655 return __icc_enable(path, true); 656 } 657 EXPORT_SYMBOL_GPL(icc_enable); 658 659 int icc_disable(struct icc_path *path) 660 { 661 return __icc_enable(path, false); 662 } 663 EXPORT_SYMBOL_GPL(icc_disable); 664 665 /** 666 * icc_get() - return a handle for path between two endpoints 667 * @dev: the device requesting the path 668 * @src_id: source device port id 669 * @dst_id: destination device port id 670 * 671 * This function will search for a path between two endpoints and return an 672 * icc_path handle on success. Use icc_put() to release 673 * constraints when they are not needed anymore. 674 * If the interconnect API is disabled, NULL is returned and the consumer 675 * drivers will still build. Drivers are free to handle this specifically, 676 * but they don't have to. 677 * 678 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the 679 * interconnect API is disabled. 680 */ 681 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id) 682 { 683 struct icc_node *src, *dst; 684 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 685 686 mutex_lock(&icc_lock); 687 688 src = node_find(src_id); 689 if (!src) 690 goto out; 691 692 dst = node_find(dst_id); 693 if (!dst) 694 goto out; 695 696 path = path_find(dev, src, dst); 697 if (IS_ERR(path)) { 698 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 699 goto out; 700 } 701 702 path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name); 703 if (!path->name) { 704 kfree(path); 705 path = ERR_PTR(-ENOMEM); 706 } 707 out: 708 mutex_unlock(&icc_lock); 709 return path; 710 } 711 EXPORT_SYMBOL_GPL(icc_get); 712 713 /** 714 * icc_put() - release the reference to the icc_path 715 * @path: interconnect path 716 * 717 * Use this function to release the constraints on a path when the path is 718 * no longer needed. The constraints will be re-aggregated. 719 */ 720 void icc_put(struct icc_path *path) 721 { 722 struct icc_node *node; 723 size_t i; 724 int ret; 725 726 if (!path || WARN_ON(IS_ERR(path))) 727 return; 728 729 ret = icc_set_bw(path, 0, 0); 730 if (ret) 731 pr_err("%s: error (%d)\n", __func__, ret); 732 733 mutex_lock(&icc_lock); 734 for (i = 0; i < path->num_nodes; i++) { 735 node = path->reqs[i].node; 736 hlist_del(&path->reqs[i].req_node); 737 if (!WARN_ON(!node->provider->users)) 738 node->provider->users--; 739 } 740 mutex_unlock(&icc_lock); 741 742 kfree_const(path->name); 743 kfree(path); 744 } 745 EXPORT_SYMBOL_GPL(icc_put); 746 747 static struct icc_node *icc_node_create_nolock(int id) 748 { 749 struct icc_node *node; 750 751 /* check if node already exists */ 752 node = node_find(id); 753 if (node) 754 return node; 755 756 node = kzalloc(sizeof(*node), GFP_KERNEL); 757 if (!node) 758 return ERR_PTR(-ENOMEM); 759 760 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); 761 if (id < 0) { 762 WARN(1, "%s: couldn't get idr\n", __func__); 763 kfree(node); 764 return ERR_PTR(id); 765 } 766 767 node->id = id; 768 769 return node; 770 } 771 772 /** 773 * icc_node_create() - create a node 774 * @id: node id 775 * 776 * Return: icc_node pointer on success, or ERR_PTR() on error 777 */ 778 struct icc_node *icc_node_create(int id) 779 { 780 struct icc_node *node; 781 782 mutex_lock(&icc_lock); 783 784 node = icc_node_create_nolock(id); 785 786 mutex_unlock(&icc_lock); 787 788 return node; 789 } 790 EXPORT_SYMBOL_GPL(icc_node_create); 791 792 /** 793 * icc_node_destroy() - destroy a node 794 * @id: node id 795 */ 796 void icc_node_destroy(int id) 797 { 798 struct icc_node *node; 799 800 mutex_lock(&icc_lock); 801 802 node = node_find(id); 803 if (node) { 804 idr_remove(&icc_idr, node->id); 805 WARN_ON(!hlist_empty(&node->req_list)); 806 } 807 808 mutex_unlock(&icc_lock); 809 810 kfree(node); 811 } 812 EXPORT_SYMBOL_GPL(icc_node_destroy); 813 814 /** 815 * icc_link_create() - create a link between two nodes 816 * @node: source node id 817 * @dst_id: destination node id 818 * 819 * Create a link between two nodes. The nodes might belong to different 820 * interconnect providers and the @dst_id node might not exist (if the 821 * provider driver has not probed yet). So just create the @dst_id node 822 * and when the actual provider driver is probed, the rest of the node 823 * data is filled. 