1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interconnect framework core driver 4 * 5 * Copyright (c) 2017-2019, Linaro Ltd. 6 * Author: Georgi Djakov <georgi.djakov@linaro.org> 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/device.h> 11 #include <linux/idr.h> 12 #include <linux/init.h> 13 #include <linux/interconnect.h> 14 #include <linux/interconnect-provider.h> 15 #include <linux/list.h> 16 #include <linux/mutex.h> 17 #include <linux/slab.h> 18 #include <linux/of.h> 19 #include <linux/overflow.h> 20 21 #include "internal.h" 22 23 #define CREATE_TRACE_POINTS 24 #include "trace.h" 25 26 static DEFINE_IDR(icc_idr); 27 static LIST_HEAD(icc_providers); 28 static int providers_count; 29 static bool synced_state; 30 static DEFINE_MUTEX(icc_lock); 31 static DEFINE_MUTEX(icc_bw_lock); 32 static struct dentry *icc_debugfs_dir; 33 34 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) 35 { 36 if (!n) 37 return; 38 39 seq_printf(s, "%-42s %12u %12u\n", 40 n->name, n->avg_bw, n->peak_bw); 41 } 42 43 static int icc_summary_show(struct seq_file *s, void *data) 44 { 45 struct icc_provider *provider; 46 47 seq_puts(s, " node tag avg peak\n"); 48 seq_puts(s, "--------------------------------------------------------------------\n"); 49 50 mutex_lock(&icc_lock); 51 52 list_for_each_entry(provider, &icc_providers, provider_list) { 53 struct icc_node *n; 54 55 list_for_each_entry(n, &provider->nodes, node_list) { 56 struct icc_req *r; 57 58 icc_summary_show_one(s, n); 59 hlist_for_each_entry(r, &n->req_list, req_node) { 60 u32 avg_bw = 0, peak_bw = 0; 61 62 if (!r->dev) 63 continue; 64 65 if (r->enabled) { 66 avg_bw = r->avg_bw; 67 peak_bw = r->peak_bw; 68 } 69 70 seq_printf(s, " %-27s %12u %12u %12u\n", 71 dev_name(r->dev), r->tag, avg_bw, peak_bw); 72 } 73 } 74 } 75 76 mutex_unlock(&icc_lock); 77 78 return 0; 79 } 80 DEFINE_SHOW_ATTRIBUTE(icc_summary); 81 82 static void icc_graph_show_link(struct seq_file *s, int level, 83 struct icc_node *n, struct icc_node *m) 84 { 85 seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n", 86 level == 2 ? "\t\t" : "\t", 87 n->id, n->name, m->id, m->name); 88 } 89 90 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n) 91 { 92 seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s", 93 n->id, n->name, n->id, n->name); 94 seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw); 95 seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw); 96 seq_puts(s, "\"]\n"); 97 } 98 99 static int icc_graph_show(struct seq_file *s, void *data) 100 { 101 struct icc_provider *provider; 102 struct icc_node *n; 103 int cluster_index = 0; 104 int i; 105 106 seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n"); 107 mutex_lock(&icc_lock); 108 109 /* draw providers as cluster subgraphs */ 110 cluster_index = 0; 111 list_for_each_entry(provider, &icc_providers, provider_list) { 112 seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index); 113 if (provider->dev) 114 seq_printf(s, "\t\tlabel = \"%s\"\n", 115 dev_name(provider->dev)); 116 117 /* draw nodes */ 118 list_for_each_entry(n, &provider->nodes, node_list) 119 icc_graph_show_node(s, n); 120 121 /* draw internal links */ 122 list_for_each_entry(n, &provider->nodes, node_list) 123 for (i = 0; i < n->num_links; ++i) 124 if (n->provider == n->links[i]->provider) 125 icc_graph_show_link(s, 2, n, 126 n->links[i]); 127 128 seq_puts(s, "\t}\n"); 129 } 130 131 /* draw external links */ 132 list_for_each_entry(provider, &icc_providers, provider_list) 133 list_for_each_entry(n, &provider->nodes, node_list) 134 for (i = 0; i < n->num_links; ++i) 135 if (n->provider != n->links[i]->provider) 136 icc_graph_show_link(s, 1, n, 137 n->links[i]); 138 139 mutex_unlock(&icc_lock); 140 seq_puts(s, "}"); 141 142 return 