xref: /openbmc/linux/drivers/interconnect/core.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/overflow.h>
20 
21 #include "internal.h"
22 
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25 
26 static DEFINE_IDR(icc_idr);
27 static LIST_HEAD(icc_providers);
28 static int providers_count;
29 static bool synced_state;
30 static DEFINE_MUTEX(icc_lock);
31 static DEFINE_MUTEX(icc_bw_lock);
32 static struct dentry *icc_debugfs_dir;
33 
34 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
35 {
36 	if (!n)
37 		return;
38 
39 	seq_printf(s, "%-42s %12u %12u\n",
40 		   n->name, n->avg_bw, n->peak_bw);
41 }
42 
43 static int icc_summary_show(struct seq_file *s, void *data)
44 {
45 	struct icc_provider *provider;
46 
47 	seq_puts(s, " node                                  tag          avg         peak\n");
48 	seq_puts(s, "--------------------------------------------------------------------\n");
49 
50 	mutex_lock(&icc_lock);
51 
52 	list_for_each_entry(provider, &icc_providers, provider_list) {
53 		struct icc_node *n;
54 
55 		list_for_each_entry(n, &provider->nodes, node_list) {
56 			struct icc_req *r;
57 
58 			icc_summary_show_one(s, n);
59 			hlist_for_each_entry(r, &n->req_list, req_node) {
60 				u32 avg_bw = 0, peak_bw = 0;
61 
62 				if (!r->dev)
63 					continue;
64 
65 				if (r->enabled) {
66 					avg_bw = r->avg_bw;
67 					peak_bw = r->peak_bw;
68 				}
69 
70 				seq_printf(s, "  %-27s %12u %12u %12u\n",
71 					   dev_name(r->dev), r->tag, avg_bw, peak_bw);
72 			}
73 		}
74 	}
75 
76 	mutex_unlock(&icc_lock);
77 
78 	return 0;
79 }
80 DEFINE_SHOW_ATTRIBUTE(icc_summary);
81 
82 static void icc_graph_show_link(struct seq_file *s, int level,
83 				struct icc_node *n, struct icc_node *m)
84 {
85 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
86 		   level == 2 ? "\t\t" : "\t",
87 		   n->id, n->name, m->id, m->name);
88 }
89 
90 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
91 {
92 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
93 		   n->id, n->name, n->id, n->name);
94 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
95 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
96 	seq_puts(s, "\"]\n");
97 }
98 
99 static int icc_graph_show(struct seq_file *s, void *data)
100 {
101 	struct icc_provider *provider;
102 	struct icc_node *n;
103 	int cluster_index = 0;
104 	int i;
105 
106 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
107 	mutex_lock(&icc_lock);
108 
109 	/* draw providers as cluster subgraphs */
110 	cluster_index = 0;
111 	list_for_each_entry(provider, &icc_providers, provider_list) {
112 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
113 		if (provider->dev)
114 			seq_printf(s, "\t\tlabel = \"%s\"\n",
115 				   dev_name(provider->dev));
116 
117 		/* draw nodes */
118 		list_for_each_entry(n, &provider->nodes, node_list)
119 			icc_graph_show_node(s, n);
120 
121 		/* draw internal links */
122 		list_for_each_entry(n, &provider->nodes, node_list)
123 			for (i = 0; i < n->num_links; ++i)
124 				if (n->provider == n->links[i]->provider)
125 					icc_graph_show_link(s, 2, n,
126 							    n->links[i]);
127 
128 		seq_puts(s, "\t}\n");
129 	}
130 
131 	/* draw external links */
132 	list_for_each_entry(provider, &icc_providers, provider_list)
133 		list_for_each_entry(n, &provider->nodes, node_list)
134 			for (i = 0; i < n->num_links; ++i)
