1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interconnect framework core driver 4 * 5 * Copyright (c) 2017-2019, Linaro Ltd. 6 * Author: Georgi Djakov <georgi.djakov@linaro.org> 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/device.h> 11 #include <linux/idr.h> 12 #include <linux/init.h> 13 #include <linux/interconnect.h> 14 #include <linux/interconnect-provider.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/overflow.h> 21 22 static DEFINE_IDR(icc_idr); 23 static LIST_HEAD(icc_providers); 24 static DEFINE_MUTEX(icc_lock); 25 static struct dentry *icc_debugfs_dir; 26 27 /** 28 * struct icc_req - constraints that are attached to each node 29 * @req_node: entry in list of requests for the particular @node 30 * @node: the interconnect node to which this constraint applies 31 * @dev: reference to the device that sets the constraints 32 * @tag: path tag (optional) 33 * @avg_bw: an integer describing the average bandwidth in kBps 34 * @peak_bw: an integer describing the peak bandwidth in kBps 35 */ 36 struct icc_req { 37 struct hlist_node req_node; 38 struct icc_node *node; 39 struct device *dev; 40 u32 tag; 41 u32 avg_bw; 42 u32 peak_bw; 43 }; 44 45 /** 46 * struct icc_path - interconnect path structure 47 * @num_nodes: number of hops (nodes) 48 * @reqs: array of the requests applicable to this path of nodes 49 */ 50 struct icc_path { 51 size_t num_nodes; 52 struct icc_req reqs[]; 53 }; 54 55 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) 56 { 57 if (!n) 58 return; 59 60 seq_printf(s, "%-30s %12u %12u\n", 61 n->name, n->avg_bw, n->peak_bw); 62 } 63 64 static int icc_summary_show(struct seq_file *s, void *data) 65 { 66 struct icc_provider *provider; 67 68 seq_puts(s, " node avg peak\n"); 69 seq_puts(s, "--------------------------------------------------------\n"); 70 71 mutex_lock(&icc_lock); 72 73 list_for_each_entry(provider, &icc_providers, provider_list) { 74 struct icc_node *n; 75 76 list_for_each_entry(n, &provider->nodes, node_list) { 77 struct icc_req *r; 78 79 icc_summary_show_one(s, n); 80 hlist_for_each_entry(r, &n->req_list, req_node) { 81 if (!r->dev) 82 continue; 83 84 seq_printf(s, " %-26s %12u %12u\n", 85 dev_name(r->dev), r->avg_bw, 86 r->peak_bw); 87 } 88 } 89 } 90 91 mutex_unlock(&icc_lock); 92 93 return 0; 94 } 95 DEFINE_SHOW_ATTRIBUTE(icc_summary); 96 97 static struct icc_node *node_find(const int id) 98 { 99 return idr_find(&icc_idr, id); 100 } 101 102 static struct icc_path *path_init(struct device *dev, struct icc_node *dst, 103 ssize_t num_nodes) 104 { 105 struct icc_node *node = dst; 106 struct icc_path *path; 107 int i; 108 109 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); 110 if (!path) 111 return ERR_PTR(-ENOMEM); 112 113 path->num_nodes = num_nodes; 114 115 for (i = num_nodes - 1; i >= 0; i--) { 116 node->provider->users++; 117 hlist_add_head(&path->reqs[i].req_node, &node->req_list); 118 path->reqs[i].node = node; 119 path->reqs[i].dev = dev; 120 /* reference to previous node was saved during path traversal */ 121 node = node->reverse; 122 } 123 124 return path; 125 } 126 127 static struct icc_path *path_find(struct device *dev, struct icc_node *src, 128 struct icc_node *dst) 129 { 130 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 131 struct icc_node *n, *node = NULL; 132 struct list_head traverse_list; 133 struct list_head edge_list; 134 struct list_head visited_list; 135 size_t i, depth = 1; 136 bool found = false; 137 138 INIT_LIST_HEAD(&traverse_list); 139 INIT_LIST_HEAD(&edge_list); 140 INIT_LIST_HEAD(&visited_list); 141 142 