0; 143 } 144 DEFINE_SHOW_ATTRIBUTE(icc_graph); 145 146 static struct icc_node *node_find(const int id) 147 { 148 return idr_find(&icc_idr, id); 149 } 150 151 static struct icc_node *node_find_by_name(const char *name) 152 { 153 struct icc_provider *provider; 154 struct icc_node *n; 155 156 list_for_each_entry(provider, &icc_providers, provider_list) { 157 list_for_each_entry(n, &provider->nodes, node_list) { 158 if (!strcmp(n->name, name)) 159 return n; 160 } 161 } 162 163 return NULL; 164 } 165 166 static struct icc_path *path_init(struct device *dev, struct icc_node *dst, 167 ssize_t num_nodes) 168 { 169 struct icc_node *node = dst; 170 struct icc_path *path; 171 int i; 172 173 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); 174 if (!path) 175 return ERR_PTR(-ENOMEM); 176 177 path->num_nodes = num_nodes; 178 179 for (i = num_nodes - 1; i >= 0; i--) { 180 node->provider->users++; 181 hlist_add_head(&path->reqs[i].req_node, &node->req_list); 182 path->reqs[i].node = node; 183 path->reqs[i].dev = dev; 184 path->reqs[i].enabled = true; 185 /* reference to previous node was saved during path traversal */ 186 node = node->reverse; 187 } 188 189 return path; 190 } 191 192 static struct icc_path *path_find(struct device *dev, struct icc_node *src, 193 struct icc_node *dst) 194 { 195 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 196 struct icc_node *n, *node = NULL; 197 struct list_head traverse_list; 198 struct list_head edge_list; 199 struct list_head visited_list; 200 size_t i, depth = 1; 201 bool found = false; 202 203 INIT_LIST_HEAD(&traverse_list); 204 INIT_LIST_HEAD(&edge_list); 205 INIT_LIST_HEAD(&visited_list); 206 207 list_add(&src->search_list, &traverse_list); 208 src->reverse = NULL; 209 210 do { 211 list_for_each_entry_safe(node, n, &traverse_list, search_list) { 212 if (node == dst) { 213 found = true; 214 list_splice_init(&edge_list, &visited_list); 215 list_splice_init(&traverse_list, &visited_list); 216 break; 217 } 218 for (i = 0; i < node->num_links; i++) { 219 struct icc_node *tmp = node->links[i]; 220 221 if (!tmp) { 222 path = ERR_PTR(-ENOENT); 223 goto out; 224 } 225 226 if (tmp->is_traversed) 227 continue; 228 229 tmp->is_traversed = true; 230 tmp->reverse = node; 231 list_add_tail(&tmp->search_list, &edge_list); 232 } 233 } 234 235 if (found) 236 break; 237 238 list_splice_init(&traverse_list, &visited_list); 239 list_splice_init(&edge_list, &traverse_list); 240 241 /* count the hops including the source */ 242 depth++; 243 244 } while (!list_empty(&traverse_list)); 245 246 out: 247 248 /* reset the traversed state */ 249 list_for_each_entry_reverse(n, &visited_list, search_list) 250 n->is_traversed = false; 251 252 if (found) 253 path = path_init(dev, dst, depth); 254 255 return path; 256 } 257 258 /* 259 * We want the path to honor all bandwidth requests, so the average and peak 260 * bandwidth requirements from each consumer are aggregated at each node. 261 * The aggregation is platform specific, so each platform can customize it by 262 * implementing its own aggregate() function. 263 */ 264 265 static int aggregate_requests(struct icc_node *node) 266 { 267 struct icc_provider *p = node->provider; 268 struct icc_req *r; 269 u32 avg_bw, peak_bw; 270 271 node->avg_bw = 0; 272 node->peak_bw = 0; 273 274 if (p->pre_aggregate) 275 p->pre_aggregate(node); 276 277 hlist_for_each_entry(r, &node->req_list, req_node) { 278 if (r->enabled) { 279 avg_bw = r->avg_bw; 280 peak_bw = r->peak_bw; 281 } else { 282 avg_bw = 0; 283 peak_bw = 0; 284 } 285 p->aggregate(node, r->tag, avg_bw, peak_bw, 286 &node->avg_bw, &node->peak_bw); 287 288 /* during boot use the initial bandwidth as a floor value */ 289 if (!synced_state) { 290 node->avg_bw = max(node->avg_bw, node->init_avg); 