135 				if (n->provider != n->links[i]->provider)
136 					icc_graph_show_link(s, 1, n,
137 							    n->links[i]);
138 
139 	mutex_unlock(&icc_lock);
140 	seq_puts(s, "}");
141 
142 	return 0;
143 }
144 DEFINE_SHOW_ATTRIBUTE(icc_graph);
145 
146 static struct icc_node *node_find(const int id)
147 {
148 	return idr_find(&icc_idr, id);
149 }
150 
151 static struct icc_node *node_find_by_name(const char *name)
152 {
153 	struct icc_provider *provider;
154 	struct icc_node *n;
155 
156 	list_for_each_entry(provider, &icc_providers, provider_list) {
157 		list_for_each_entry(n, &provider->nodes, node_list) {
158 			if (!strcmp(n->name, name))
159 				return n;
160 		}
161 	}
162 
163 	return NULL;
164 }
165 
166 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
167 				  ssize_t num_nodes)
168 {
169 	struct icc_node *node = dst;
170 	struct icc_path *path;
171 	int i;
172 
173 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
174 	if (!path)
175 		return ERR_PTR(-ENOMEM);
176 
177 	path->num_nodes = num_nodes;
178 
179 	for (i = num_nodes - 1; i >= 0; i--) {
180 		node->provider->users++;
181 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
182 		path->reqs[i].node = node;
183 		path->reqs[i].dev = dev;
184 		path->reqs[i].enabled = true;
185 		/* reference to previous node was saved during path traversal */
186 		node = node->reverse;
187 	}
188 
189 	return path;
190 }
191 
192 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
193 				  struct icc_node *dst)
194 {
195 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
196 	struct icc_node *n, *node = NULL;
197 	struct list_head traverse_list;
198 	struct list_head edge_list;
199 	struct list_head visited_list;
200 	size_t i, depth = 1;
201 	bool found = false;
202 
203 	INIT_LIST_HEAD(&traverse_list);
204 	INIT_LIST_HEAD(&edge_list);
205 	INIT_LIST_HEAD(&visited_list);
206 
207 	list_add(&src->search_list, &traverse_list);
208 	src->reverse = NULL;
209 
210 	do {
211 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
212 			if (node == dst) {
213 				found = true;
214 				list_splice_init(&edge_list, &visited_list);
215 				list_splice_init(&traverse_list, &visited_list);
216 				break;
217 			}
218 			for (i = 0; i < node->num_links; i++) {
219 				struct icc_node *tmp = node->links[i];
220 
221 				if (!tmp) {
222 					path = ERR_PTR(-ENOENT);
223 					goto out;
224 				}
225 
226 				if (tmp->is_traversed)
227 					continue;
228 
229 				tmp->is_traversed = true;
230 				tmp->reverse = node;
231 				list_add_tail(&tmp->search_list, &edge_list);
232 			}
233 		}
234 
235 		if (found)
236 			break;
237 
238 		list_splice_init(&traverse_list, &visited_list);
239 		list_splice_init(&edge_list, &traverse_list);
240 
241 		/* count the hops including the source */
242 		depth++;
243 
244 	} while (!list_empty(&traverse_list));
245 
246 out:
247 
248 	/* reset the traversed state */
249 	list_for_each_entry_reverse(n, &visited_list, search_list)
250 		n->is_traversed = false;
251 
252 	if (found)
253 		path = path_init(dev, dst, depth);
254 
255 	return path;
256 }
257 
258 /*
259  * We want the path to honor all bandwidth requests, so the average and peak
260  * bandwidth requirements from each consumer are aggregated at each node.
261  * The aggregation is platform specific, so each platform can customize it by
262  * implementing its own aggregate() function.