824 * 825 * Return: 0 on success, or an error code otherwise 826 */ 827 int icc_link_create(struct icc_node *node, const int dst_id) 828 { 829 struct icc_node *dst; 830 struct icc_node **new; 831 int ret = 0; 832 833 if (!node->provider) 834 return -EINVAL; 835 836 mutex_lock(&icc_lock); 837 838 dst = node_find(dst_id); 839 if (!dst) { 840 dst = icc_node_create_nolock(dst_id); 841 842 if (IS_ERR(dst)) { 843 ret = PTR_ERR(dst); 844 goto out; 845 } 846 } 847 848 new = krealloc(node->links, 849 (node->num_links + 1) * sizeof(*node->links), 850 GFP_KERNEL); 851 if (!new) { 852 ret = -ENOMEM; 853 goto out; 854 } 855 856 node->links = new; 857 node->links[node->num_links++] = dst; 858 859 out: 860 mutex_unlock(&icc_lock); 861 862 return ret; 863 } 864 EXPORT_SYMBOL_GPL(icc_link_create); 865 866 /** 867 * icc_link_destroy() - destroy a link between two nodes 868 * @src: pointer to source node 869 * @dst: pointer to destination node 870 * 871 * Return: 0 on success, or an error code otherwise 872 */ 873 int icc_link_destroy(struct icc_node *src, struct icc_node *dst) 874 { 875 struct icc_node **new; 876 size_t slot; 877 int ret = 0; 878 879 if (IS_ERR_OR_NULL(src)) 880 return -EINVAL; 881 882 if (IS_ERR_OR_NULL(dst)) 883 return -EINVAL; 884 885 mutex_lock(&icc_lock); 886 887 for (slot = 0; slot < src->num_links; slot++) 888 if (src->links[slot] == dst) 889 break; 890 891 if (WARN_ON(slot == src->num_links)) { 892 ret = -ENXIO; 893 goto out; 894 } 895 896 src->links[slot] = src->links[--src->num_links]; 897 898 new = krealloc(src->links, src->num_links * sizeof(*src->links), 899 GFP_KERNEL); 900 if (new) 901 src->links = new; 902 903 out: 904 mutex_unlock(&icc_lock); 905 906 return ret; 907 } 908 EXPORT_SYMBOL_GPL(icc_link_destroy); 909 910 /** 911 * icc_node_add() - add interconnect node to interconnect provider 912 * @node: pointer to the interconnect node 913 * @provider: pointer to the interconnect provider 914 */ 915 void icc_node_add(struct icc_node *node, struct icc_provider *provider) 916 { 917 mutex_lock(&icc_lock); 918 919 node->provider = provider; 920 list_add_tail(&node->node_list, &provider->nodes); 921 922 mutex_unlock(&icc_lock); 923 } 924 EXPORT_SYMBOL_GPL(icc_node_add); 925 926 /** 927 * icc_node_del() - delete interconnect node from interconnect provider 928 * @node: pointer to the interconnect node 929 */ 930 void icc_node_del(struct icc_node *node) 931 { 932 mutex_lock(&icc_lock); 933 934 list_del(&node->node_list); 935 936 mutex_unlock(&icc_lock); 937 } 938 EXPORT_SYMBOL_GPL(icc_node_del); 939 940 /** 941 * icc_nodes_remove() - remove all previously added nodes from provider 942 * @provider: the interconnect provider we are removing nodes from 943 * 944 * Return: 0 on success, or an error code otherwise 945 */ 946 int icc_nodes_remove(struct icc_provider *provider) 947 { 948 struct icc_node *n, *tmp; 949 950 if (WARN_ON(IS_ERR_OR_NULL(provider))) 951 return -EINVAL; 952 953 list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) { 954 icc_node_del(n); 955 icc_node_destroy(n->id); 956 } 957 958 return 0; 959 } 960 EXPORT_SYMBOL_GPL(icc_nodes_remove); 961 962 /** 963 * icc_provider_add() - add a new interconnect provider 964 * @provider: the interconnect provider that will be added into topology 965 * 966 * Return: 0 on success, or an error code otherwise 967 */ 968 int icc_provider_add(struct icc_provider *provider) 969 { 970 if (WARN_ON(!provider->set)) 971 return -EINVAL; 972 if (WARN_ON(!provider->xlate)) 973 return -EINVAL; 974 975 mutex_lock(&icc_lock); 976 977 INIT_LIST_HEAD(&provider->nodes); 978 list_add_tail(&provider->provider_list, &icc_providers); 979 980 mutex_unlock(&icc_lock); 981 982 dev_dbg(provider->dev, "interconnect provider added to topology\n"); 983 984 return 0; 985 } 986 EXPORT_SYMBOL_GPL(icc_provider_add); 987 988 /** 989 * icc_provider_del() - delete previously added interconnect provider 990 * @provider: the interconnect provider that will be removed from topology 991 * 992 * Return: 0 on success, or an error code otherwise 993 */ 994 int icc_provider_del(struct icc_provider *provider) 995 { 996 mutex_lock(&icc_lock); 997 if (provider->users) { 998 pr_warn("interconnect provider still has %d users\n", 999 provider->users); 1000 mutex_unlock(&icc_lock); 1001 return -EBUSY; 1002 } 1003 1004 if (!list_empty(&provider->nodes)) { 1005 pr_warn("interconnect provider still has nodes\n"); 1006 mutex_unlock(&icc_lock); 1007 return -EBUSY; 1008 } 1009 1010 list_del(&provider->provider_list); 1011 mutex_unlock(&icc_lock); 1012 1013 return 0; 1014 } 1015 EXPORT_SYMBOL_GPL(icc_provider_del); 1016 1017 static int __init icc_init(void) 1018 { 1019 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); 1020 debugfs_create_file("interconnect_summary", 0444, 1021 icc_debugfs_dir, NULL, &icc_summary_fops); 1022 debugfs_create_file("interconnect_graph", 0444, 1023 icc_debugfs_dir, NULL, &icc_graph_fops); 1024 return 0; 1025 } 1026 1027 device_initcall(icc_init); 1028 1029 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>"); 1030 MODULE_DESCRIPTION("Interconnect Driver Core"); 1031 MODULE_LICENSE("GPL v2"); 1032