291 node->peak_bw = max(node->peak_bw, node->init_peak); 292 } 293 } 294 295 return 0; 296 } 297 298 static int apply_constraints(struct icc_path *path) 299 { 300 struct icc_node *next, *prev = NULL; 301 struct icc_provider *p; 302 int ret = -EINVAL; 303 int i; 304 305 for (i = 0; i < path->num_nodes; i++) { 306 next = path->reqs[i].node; 307 p = next->provider; 308 309 /* both endpoints should be valid master-slave pairs */ 310 if (!prev || (p != prev->provider && !p->inter_set)) { 311 prev = next; 312 continue; 313 } 314 315 /* set the constraints */ 316 ret = p->set(prev, next); 317 if (ret) 318 goto out; 319 320 prev = next; 321 } 322 out: 323 return ret; 324 } 325 326 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw, 327 u32 peak_bw, u32 *agg_avg, u32 *agg_peak) 328 { 329 *agg_avg += avg_bw; 330 *agg_peak = max(*agg_peak, peak_bw); 331 332 return 0; 333 } 334 EXPORT_SYMBOL_GPL(icc_std_aggregate); 335 336 /* of_icc_xlate_onecell() - Translate function using a single index. 337 * @spec: OF phandle args to map into an interconnect node. 338 * @data: private data (pointer to struct icc_onecell_data) 339 * 340 * This is a generic translate function that can be used to model simple 341 * interconnect providers that have one device tree node and provide 342 * multiple interconnect nodes. A single cell is used as an index into 343 * an array of icc nodes specified in the icc_onecell_data struct when 344 * registering the provider. 345 */ 346 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec, 347 void *data) 348 { 349 struct icc_onecell_data *icc_data = data; 350 unsigned int idx = spec->args[0]; 351 352 if (idx >= icc_data->num_nodes) { 353 pr_err("%s: invalid index %u\n", __func__, idx); 354 return ERR_PTR(-EINVAL); 355 } 356 357 return icc_data->nodes[idx]; 358 } 359 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); 360 361 /** 362 * of_icc_get_from_provider() - Look-up interconnect node 363 * @spec: OF phandle args to use for look-up 364 * 365 * Looks for interconnect provider under the node specified by @spec and if 366 * found, uses xlate function of the provider to map phandle args to node. 367 * 368 * Returns a valid pointer to struct icc_node_data on success or ERR_PTR() 369 * on failure. 370 */ 371 struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec) 372 { 373 struct icc_node *node = ERR_PTR(-EPROBE_DEFER); 374 struct icc_node_data *data = NULL; 375 struct icc_provider *provider; 376 377 if (!spec) 378 return ERR_PTR(-EINVAL); 379 380 mutex_lock(&icc_lock); 381 list_for_each_entry(provider, &icc_providers, provider_list) { 382 if (provider->dev->of_node == spec->np) { 383 if (provider->xlate_extended) { 384 data = provider->xlate_extended(spec, provider->data); 385 if (!IS_ERR(data)) { 386 node = data->node; 387 break; 388 } 389 } else { 390 node = provider->xlate(spec, provider->data); 391 if (!IS_ERR(node)) 392 break; 393 } 394 } 395 } 396 mutex_unlock(&icc_lock); 397 398 if (IS_ERR(node)) 399 return ERR_CAST(node); 400 401 if (!data) { 402 data = kzalloc(sizeof(*data), GFP_KERNEL); 403 if (!data) 404 return ERR_PTR(-ENOMEM); 405 data->node = node; 406 } 407 408 return data; 409 } 410 EXPORT_SYMBOL_GPL(of_icc_get_from_provider); 411 412 static void devm_icc_release(struct device *dev, void *res) 413 { 414 icc_put(*(struct icc_path **)res); 415 } 416 417 struct icc_path *devm_of_icc_get(struct device *dev, const char *name) 418 { 419 struct icc_path **ptr, *path; 420 421 ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL); 422 if (!ptr) 423 return ERR_PTR(-ENOMEM); 424 425 path = of_icc_get(dev, name); 426 if (!IS_ERR(path)) { 427 *ptr = path; 428 devres_add(dev, ptr); 429 } else { 430 devres_free(ptr); 431 } 432 433 return path; 434 } 435 EXPORT_SYMBOL_GPL(devm_of_icc_get); 436 437 /** 438 * of_icc_get_by_index() - get a path handle from a DT node based on index 439 * @dev: device pointer for the consumer device 440 * @idx: interconnect path index 441 * 442 * This function will search for a path between two endpoints and return an 443 * icc_path handle on success. Use icc_put() to release constraints when they 444 * are not needed anymore. 