263  */
264 
265 static int aggregate_requests(struct icc_node *node)
266 {
267 	struct icc_provider *p = node->provider;
268 	struct icc_req *r;
269 	u32 avg_bw, peak_bw;
270 
271 	node->avg_bw = 0;
272 	node->peak_bw = 0;
273 
274 	if (p->pre_aggregate)
275 		p->pre_aggregate(node);
276 
277 	hlist_for_each_entry(r, &node->req_list, req_node) {
278 		if (r->enabled) {
279 			avg_bw = r->avg_bw;
280 			peak_bw = r->peak_bw;
281 		} else {
282 			avg_bw = 0;
283 			peak_bw = 0;
284 		}
285 		p->aggregate(node, r->tag, avg_bw, peak_bw,
286 			     &node->avg_bw, &node->peak_bw);
287 
288 		/* during boot use the initial bandwidth as a floor value */
289 		if (!synced_state) {
290 			node->avg_bw = max(node->avg_bw, node->init_avg);
291 			node->peak_bw = max(node->peak_bw, node->init_peak);
292 		}
293 	}
294 
295 	return 0;
296 }
297 
298 static int apply_constraints(struct icc_path *path)
299 {
300 	struct icc_node *next, *prev = NULL;
301 	struct icc_provider *p;
302 	int ret = -EINVAL;
303 	int i;
304 
305 	for (i = 0; i < path->num_nodes; i++) {
306 		next = path->reqs[i].node;
307 		p = next->provider;
308 
309 		/* both endpoints should be valid master-slave pairs */
310 		if (!prev || (p != prev->provider && !p->inter_set)) {
311 			prev = next;
312 			continue;
313 		}
314 
315 		/* set the constraints */
316 		ret = p->set(prev, next);
317 		if (ret)
318 			goto out;
319 
320 		prev = next;
321 	}
322 out:
323 	return ret;
324 }
325 
326 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
327 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
328 {
329 	*agg_avg += avg_bw;
330 	*agg_peak = max(*agg_peak, peak_bw);
331 
332 	return 0;
333 }
334 EXPORT_SYMBOL_GPL(icc_std_aggregate);
335 
336 /* of_icc_xlate_onecell() - Translate function using a single index.
337  * @spec: OF phandle args to map into an interconnect node.
338  * @data: private data (pointer to struct icc_onecell_data)
339  *
340  * This is a generic translate function that can be used to model simple
341  * interconnect providers that have one device tree node and provide
342  * multiple interconnect nodes. A single cell is used as an index into
343  * an array of icc nodes specified in the icc_onecell_data struct when
344  * registering the provider.
345  */
346 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
347 				      void *data)
348 {
349 	struct icc_onecell_data *icc_data = data;
350 	unsigned int idx = spec->args[0];
351 
352 	if (idx >= icc_data->num_nodes) {
353 		pr_err("%s: invalid index %u\n", __func__, idx);
354 		return ERR_PTR(-EINVAL);
355 	}
356 
357 	return icc_data->nodes[idx];
358 }
359 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
360 
361 /**
362  * of_icc_get_from_provider() - Look-up interconnect node
363  * @spec: OF phandle args to use for look-up
364  *
365  * Looks for interconnect provider under the node specified by @spec and if
366  * found, uses xlate function of the provider to map phandle args to node.
367  *
368  * Returns a valid pointer to struct icc_node_data on success or ERR_PTR()
369  * on failure.