list_add(&src->search_list, &traverse_list); 143 src->reverse = NULL; 144 145 do { 146 list_for_each_entry_safe(node, n, &traverse_list, search_list) { 147 if (node == dst) { 148 found = true; 149 list_splice_init(&edge_list, &visited_list); 150 list_splice_init(&traverse_list, &visited_list); 151 break; 152 } 153 for (i = 0; i < node->num_links; i++) { 154 struct icc_node *tmp = node->links[i]; 155 156 if (!tmp) { 157 path = ERR_PTR(-ENOENT); 158 goto out; 159 } 160 161 if (tmp->is_traversed) 162 continue; 163 164 tmp->is_traversed = true; 165 tmp->reverse = node; 166 list_add_tail(&tmp->search_list, &edge_list); 167 } 168 } 169 170 if (found) 171 break; 172 173 list_splice_init(&traverse_list, &visited_list); 174 list_splice_init(&edge_list, &traverse_list); 175 176 /* count the hops including the source */ 177 depth++; 178 179 } while (!list_empty(&traverse_list)); 180 181 out: 182 183 /* reset the traversed state */ 184 list_for_each_entry_reverse(n, &visited_list, search_list) 185 n->is_traversed = false; 186 187 if (found) 188 path = path_init(dev, dst, depth); 189 190 return path; 191 } 192 193 /* 194 * We want the path to honor all bandwidth requests, so the average and peak 195 * bandwidth requirements from each consumer are aggregated at each node. 196 * The aggregation is platform specific, so each platform can customize it by 197 * implementing its own aggregate() function. 198 */ 199 200 static int aggregate_requests(struct icc_node *node) 201 { 202 struct icc_provider *p = node->provider; 203 struct icc_req *r; 204 205 node->avg_bw = 0; 206 node->peak_bw = 0; 207 208 if (p->pre_aggregate) 209 p->pre_aggregate(node); 210 211 hlist_for_each_entry(r, &node->req_list, req_node) 212 p->aggregate(node, r->tag, r->avg_bw, r->peak_bw, 213 &node->avg_bw, &node->peak_bw); 214 215 return 0; 216 } 217 218 static int apply_constraints(struct icc_path *path) 219 { 220 struct icc_node *next, *prev = NULL; 221 int ret = -EINVAL; 222 int i; 223 224 for (i = 0; i < path->num_nodes; i++) { 225 next = path->reqs[i].node; 226 227 /* 228 * Both endpoints should be valid master-slave pairs of the 229 * same interconnect provider that will be configured. 230 */ 231 if (!prev || next->provider != prev->provider) { 232 prev = next; 233 continue; 234 } 235 236 /* set the constraints */ 237 ret = next->provider->set(prev, next); 238 if (ret) 239 goto out; 240 241 prev = next; 242 } 243 out: 244 return ret; 245 } 246 247 /* of_icc_xlate_onecell() - Translate function using a single index. 248 * @spec: OF phandle args to map into an interconnect node. 249 * @data: private data (pointer to struct icc_onecell_data) 250 * 251 * This is a generic translate function that can be used to model simple 252 * interconnect providers that have one device tree node and provide 253 * multiple interconnect nodes. A single cell is used as an index into 254 * an array of icc nodes specified in the icc_onecell_data struct when 255 * registering the provider. 256 */ 257 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec, 258 void *data) 259 { 260 struct icc_onecell_data *icc_data = data; 261 unsigned int idx = spec->args[0]; 262 263 if (idx >= icc_data->num_nodes) { 264 pr_err("%s: invalid index %u\n", __func__, idx); 265 return ERR_PTR(-EINVAL); 266 } 267 268 return icc_data->nodes[idx]; 269 } 270 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); 271 272 /** 273 * of_icc_get_from_provider() - Look-up interconnect node 274 * @spec: OF phandle args to use for look-up 275 * 276 * Looks for interconnect provider under the node specified by @spec and if 277 * found, uses xlate function of the provider to map phandle args to node. 278 * 279 * Returns a valid pointer to struct icc_node on success or ERR_PTR() 280 * on failure. 