445 * If the interconnect API is disabled, NULL is returned and the consumer 446 * drivers will still build. Drivers are free to handle this specifically, 447 * but they don't have to. 448 * 449 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 450 * when the API is disabled or the "interconnects" DT property is missing. 451 */ 452 struct icc_path *of_icc_get_by_index(struct device *dev, int idx) 453 { 454 struct icc_path *path; 455 struct icc_node_data *src_data, *dst_data; 456 struct device_node *np; 457 struct of_phandle_args src_args, dst_args; 458 int ret; 459 460 if (!dev || !dev->of_node) 461 return ERR_PTR(-ENODEV); 462 463 np = dev->of_node; 464 465 /* 466 * When the consumer DT node do not have "interconnects" property 467 * return a NULL path to skip setting constraints. 468 */ 469 if (!of_property_present(np, "interconnects")) 470 return NULL; 471 472 /* 473 * We use a combination of phandle and specifier for endpoint. For now 474 * lets support only global ids and extend this in the future if needed 475 * without breaking DT compatibility. 476 */ 477 ret = of_parse_phandle_with_args(np, "interconnects", 478 "#interconnect-cells", idx * 2, 479 &src_args); 480 if (ret) 481 return ERR_PTR(ret); 482 483 of_node_put(src_args.np); 484 485 ret = of_parse_phandle_with_args(np, "interconnects", 486 "#interconnect-cells", idx * 2 + 1, 487 &dst_args); 488 if (ret) 489 return ERR_PTR(ret); 490 491 of_node_put(dst_args.np); 492 493 src_data = of_icc_get_from_provider(&src_args); 494 495 if (IS_ERR(src_data)) { 496 dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n"); 497 return ERR_CAST(src_data); 498 } 499 500 dst_data = of_icc_get_from_provider(&dst_args); 501 502 if (IS_ERR(dst_data)) { 503 dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n"); 504 kfree(src_data); 505 return ERR_CAST(dst_data); 506 } 507 508 mutex_lock(&icc_lock); 509 path = path_find(dev, src_data->node, dst_data->node); 510 mutex_unlock(&icc_lock); 511 if (IS_ERR(path)) { 512 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 513 goto free_icc_data; 514 } 515 516 if (src_data->tag && src_data->tag == dst_data->tag) 517 icc_set_tag(path, src_data->tag); 518 519 path->name = kasprintf(GFP_KERNEL, "%s-%s", 520 src_data->node->name, dst_data->node->name); 521 if (!path->name) { 522 kfree(path); 523 path = ERR_PTR(-ENOMEM); 524 } 525 526 free_icc_data: 527 kfree(src_data); 528 kfree(dst_data); 529 return path; 530 } 531 EXPORT_SYMBOL_GPL(of_icc_get_by_index); 532 533 /** 534 * of_icc_get() - get a path handle from a DT node based on name 535 * @dev: device pointer for the consumer device 536 * @name: interconnect path name 537 * 538 * This function will search for a path between two endpoints and return an 539 * icc_path handle on success. Use icc_put() to release constraints when they 540 * are not needed anymore. 541 * If the interconnect API is disabled, NULL is returned and the consumer 542 * drivers will still build. Drivers are free to handle this specifically, 543 * but they don't have to. 544 * 545 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 546 * when the API is disabled or the "interconnects" DT property is missing. 