370  */
371 struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec)
372 {
373 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
374 	struct icc_node_data *data = NULL;
375 	struct icc_provider *provider;
376 
377 	if (!spec)
378 		return ERR_PTR(-EINVAL);
379 
380 	mutex_lock(&icc_lock);
381 	list_for_each_entry(provider, &icc_providers, provider_list) {
382 		if (provider->dev->of_node == spec->np) {
383 			if (provider->xlate_extended) {
384 				data = provider->xlate_extended(spec, provider->data);
385 				if (!IS_ERR(data)) {
386 					node = data->node;
387 					break;
388 				}
389 			} else {
390 				node = provider->xlate(spec, provider->data);
391 				if (!IS_ERR(node))
392 					break;
393 			}
394 		}
395 	}
396 	mutex_unlock(&icc_lock);
397 
398 	if (IS_ERR(node))
399 		return ERR_CAST(node);
400 
401 	if (!data) {
402 		data = kzalloc(sizeof(*data), GFP_KERNEL);
403 		if (!data)
404 			return ERR_PTR(-ENOMEM);
405 		data->node = node;
406 	}
407 
408 	return data;
409 }
410 EXPORT_SYMBOL_GPL(of_icc_get_from_provider);
411 
412 static void devm_icc_release(struct device *dev, void *res)
413 {
414 	icc_put(*(struct icc_path **)res);
415 }
416 
417 struct icc_path *devm_of_icc_get(struct device *dev, const char *name)
418 {
419 	struct icc_path **ptr, *path;
420 
421 	ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL);
422 	if (!ptr)
423 		return ERR_PTR(-ENOMEM);
424 
425 	path = of_icc_get(dev, name);
426 	if (!IS_ERR(path)) {
427 		*ptr = path;
428 		devres_add(dev, ptr);
429 	} else {
430 		devres_free(ptr);
431 	}
432 
433 	return path;
434 }
435 EXPORT_SYMBOL_GPL(devm_of_icc_get);
436 
437 /**
438  * of_icc_get_by_index() - get a path handle from a DT node based on index
439  * @dev: device pointer for the consumer device
440  * @idx: interconnect path index
441  *
442  * This function will search for a path between two endpoints and return an
443  * icc_path handle on success. Use icc_put() to release constraints when they
444  * are not needed anymore.
445  * If the interconnect API is disabled, NULL is returned and the consumer
446  * drivers will still build. Drivers are free to handle this specifically,
447  * but they don't have to.
448  *
449  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
450  * when the API is disabled or the "interconnects" DT property is missing.
451  */
452 struct icc_path *of_icc_get_by_index(struct device *dev, int idx)
453 {
454 	struct icc_path *path;
455 	struct icc_node_data *src_data, *dst_data;
456 	struct device_node *np;
457 	struct of_phandle_args src_args, dst_args;
458 	int ret;
459 
460 	if (!dev || !dev->of_node)
461 		return ERR_PTR(-ENODEV);
462 
463 	np = dev->of_node;
464 
465 	/*
466 	 * When the consumer DT node do not have "interconnects" property
467 	 * return a NULL path to skip setting constraints.
468 	 */
469 	if (!of_property_present(np, "interconnects"))
470 		return NULL;
471 
472 	/*
473 	 * We use a combination of phandle and specifier for endpoint. For now
474 	 * lets support only global ids and extend this in the future if needed
475 	 * without breaking DT compatibility.
476 	 */
477 	ret = of_parse_phandle_with_args(np, "interconnects",
478 					 "#interconnect-cells", idx * 2,
479 					 &src_args);
480 	if (ret)
481 		return ERR_PTR(ret);
482 
483 	of_node_put(src_args.np);
484 
485 	ret = of_parse_phandle_with_args(np, "interconnects",
486 					 "#interconnect-cells", idx * 2 + 1,
487 					 &dst_args);
488 	if (ret)
489 		return ERR_PTR(ret);
490 
491 	of_node_put(dst_args.np);
492 
493 	src_data = of_icc_get_from_provider(&src_args);
494 
495 	if (IS_ERR(src_data)) {
496 		dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n");
497 		return ERR_CAST(src_data);
498 	}
499 
500 	dst_data = of_icc_get_from_provider(&dst_args);
501 
502 	if (IS_ERR(dst_data)) {
503 		dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n");
504 		kfree(src_data);
505 		return ERR_CAST(dst_data);
506 	}
507 
508 	mutex_lock(&icc_lock);
509 	path = path_find(dev, src_data->node, dst_data->node);
510 	mutex_unlock(&icc_lock);
511 	if (IS_ERR(path)) {
512 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
513 		goto free_icc_data;
514 	}
515 
516 	if (src_data->tag && src_data->tag == dst_data->tag)
517 		icc_set_tag(path, src_data->tag);
518 
519 	path->name = kasprintf(GFP_KERNEL, "%s-%s",
520 			       src_data->node->name, dst_data->node->name);
521 	if (!path->name) {
522 		kfree(path);
523 		path = ERR_PTR(-ENOMEM);
524 	}
525 
526 free_icc_data:
527 	kfree(src_data);
528 	kfree(dst_data);
529 	return path;
530 }
531 EXPORT_SYMBOL_GPL(of_icc_get_by_index);
532 
533 /**
534  * of_icc_get() - get a path handle from a DT node based on name
535  * @dev: device pointer for the consumer device
536  * @name: interconnect path name
537  *
538  * This function will search for a path between two endpoints and return an
539  * icc_path handle on success. Use icc_put() to release constraints when they
540  * are not needed anymore.