281 */ 282 static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec) 283 { 284 struct icc_node *node = ERR_PTR(-EPROBE_DEFER); 285 struct icc_provider *provider; 286 287 if (!spec || spec->args_count != 1) 288 return ERR_PTR(-EINVAL); 289 290 mutex_lock(&icc_lock); 291 list_for_each_entry(provider, &icc_providers, provider_list) { 292 if (provider->dev->of_node == spec->np) 293 node = provider->xlate(spec, provider->data); 294 if (!IS_ERR(node)) 295 break; 296 } 297 mutex_unlock(&icc_lock); 298 299 return node; 300 } 301 302 /** 303 * of_icc_get() - get a path handle from a DT node based on name 304 * @dev: device pointer for the consumer device 305 * @name: interconnect path name 306 * 307 * This function will search for a path between two endpoints and return an 308 * icc_path handle on success. Use icc_put() to release constraints when they 309 * are not needed anymore. 310 * If the interconnect API is disabled, NULL is returned and the consumer 311 * drivers will still build. Drivers are free to handle this specifically, 312 * but they don't have to. 313 * 314 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 315 * when the API is disabled or the "interconnects" DT property is missing. 316 */ 317 struct icc_path *of_icc_get(struct device *dev, const char *name) 318 { 319 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 320 struct icc_node *src_node, *dst_node; 321 struct device_node *np = NULL; 322 struct of_phandle_args src_args, dst_args; 323 int idx = 0; 324 int ret; 325 326 if (!dev || !dev->of_node) 327 return ERR_PTR(-ENODEV); 328 329 np = dev->of_node; 330 331 /* 332 * When the consumer DT node do not have "interconnects" property 333 * return a NULL path to skip setting constraints. 334 */ 335 if (!of_find_property(np, "interconnects", NULL)) 336 return NULL; 337 338 /* 339 * We use a combination of phandle and specifier for endpoint. For now 340 * lets support only global ids and extend this in the future if needed 341 * without breaking DT compatibility. 342 */ 343 if (name) { 344 idx = of_property_match_string(np, "interconnect-names", name); 345 if (idx < 0) 346 return ERR_PTR(idx); 347 } 348 349 ret = of_parse_phandle_with_args(np, "interconnects", 350 "#interconnect-cells", idx * 2, 351 &src_args); 352 if (ret) 353 return ERR_PTR(ret); 354 355 of_node_put(src_args.np); 356 357 ret = of_parse_phandle_with_args(np, "interconnects", 358 "#interconnect-cells", idx * 2 + 1, 359 &dst_args); 360 if (ret) 361 return ERR_PTR(ret); 362 363 of_node_put(dst_args.np); 364 365 src_node = of_icc_get_from_provider(&src_args); 366 367 if (IS_ERR(src_node)) { 368 if (PTR_ERR(src_node) != -EPROBE_DEFER) 369 dev_err(dev, "error finding src node: %ld\n", 370 PTR_ERR(src_node)); 371 return ERR_CAST(src_node); 372 } 373 374 dst_node = of_icc_get_from_provider(&dst_args); 375 376 if (IS_ERR(dst_node)) { 377 if (PTR_ERR(dst_node) != -EPROBE_DEFER) 378 dev_err(dev, "error finding dst node: %ld\n", 379 PTR_ERR(dst_node)); 380 return ERR_CAST(dst_node); 381 } 382 383 mutex_lock(&icc_lock); 384 path = path_find(dev, src_node, dst_node); 385 if (IS_ERR(path)) 386 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 387 mutex_unlock(&icc_lock); 388 389 return path; 390 } 391 EXPORT_SYMBOL_GPL(of_icc_get); 392 393 /** 394 * icc_set_tag() - set an optional tag on a path 395 * @path: the path we want to tag 