547 */ 548 struct icc_path *of_icc_get(struct device *dev, const char *name) 549 { 550 struct device_node *np; 551 int idx = 0; 552 553 if (!dev || !dev->of_node) 554 return ERR_PTR(-ENODEV); 555 556 np = dev->of_node; 557 558 /* 559 * When the consumer DT node do not have "interconnects" property 560 * return a NULL path to skip setting constraints. 561 */ 562 if (!of_property_present(np, "interconnects")) 563 return NULL; 564 565 /* 566 * We use a combination of phandle and specifier for endpoint. For now 567 * lets support only global ids and extend this in the future if needed 568 * without breaking DT compatibility. 569 */ 570 if (name) { 571 idx = of_property_match_string(np, "interconnect-names", name); 572 if (idx < 0) 573 return ERR_PTR(idx); 574 } 575 576 return of_icc_get_by_index(dev, idx); 577 } 578 EXPORT_SYMBOL_GPL(of_icc_get); 579 580 /** 581 * icc_get() - get a path handle between two endpoints 582 * @dev: device pointer for the consumer device 583 * @src: source node name 584 * @dst: destination node name 585 * 586 * This function will search for a path between two endpoints and return an 587 * icc_path handle on success. Use icc_put() to release constraints when they 588 * are not needed anymore. 589 * 590 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 591 * when the API is disabled. 592 */ 593 struct icc_path *icc_get(struct device *dev, const char *src, const char *dst) 594 { 595 struct icc_node *src_node, *dst_node; 596 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 597 598 mutex_lock(&icc_lock); 599 600 src_node = node_find_by_name(src); 601 if (!src_node) { 602 dev_err(dev, "%s: invalid src=%s\n", __func__, src); 603 goto out; 604 } 605 606 dst_node = node_find_by_name(dst); 607 if (!dst_node) { 608 dev_err(dev, "%s: invalid dst=%s\n", __func__, dst); 609 goto out; 610 } 611 612 path = path_find(dev, src_node, dst_node); 613 if (IS_ERR(path)) { 614 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 615 goto out; 616 } 617 618 path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name); 619 if (!path->name) { 620 kfree(path); 621 path = ERR_PTR(-ENOMEM); 622 } 623 out: 624 mutex_unlock(&icc_lock); 625 return path; 626 } 627 628 /** 629 * icc_set_tag() - set an optional tag on a path 630 * @path: the path we want to tag 631 * @tag: the tag value 632 * 633 * This function allows consumers to append a tag to the requests associated 634 * with a path, so that a different aggregation could be done based on this tag. 635 */ 636 void icc_set_tag(struct icc_path *path, u32 tag) 637 { 638 int i; 639 640 if (!path) 641 return; 642 643 mutex_lock(&icc_lock); 644 645 for (i = 0; i < path->num_nodes; i++) 646 path->reqs[i].tag = tag; 647 648 mutex_unlock(&icc_lock); 649 } 650 EXPORT_SYMBOL_GPL(icc_set_tag); 651 652 /** 653 * icc_get_name() - Get name of the icc path 654 * @path: interconnect path 655 * 656 * This function is used by an interconnect consumer to get the name of the icc 657 * path. 658 * 659 * Returns a valid pointer on success, or NULL otherwise. 660 */ 661 const char *icc_get_name(struct icc_path *path) 662 { 663 if (!path) 664 return NULL; 665 666 return path->name; 667 } 668 EXPORT_SYMBOL_GPL(icc_get_name); 669 670 /** 671 * icc_set_bw() - set bandwidth constraints on an interconnect path 672 * @path: interconnect path 673 * @avg_bw: average bandwidth in kilobytes per second 674 * @peak_bw: peak bandwidth in kilobytes per second 675 * 676 * This function is used by an interconnect consumer to express its own needs 677 * in terms of bandwidth for a previously requested path between two endpoints. 678 * The requests are aggregated and each node is updated accordingly. The entire 679 * path is locked by a mutex to ensure that the set() is completed. 680 * The @path can be NULL when the "interconnects" DT properties is missing, 681 * which will mean that no constraints will be set. 682 * 683 * Returns 0 on success, or an appropriate error code otherwise. 