541  * If the interconnect API is disabled, NULL is returned and the consumer
542  * drivers will still build. Drivers are free to handle this specifically,
543  * but they don't have to.
544  *
545  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
546  * when the API is disabled or the "interconnects" DT property is missing.
547  */
548 struct icc_path *of_icc_get(struct device *dev, const char *name)
549 {
550 	struct device_node *np;
551 	int idx = 0;
552 
553 	if (!dev || !dev->of_node)
554 		return ERR_PTR(-ENODEV);
555 
556 	np = dev->of_node;
557 
558 	/*
559 	 * When the consumer DT node do not have "interconnects" property
560 	 * return a NULL path to skip setting constraints.
561 	 */
562 	if (!of_property_present(np, "interconnects"))
563 		return NULL;
564 
565 	/*
566 	 * We use a combination of phandle and specifier for endpoint. For now
567 	 * lets support only global ids and extend this in the future if needed
568 	 * without breaking DT compatibility.
569 	 */
570 	if (name) {
571 		idx = of_property_match_string(np, "interconnect-names", name);
572 		if (idx < 0)
573 			return ERR_PTR(idx);
574 	}
575 
576 	return of_icc_get_by_index(dev, idx);
577 }
578 EXPORT_SYMBOL_GPL(of_icc_get);
579 
580 /**
581  * icc_get() - get a path handle between two endpoints
582  * @dev: device pointer for the consumer device
583  * @src: source node name
584  * @dst: destination node name
585  *
586  * This function will search for a path between two endpoints and return an
587  * icc_path handle on success. Use icc_put() to release constraints when they
588  * are not needed anymore.
589  *
590  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
591  * when the API is disabled.
592  */
593 struct icc_path *icc_get(struct device *dev, const char *src, const char *dst)
594 {
595 	struct icc_node *src_node, *dst_node;
596 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
597 
598 	mutex_lock(&icc_lock);
599 
600 	src_node = node_find_by_name(src);
601 	if (!src_node) {
602 		dev_err(dev, "%s: invalid src=%s\n", __func__, src);
603 		goto out;
604 	}
605 
606 	dst_node = node_find_by_name(dst);
607 	if (!dst_node) {
608 		dev_err(dev, "%s: invalid dst=%s\n", __func__, dst);
609 		goto out;
610 	}
611 
612 	path = path_find(dev, src_node, dst_node);
613 	if (IS_ERR(path)) {
614 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
615 		goto out;
616 	}
617 
618 	path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name);
619 	if (!path->name) {
620 		kfree(path);
621 		path = ERR_PTR(-ENOMEM);
622 	}
623 out:
624 	mutex_unlock(&icc_lock);
625 	return path;
626 }
627 
628 /**
629  * icc_set_tag() - set an optional tag on a path
630  * @path: the path we want to tag
631  * @tag: the tag value
632  *
633  * This function allows consumers to append a tag to the requests associated
634  * with a path, so that a different aggregation could be done based on this tag.
635  */
636 void icc_set_tag(struct icc_path *path, u32 tag)
637 {
638 	int i;
639 
640 	if (!path)
641 		return;
642 
643 	mutex_lock(&icc_lock);
644 
645 	for (i = 0; i < path->num_nodes; i++)
646 		path->reqs[i].tag = tag;
647 
648 	mutex_unlock(&icc_lock);
649 }
650 EXPORT_SYMBOL_GPL(icc_set_tag);
651 
652 /**
653  * icc_get_name() - Get name of the icc path
654  * @path: interconnect path
655  *
656  * This function is used by an interconnect consumer to get the name of the icc
657  * path.