396 * @tag: the tag value 397 * 398 * This function allows consumers to append a tag to the requests associated 399 * with a path, so that a different aggregation could be done based on this tag. 400 */ 401 void icc_set_tag(struct icc_path *path, u32 tag) 402 { 403 int i; 404 405 if (!path) 406 return; 407 408 mutex_lock(&icc_lock); 409 410 for (i = 0; i < path->num_nodes; i++) 411 path->reqs[i].tag = tag; 412 413 mutex_unlock(&icc_lock); 414 } 415 EXPORT_SYMBOL_GPL(icc_set_tag); 416 417 /** 418 * icc_set_bw() - set bandwidth constraints on an interconnect path 419 * @path: reference to the path returned by icc_get() 420 * @avg_bw: average bandwidth in kilobytes per second 421 * @peak_bw: peak bandwidth in kilobytes per second 422 * 423 * This function is used by an interconnect consumer to express its own needs 424 * in terms of bandwidth for a previously requested path between two endpoints. 425 * The requests are aggregated and each node is updated accordingly. The entire 426 * path is locked by a mutex to ensure that the set() is completed. 427 * The @path can be NULL when the "interconnects" DT properties is missing, 428 * which will mean that no constraints will be set. 429 * 430 * Returns 0 on success, or an appropriate error code otherwise. 431 */ 432 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) 433 { 434 struct icc_node *node; 435 u32 old_avg, old_peak; 436 size_t i; 437 int ret; 438 439 if (!path || !path->num_nodes) 440 return 0; 441 442 mutex_lock(&icc_lock); 443 444 old_avg = path->reqs[0].avg_bw; 445 old_peak = path->reqs[0].peak_bw; 446 447 for (i = 0; i < path->num_nodes; i++) { 448 node = path->reqs[i].node; 449 450 /* update the consumer request for this path */ 451 path->reqs[i].avg_bw = avg_bw; 452 path->reqs[i].peak_bw = peak_bw; 453 454 /* aggregate requests for this node */ 455 aggregate_requests(node); 456 } 457 458 ret = apply_constraints(path); 459 if (ret) { 460 pr_debug("interconnect: error applying constraints (%d)\n", 461 ret); 462 463 for (i = 0; i < path->num_nodes; i++) { 464 node = path->reqs[i].node; 465 path->reqs[i].avg_bw = old_avg; 466 path->reqs[i].peak_bw = old_peak; 467 aggregate_requests(node); 468 } 469 apply_constraints(path); 470 } 471 472 mutex_unlock(&icc_lock); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(icc_set_bw); 477 478 /** 479 * icc_get() - return a handle for path between two endpoints 480 * @dev: the device requesting the path 481 * @src_id: source device port id 482 * @dst_id: destination device port id 483 * 484 * This function will search for a path between two endpoints and return an 485 * icc_path handle on success. Use icc_put() to release 486 * constraints when they are not needed anymore. 487 * If the interconnect API is disabled, NULL is returned and the consumer 488 * drivers will still build. Drivers are free to handle this specifically, 489 * but they don't have to. 490 * 491 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the 492 * interconnect API is disabled. 493 */ 494 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id) 495 { 496 struct icc_node *src, *dst; 497 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 498 499 mutex_lock(&icc_lock); 500 501 src = node_find(src_id); 502 if (!src) 503 goto out; 504 505 dst = node_find(dst_id); 506 if (!dst) 507 goto out; 508 509 path = path_find(dev, src, dst); 510 if (IS_ERR(path)) 511 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 512 513 out: 514 mutex_unlock(&icc_lock); 515 return path; 516 } 517 EXPORT_SYMBOL_GPL(icc_get); 518 519 /** 520 * icc_put() - release the reference to the icc_path 521 * @path: interconnect path 522 * 523 * Use this function to release the constraints on a path when the path is 524 * no longer needed. The constraints will be re-aggregated. 