684 */ 685 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) 686 { 687 struct icc_node *node; 688 u32 old_avg, old_peak; 689 size_t i; 690 int ret; 691 692 if (!path) 693 return 0; 694 695 if (WARN_ON(IS_ERR(path) || !path->num_nodes)) 696 return -EINVAL; 697 698 mutex_lock(&icc_bw_lock); 699 700 old_avg = path->reqs[0].avg_bw; 701 old_peak = path->reqs[0].peak_bw; 702 703 for (i = 0; i < path->num_nodes; i++) { 704 node = path->reqs[i].node; 705 706 /* update the consumer request for this path */ 707 path->reqs[i].avg_bw = avg_bw; 708 path->reqs[i].peak_bw = peak_bw; 709 710 /* aggregate requests for this node */ 711 aggregate_requests(node); 712 713 trace_icc_set_bw(path, node, i, avg_bw, peak_bw); 714 } 715 716 ret = apply_constraints(path); 717 if (ret) { 718 pr_debug("interconnect: error applying constraints (%d)\n", 719 ret); 720 721 for (i = 0; i < path->num_nodes; i++) { 722 node = path->reqs[i].node; 723 path->reqs[i].avg_bw = old_avg; 724 path->reqs[i].peak_bw = old_peak; 725 aggregate_requests(node); 726 } 727 apply_constraints(path); 728 } 729 730 mutex_unlock(&icc_bw_lock); 731 732 trace_icc_set_bw_end(path, ret); 733 734 return ret; 735 } 736 EXPORT_SYMBOL_GPL(icc_set_bw); 737 738 static int __icc_enable(struct icc_path *path, bool enable) 739 { 740 int i; 741 742 if (!path) 743 return 0; 744 745 if (WARN_ON(IS_ERR(path) || !path->num_nodes)) 746 return -EINVAL; 747 748 mutex_lock(&icc_lock); 749 750 for (i = 0; i < path->num_nodes; i++) 751 path->reqs[i].enabled = enable; 752 753 mutex_unlock(&icc_lock); 754 755 return icc_set_bw(path, path->reqs[0].avg_bw, 756 path->reqs[0].peak_bw); 757 } 758 759 int icc_enable(struct icc_path *path) 760 { 761 return __icc_enable(path, true); 762 } 763 EXPORT_SYMBOL_GPL(icc_enable); 764 765 int icc_disable(struct icc_path *path) 766 { 767 return __icc_enable(path, false); 768 } 769 EXPORT_SYMBOL_GPL(icc_disable); 770 771 /** 772 * icc_put() - release the reference to the icc_path 773 * @path: interconnect path 774 * 775 * Use this function to release the constraints on a path when the path is 776 * no longer needed. The constraints will be re-aggregated. 777 */ 778 void icc_put(struct icc_path *path) 779 { 780 struct icc_node *node; 781 size_t i; 782 int ret; 783 784 if (!path || WARN_ON(IS_ERR(path))) 785 return; 786 787 ret = icc_set_bw(path, 0, 0); 788 if (ret) 789 pr_err("%s: error (%d)\n", __func__, ret); 790 791 mutex_lock(&icc_lock); 792 for (i = 0; i < path->num_nodes; i++) { 793 node = path->reqs[i].node; 794 hlist_del(&path->reqs[i].req_node); 795 if (!WARN_ON(!node->provider->users)) 796 node->provider->users--; 797 } 798 mutex_unlock(&icc_lock); 799 800 kfree_const(path->name); 801 kfree(path); 802 } 803 EXPORT_SYMBOL_GPL(icc_put); 804 805 static struct icc_node *icc_node_create_nolock(int id) 806 { 807 struct icc_node *node; 808 809 /* check if node already exists */ 810 node = node_find(id); 811 if (node) 812 return node; 813 814 node = kzalloc(sizeof(*node), GFP_KERNEL); 815 if (!node) 816 return ERR_PTR(-ENOMEM); 817 818 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); 819 if (id < 0) { 820 WARN(1, "%s: couldn't get idr\n", __func__); 821 kfree(node); 822 return ERR_PTR(id); 823 } 824 825 node->id = id; 826 827 return node; 828 } 829 830 /** 831 * icc_node_create() - create a node 832 * @id: node id 833 * 834 * Return: icc_node pointer on success, or ERR_PTR() on error 835 */ 836 struct icc_node *icc_node_create(int id) 837 { 838 struct icc_node *node; 839 840 mutex_lock(&icc_lock); 841 842 node = icc_node_create_nolock(id); 843 844 mutex_unlock(&icc_lock); 845 846 return node; 847 } 848 EXPORT_SYMBOL_GPL(icc_node_create); 849 850 /** 851 * icc_node_destroy() - destroy