658  *
659  * Returns a valid pointer on success, or NULL otherwise.
660  */
661 const char *icc_get_name(struct icc_path *path)
662 {
663 	if (!path)
664 		return NULL;
665 
666 	return path->name;
667 }
668 EXPORT_SYMBOL_GPL(icc_get_name);
669 
670 /**
671  * icc_set_bw() - set bandwidth constraints on an interconnect path
672  * @path: interconnect path
673  * @avg_bw: average bandwidth in kilobytes per second
674  * @peak_bw: peak bandwidth in kilobytes per second
675  *
676  * This function is used by an interconnect consumer to express its own needs
677  * in terms of bandwidth for a previously requested path between two endpoints.
678  * The requests are aggregated and each node is updated accordingly. The entire
679  * path is locked by a mutex to ensure that the set() is completed.
680  * The @path can be NULL when the "interconnects" DT properties is missing,
681  * which will mean that no constraints will be set.
682  *
683  * Returns 0 on success, or an appropriate error code otherwise.
684  */
685 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
686 {
687 	struct icc_node *node;
688 	u32 old_avg, old_peak;
689 	size_t i;
690 	int ret;
691 
692 	if (!path)
693 		return 0;
694 
695 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
696 		return -EINVAL;
697 
698 	mutex_lock(&icc_bw_lock);
699 
700 	old_avg = path->reqs[0].avg_bw;
701 	old_peak = path->reqs[0].peak_bw;
702 
703 	for (i = 0; i < path->num_nodes; i++) {
704 		node = path->reqs[i].node;
705 
706 		/* update the consumer request for this path */
707 		path->reqs[i].avg_bw = avg_bw;
708 		path->reqs[i].peak_bw = peak_bw;
709 
710 		/* aggregate requests for this node */
711 		aggregate_requests(node);
712 
713 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
714 	}
715 
716 	ret = apply_constraints(path);
717 	if (ret) {
718 		pr_debug("interconnect: error applying constraints (%d)\n",
719 			 ret);
720 
721 		for (i = 0; i < path->num_nodes; i++) {
722 			node = path->reqs[i].node;
723 			path->reqs[i].avg_bw = old_avg;
724 			path->reqs[i].peak_bw = old_peak;
725 			aggregate_requests(node);
726 		}
727 		apply_constraints(path);
728 	}
729 
730 	mutex_unlock(&icc_bw_lock);
731 
732 	trace_icc_set_bw_end(path, ret);
733 
734 	return ret;
735 }
736 EXPORT_SYMBOL_GPL(icc_set_bw);
737 
738 static int __icc_enable(struct icc_path *path, bool enable)
739 {
740 	int i;
741 
742 	if (!path)
743 		return 0;
744 
745 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
746 		return -EINVAL;
747 
748 	mutex_lock(&icc_lock);
749 
750 	for (i = 0; i < path->num_nodes; i++)
751 		path->reqs[i].enabled = enable;
752 
753 	mutex_unlock(&icc_lock);
754 
755 	return icc_set_bw(path, path->reqs[0].avg_bw,
756 			  path->reqs[0].peak_bw);
757 }
758 
759 int icc_enable(struct icc_path *path)
760 {
761 	return __icc_enable(path, true);
762 }
763 EXPORT_SYMBOL_GPL(icc_enable);
764 
765 int icc_disable(struct icc_path *path)
766 {
767 	return __icc_enable(path, false);
768 }
769 EXPORT_SYMBOL_GPL(icc_disable);
770 
771 /**
772  * icc_put() - release the reference to the icc_path
773  * @path: interconnect path
774  *
775  * Use this function to release the constraints on a path when the path is
776  * no longer needed. The constraints will be re-aggregated.