525 */ 526 void icc_put(struct icc_path *path) 527 { 528 struct icc_node *node; 529 size_t i; 530 int ret; 531 532 if (!path || WARN_ON(IS_ERR(path))) 533 return; 534 535 ret = icc_set_bw(path, 0, 0); 536 if (ret) 537 pr_err("%s: error (%d)\n", __func__, ret); 538 539 mutex_lock(&icc_lock); 540 for (i = 0; i < path->num_nodes; i++) { 541 node = path->reqs[i].node; 542 hlist_del(&path->reqs[i].req_node); 543 if (!WARN_ON(!node->provider->users)) 544 node->provider->users--; 545 } 546 mutex_unlock(&icc_lock); 547 548 kfree(path); 549 } 550 EXPORT_SYMBOL_GPL(icc_put); 551 552 static struct icc_node *icc_node_create_nolock(int id) 553 { 554 struct icc_node *node; 555 556 /* check if node already exists */ 557 node = node_find(id); 558 if (node) 559 return node; 560 561 node = kzalloc(sizeof(*node), GFP_KERNEL); 562 if (!node) 563 return ERR_PTR(-ENOMEM); 564 565 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); 566 if (id < 0) { 567 WARN(1, "%s: couldn't get idr\n", __func__); 568 kfree(node); 569 return ERR_PTR(id); 570 } 571 572 node->id = id; 573 574 return node; 575 } 576 577 /** 578 * icc_node_create() - create a node 579 * @id: node id 580 * 581 * Return: icc_node pointer on success, or ERR_PTR() on error 582 */ 583 struct icc_node *icc_node_create(int id) 584 { 585 struct icc_node *node; 586 587 mutex_lock(&icc_lock); 588 589 node = icc_node_create_nolock(id); 590 591 mutex_unlock(&icc_lock); 592 593 return node; 594 } 595 EXPORT_SYMBOL_GPL(icc_node_create); 596 597 /** 598 * icc_node_destroy() - destroy a node 599 * @id: node id 600 */ 601 void icc_node_destroy(int id) 602 { 603 struct icc_node *node; 604 605 mutex_lock(&icc_lock); 606 607 node = node_find(id); 608 if (node) { 609 idr_remove(&icc_idr, node->id); 610 WARN_ON(!hlist_empty(&node->req_list)); 611 } 612 613 mutex_unlock(&icc_lock); 614 615 kfree(node); 616 } 617 EXPORT_SYMBOL_GPL(icc_node_destroy); 618 619 /** 620 * icc_link_create() - create a link between two nodes 621 * @node: source node id 622 * @dst_id: destination node id 623 * 624 * Create a link between two nodes. The nodes might belong to different 625 * interconnect providers and the @dst_id node might not exist (if the 626 * provider driver has not probed yet). So just create the @dst_id node 627 * and when the actual provider driver is probed, the rest of the node 628 * data is filled. 629 * 630 * Return: 0 on success, or an error code otherwise 631 */ 632 int icc_link_create(struct icc_node *node, const int dst_id) 633 { 634 struct icc_node *dst; 635 struct icc_node **new; 636 int ret = 0; 637 638 if (!node->provider) 639 return -EINVAL; 640 641 mutex_lock(&icc_lock); 642 643 dst = node_find(dst_id); 644 if (!dst) { 645 dst = icc_node_create_nolock(dst_id); 646 647 if (IS_ERR(dst)) { 648 ret = PTR_ERR(dst); 649 goto out; 650 } 651 } 652 653 new = krealloc(node->links, 654 (node->num_links + 1) * sizeof(*node->links), 655 GFP_KERNEL); 656 if (!new) { 657 ret = -ENOMEM; 658 goto out; 659 } 660 661 node->links = new; 662 node->links[node->num_links++] = dst; 663 664 out: 665 mutex_unlock(&icc_lock); 666 667 return ret; 668 } 669 EXPORT_SYMBOL_GPL(icc_link_create); 670 671 /** 672 * icc_link_destroy() - destroy a link between two nodes 673 * @src: pointer to source node 674 * @dst: pointer to destination node 675 * 676 * Return: 0 on success, or an error