a node 852 * @id: node id 853 */ 854 void icc_node_destroy(int id) 855 { 856 struct icc_node *node; 857 858 mutex_lock(&icc_lock); 859 860 node = node_find(id); 861 if (node) { 862 idr_remove(&icc_idr, node->id); 863 WARN_ON(!hlist_empty(&node->req_list)); 864 } 865 866 mutex_unlock(&icc_lock); 867 868 if (!node) 869 return; 870 871 kfree(node->links); 872 kfree(node); 873 } 874 EXPORT_SYMBOL_GPL(icc_node_destroy); 875 876 /** 877 * icc_link_create() - create a link between two nodes 878 * @node: source node id 879 * @dst_id: destination node id 880 * 881 * Create a link between two nodes. The nodes might belong to different 882 * interconnect providers and the @dst_id node might not exist (if the 883 * provider driver has not probed yet). So just create the @dst_id node 884 * and when the actual provider driver is probed, the rest of the node 885 * data is filled. 886 * 887 * Return: 0 on success, or an error code otherwise 888 */ 889 int icc_link_create(struct icc_node *node, const int dst_id) 890 { 891 struct icc_node *dst; 892 struct icc_node **new; 893 int ret = 0; 894 895 if (!node->provider) 896 return -EINVAL; 897 898 mutex_lock(&icc_lock); 899 900 dst = node_find(dst_id); 901 if (!dst) { 902 dst = icc_node_create_nolock(dst_id); 903 904 if (IS_ERR(dst)) { 905 ret = PTR_ERR(dst); 906 goto out; 907 } 908 } 909 910 new = krealloc(node->links, 911 (node->num_links + 1) * sizeof(*node->links), 912 GFP_KERNEL); 913 if (!new) { 914 ret = -ENOMEM; 915 goto out; 916 } 917 918 node->links = new; 919 node->links[node->num_links++] = dst; 920 921 out: 922 mutex_unlock(&icc_lock); 923 924 return ret; 925 } 926 EXPORT_SYMBOL_GPL(icc_link_create); 927 928 /** 929 * icc_node_add() - add interconnect node to interconnect provider 930 * @node: pointer to the interconnect node 931 * @provider: pointer to the interconnect provider 932 */ 933 void icc_node_add(struct icc_node *node, struct icc_provider *provider) 934 { 935 if (WARN_ON(node->provider)) 936 return; 937 938 mutex_lock(&icc_lock); 939 mutex_lock(&icc_bw_lock); 940 941 node->provider = provider; 942 list_add_tail(&node->node_list, &provider->nodes); 943 944 /* get the initial bandwidth values and sync them with hardware */ 945 if (provider->get_bw) { 946 provider->get_bw(node, &node->init_avg, &node->init_peak); 947 } else { 948 node->init_avg = INT_MAX; 949 node->init_peak = INT_MAX; 950 } 951 node->avg_bw = node->init_avg; 952 node->peak_bw = node->init_peak; 953 954 if (node->avg_bw || node->peak_bw) { 955 if (provider->pre_aggregate) 956 provider->pre_aggregate(node); 957 958 if (provider->aggregate) 959 provider->aggregate(node, 0, node->init_avg, node->init_peak, 960 &node->avg_bw, &node->peak_bw); 961 if (provider->set) 962 provider->set(node, node); 963 } 964 965 node->avg_bw = 0; 966 node->peak_bw = 0; 967 968 mutex_unlock(&icc_bw_lock); 969 mutex_unlock(&icc_lock); 970 } 971 EXPORT_SYMBOL_GPL(icc_node_add); 972 973 /** 974 * icc_node_del() - delete interconnect node from interconnect provider 975 * @node: pointer to the interconnect node 976 */ 977 void icc_node_del(struct icc_node *node) 978 { 979 mutex_lock(&icc_lock); 980 981 list_del(&node->node_list); 982 983 mutex_unlock(&icc_lock); 984 } 985 EXPORT_SYMBOL_GPL(icc_node_del); 986 987 /** 988 * icc_nodes_remove() - remove all previously added nodes from provider 989 * @provider: the interconnect provider we are removing nodes from 990 * 991 * Return: 0 on success, or an error code otherwise 992 */ 993 int icc_nodes_remove(struct icc_provider *provider) 994 { 995 struct icc_node *n, *tmp; 996 997 if (WARN_ON(IS_ERR_OR_NULL(provider))) 998 return -EINVAL; 999 1000 list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) { 1001 icc_node_del(n); 1002 icc_node_destroy(n->id); 1003 } 1004 1005 return 0; 1006 } 1007 EXPORT_SYMBOL_GPL(icc_nodes_remove); 1008 1009 /** 1010 * icc_provider_init() - initialize a new interconnect provider 1011 * @provider: the interconnect provider to initialize 1012 * 1013 * Must be called before adding nodes to the provider. 