777  */
778 void icc_put(struct icc_path *path)
779 {
780 	struct icc_node *node;
781 	size_t i;
782 	int ret;
783 
784 	if (!path || WARN_ON(IS_ERR(path)))
785 		return;
786 
787 	ret = icc_set_bw(path, 0, 0);
788 	if (ret)
789 		pr_err("%s: error (%d)\n", __func__, ret);
790 
791 	mutex_lock(&icc_lock);
792 	for (i = 0; i < path->num_nodes; i++) {
793 		node = path->reqs[i].node;
794 		hlist_del(&path->reqs[i].req_node);
795 		if (!WARN_ON(!node->provider->users))
796 			node->provider->users--;
797 	}
798 	mutex_unlock(&icc_lock);
799 
800 	kfree_const(path->name);
801 	kfree(path);
802 }
803 EXPORT_SYMBOL_GPL(icc_put);
804 
805 static struct icc_node *icc_node_create_nolock(int id)
806 {
807 	struct icc_node *node;
808 
809 	/* check if node already exists */
810 	node = node_find(id);
811 	if (node)
812 		return node;
813 
814 	node = kzalloc(sizeof(*node), GFP_KERNEL);
815 	if (!node)
816 		return ERR_PTR(-ENOMEM);
817 
818 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
819 	if (id < 0) {
820 		WARN(1, "%s: couldn't get idr\n", __func__);
821 		kfree(node);
822 		return ERR_PTR(id);
823 	}
824 
825 	node->id = id;
826 
827 	return node;
828 }
829 
830 /**
831  * icc_node_create() - create a node
832  * @id: node id
833  *
834  * Return: icc_node pointer on success, or ERR_PTR() on error
835  */
836 struct icc_node *icc_node_create(int id)
837 {
838 	struct icc_node *node;
839 
840 	mutex_lock(&icc_lock);
841 
842 	node = icc_node_create_nolock(id);
843 
844 	mutex_unlock(&icc_lock);
845 
846 	return node;
847 }
848 EXPORT_SYMBOL_GPL(icc_node_create);
849 
850 /**
851  * icc_node_destroy() - destroy a node
852  * @id: node id
853  */
854 void icc_node_destroy(int id)
855 {
856 	struct icc_node *node;
857 
858 	mutex_lock(&icc_lock);
859 
860 	node = node_find(id);
861 	if (node) {
862 		idr_remove(&icc_idr, node->id);
863 		WARN_ON(!hlist_empty(&node->req_list));
864 	}
865 
866 	mutex_unlock(&icc_lock);
867 
868 	if (!node)
869 		return;
870 
871 	kfree(node->links);
872 	kfree(node);
873 }
874 EXPORT_SYMBOL_GPL(icc_node_destroy);
875 
876 /**
877  * icc_link_create() - create a link between two nodes
878  * @node: source node id
879  * @dst_id: destination node id
880  *
881  * Create a link between two nodes. The nodes might belong to different
882  * interconnect providers and the @dst_id node might not exist (if the
883  * provider driver has not probed yet). So just create the @dst_id node
884  * and when the actual provider driver is probed, the rest of the node
885  * data is filled.