code otherwise 677 */ 678 int icc_link_destroy(struct icc_node *src, struct icc_node *dst) 679 { 680 struct icc_node **new; 681 size_t slot; 682 int ret = 0; 683 684 if (IS_ERR_OR_NULL(src)) 685 return -EINVAL; 686 687 if (IS_ERR_OR_NULL(dst)) 688 return -EINVAL; 689 690 mutex_lock(&icc_lock); 691 692 for (slot = 0; slot < src->num_links; slot++) 693 if (src->links[slot] == dst) 694 break; 695 696 if (WARN_ON(slot == src->num_links)) { 697 ret = -ENXIO; 698 goto out; 699 } 700 701 src->links[slot] = src->links[--src->num_links]; 702 703 new = krealloc(src->links, src->num_links * sizeof(*src->links), 704 GFP_KERNEL); 705 if (new) 706 src->links = new; 707 708 out: 709 mutex_unlock(&icc_lock); 710 711 return ret; 712 } 713 EXPORT_SYMBOL_GPL(icc_link_destroy); 714 715 /** 716 * icc_node_add() - add interconnect node to interconnect provider 717 * @node: pointer to the interconnect node 718 * @provider: pointer to the interconnect provider 719 */ 720 void icc_node_add(struct icc_node *node, struct icc_provider *provider) 721 { 722 mutex_lock(&icc_lock); 723 724 node->provider = provider; 725 list_add_tail(&node->node_list, &provider->nodes); 726 727 mutex_unlock(&icc_lock); 728 } 729 EXPORT_SYMBOL_GPL(icc_node_add); 730 731 /** 732 * icc_node_del() - delete interconnect node from interconnect provider 733 * @node: pointer to the interconnect node 734 */ 735 void icc_node_del(struct icc_node *node) 736 { 737 mutex_lock(&icc_lock); 738 739 list_del(&node->node_list); 740 741 mutex_unlock(&icc_lock); 742 } 743 EXPORT_SYMBOL_GPL(icc_node_del); 744 745 /** 746 * icc_provider_add() - add a new interconnect provider 747 * @provider: the interconnect provider that will be added into topology 748 * 749 * Return: 0 on success, or an error code otherwise 750 */ 751 int icc_provider_add(struct icc_provider *provider) 752 { 753 if (WARN_ON(!provider->set)) 754 return -EINVAL; 755 if (WARN_ON(!provider->xlate)) 756 return -EINVAL; 757 758 mutex_lock(&icc_lock); 759 760 INIT_LIST_HEAD(&provider->nodes); 761 list_add_tail(&provider->provider_list, &icc_providers); 762 763 mutex_unlock(&icc_lock); 764 765 dev_dbg(provider->dev, "interconnect provider added to topology\n"); 766 767 return 0; 768 } 769 EXPORT_SYMBOL_GPL(icc_provider_add); 770 771 /** 772 * icc_provider_del() - delete previously added interconnect provider 773 * @provider: the interconnect provider that will be removed from topology 774 * 775 * Return: 0 on success, or an error code otherwise 776 */ 777 int icc_provider_del(struct icc_provider *provider) 778 { 779 mutex_lock(&icc_lock); 780 if (provider->users) { 781 pr_warn("interconnect provider still has %d users\n", 782 provider->users); 783 mutex_unlock(&icc_lock); 784 return -EBUSY; 785 } 786 787 if (!list_empty(&provider->nodes)) { 788 pr_warn("interconnect provider still has nodes\n"); 789 mutex_unlock(&icc_lock); 790 return -EBUSY; 791 } 792 793 list_del(&provider->provider_list); 794 mutex_unlock(&icc_lock); 795 796 return 0; 797 } 798 EXPORT_SYMBOL_GPL(icc_provider_del); 799 800 static int __init icc_init(void) 801 { 802 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); 803 debugfs_create_file("interconnect_summary", 0444, 804 icc_debugfs_dir, NULL, &icc_summary_fops); 805 return 0; 806 } 807 808 static void __exit icc_exit(void) 809 { 810 debugfs_remove_recursive(icc_debugfs_dir); 811 } 812 module_init(icc_init); 813 module_exit(icc_exit); 814 815 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>"); 816 MODULE_DESCRIPTION("Interconnect Driver Core"); 817 MODULE_LICENSE("GPL v2"); 818