1014 */ 1015 void icc_provider_init(struct icc_provider *provider) 1016 { 1017 WARN_ON(!provider->set); 1018 1019 INIT_LIST_HEAD(&provider->nodes); 1020 } 1021 EXPORT_SYMBOL_GPL(icc_provider_init); 1022 1023 /** 1024 * icc_provider_register() - register a new interconnect provider 1025 * @provider: the interconnect provider to register 1026 * 1027 * Return: 0 on success, or an error code otherwise 1028 */ 1029 int icc_provider_register(struct icc_provider *provider) 1030 { 1031 if (WARN_ON(!provider->xlate && !provider->xlate_extended)) 1032 return -EINVAL; 1033 1034 mutex_lock(&icc_lock); 1035 list_add_tail(&provider->provider_list, &icc_providers); 1036 mutex_unlock(&icc_lock); 1037 1038 dev_dbg(provider->dev, "interconnect provider registered\n"); 1039 1040 return 0; 1041 } 1042 EXPORT_SYMBOL_GPL(icc_provider_register); 1043 1044 /** 1045 * icc_provider_deregister() - deregister an interconnect provider 1046 * @provider: the interconnect provider to deregister 1047 */ 1048 void icc_provider_deregister(struct icc_provider *provider) 1049 { 1050 mutex_lock(&icc_lock); 1051 WARN_ON(provider->users); 1052 1053 list_del(&provider->provider_list); 1054 mutex_unlock(&icc_lock); 1055 } 1056 EXPORT_SYMBOL_GPL(icc_provider_deregister); 1057 1058 static const struct of_device_id __maybe_unused ignore_list[] = { 1059 { .compatible = "qcom,sc7180-ipa-virt" }, 1060 { .compatible = "qcom,sc8180x-ipa-virt" }, 1061 { .compatible = "qcom,sdx55-ipa-virt" }, 1062 { .compatible = "qcom,sm8150-ipa-virt" }, 1063 { .compatible = "qcom,sm8250-ipa-virt" }, 1064 {} 1065 }; 1066 1067 static int of_count_icc_providers(struct device_node *np) 1068 { 1069 struct device_node *child; 1070 int count = 0; 1071 1072 for_each_available_child_of_node(np, child) { 1073 if (of_property_read_bool(child, "#interconnect-cells") && 1074 likely(!of_match_node(ignore_list, child))) 1075 count++; 1076 count += of_count_icc_providers(child); 1077 } 1078 1079 return count; 1080 } 1081 1082 void icc_sync_state(struct device *dev) 1083 { 1084 struct icc_provider *p; 1085 struct icc_node *n; 1086 static int count; 1087 1088 count++; 1089 1090 if (count < providers_count) 1091 return; 1092 1093 mutex_lock(&icc_lock); 1094 mutex_lock(&icc_bw_lock); 1095 synced_state = true; 1096 list_for_each_entry(p, &icc_providers, provider_list) { 1097 dev_dbg(p->dev, "interconnect provider is in synced state\n"); 1098 list_for_each_entry(n, &p->nodes, node_list) { 1099 if (n->init_avg || n->init_peak) { 1100 n->init_avg = 0; 1101 n->init_peak = 0; 1102 aggregate_requests(n); 1103 p->set(n, n); 1104 } 1105 } 1106 } 1107 mutex_unlock(&icc_bw_lock); 1108 mutex_unlock(&icc_lock); 1109 } 1110 EXPORT_SYMBOL_GPL(icc_sync_state); 1111 1112 static int __init icc_init(void) 1113 { 1114 struct device_node *root; 1115 1116 /* Teach lockdep about lock ordering wrt. shrinker: */ 1117 fs_reclaim_acquire(GFP_KERNEL); 1118 might_lock(&icc_bw_lock); 1119 fs_reclaim_release(GFP_KERNEL); 1120 1121 root = of_find_node_by_path("/"); 1122 1123 providers_count = of_count_icc_providers(root); 1124 of_node_put(root); 1125 1126 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); 1127 debugfs_create_file("interconnect_summary", 0444, 1128 icc_debugfs_dir, NULL, &icc_summary_fops); 1129 debugfs_create_file("interconnect_graph", 0444, 1130 icc_debugfs_dir, NULL, &icc_graph_fops); 1131 1132 icc_debugfs_client_init(icc_debugfs_dir); 1133 1134 return 0; 1135 } 1136 1137 device_initcall(icc_init); 1138