886  *
887  * Return: 0 on success, or an error code otherwise
888  */
889 int icc_link_create(struct icc_node *node, const int dst_id)
890 {
891 	struct icc_node *dst;
892 	struct icc_node **new;
893 	int ret = 0;
894 
895 	if (!node->provider)
896 		return -EINVAL;
897 
898 	mutex_lock(&icc_lock);
899 
900 	dst = node_find(dst_id);
901 	if (!dst) {
902 		dst = icc_node_create_nolock(dst_id);
903 
904 		if (IS_ERR(dst)) {
905 			ret = PTR_ERR(dst);
906 			goto out;
907 		}
908 	}
909 
910 	new = krealloc(node->links,
911 		       (node->num_links + 1) * sizeof(*node->links),
912 		       GFP_KERNEL);
913 	if (!new) {
914 		ret = -ENOMEM;
915 		goto out;
916 	}
917 
918 	node->links = new;
919 	node->links[node->num_links++] = dst;
920 
921 out:
922 	mutex_unlock(&icc_lock);
923 
924 	return ret;
925 }
926 EXPORT_SYMBOL_GPL(icc_link_create);
927 
928 /**
929  * icc_node_add() - add interconnect node to interconnect provider
930  * @node: pointer to the interconnect node
931  * @provider: pointer to the interconnect provider
932  */
933 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
934 {
935 	if (WARN_ON(node->provider))
936 		return;
937 
938 	mutex_lock(&icc_lock);
939 	mutex_lock(&icc_bw_lock);
940 
941 	node->provider = provider;
942 	list_add_tail(&node->node_list, &provider->nodes);
943 
944 	/* get the initial bandwidth values and sync them with hardware */
945 	if (provider->get_bw) {
946 		provider->get_bw(node, &node->init_avg, &node->init_peak);
947 	} else {
948 		node->init_avg = INT_MAX;
949 		node->init_peak = INT_MAX;
950 	}
951 	node->avg_bw = node->init_avg;
952 	node->peak_bw = node->init_peak;
953 
954 	if (node->avg_bw || node->peak_bw) {
955 		if (provider->pre_aggregate)
956 			provider->pre_aggregate(node);
957 
958 		if (provider->aggregate)
959 			provider->aggregate(node, 0, node->init_avg, node->init_peak,
960 					    &node->avg_bw, &node->peak_bw);
961 		if (provider->set)
962 			provider->set(node, node);
963 	}
964 
965 	node->avg_bw = 0;
966 	node->peak_bw = 0;
967 
968 	mutex_unlock(&icc_bw_lock);
969 	mutex_unlock(&icc_lock);
970 }
971 EXPORT_SYMBOL_GPL(icc_node_add);
972 
973 /**
974  * icc_node_del() - delete interconnect node from interconnect provider
975  * @node: pointer to the interconnect node
976  */
977 void icc_node_del(struct icc_node *node)
978 {
979 	mutex_lock(&icc_lock);
980 
981 	list_del(&node->node_list);
982 
983 	mutex_unlock(&icc_lock);
984 }
985 EXPORT_SYMBOL_GPL(icc_node_del);
986 
987 /**
988  * icc_nodes_remove() - remove all previously added nodes from provider
989  * @provider: the interconnect provider we are removing nodes from
990  *
991  * Return: 0 on success, or an error code otherwise
992  */
993 int icc_nodes_remove(struct icc_provider *provider)
994 {
995 	struct icc_node *n, *tmp;
996 
997 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
998 		return -EINVAL;
999 
1000 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
1001 		icc_node_del(n);
1002 		icc_node_destroy(n->id);
1003 	}
1004 
1005 	return 0;
1006 }
1007 EXPORT_SYMBOL_GPL(icc_nodes_remove);
1008 
1009 /**
1010  * icc_provider_init() - initialize a new interconnect provider
1011  * @provider: the interconnect provider to initialize
1012  *
1013  * Must be called before adding nodes to the provider.
1014  */
1015 void icc_provider_init(struct icc_provider *provider)
1016 {
1017 	WARN_ON(!provider->set);
1018 
1019 	INIT_LIST_HEAD(&provider->nodes);
1020 }
1021 EXPORT_SYMBOL_GPL(icc_provider_init);
1022 
1023 /**
1024  * icc_provider_register() - register a new interconnect provider
1025  * @provider: the interconnect provider to register
1026  *
1027  * Return: 0 on success, or an error code otherwise
1028  */
1029 int icc_provider_register(struct icc_provider *provider)
1030 {
1031 	if (WARN_ON(!provider->xlate && !provider->xlate_extended))
1032 		return -EINVAL;
1033 
1034 	mutex_lock(&icc_lock);
1035 	list_add_tail(&provider->provider_list, &icc_providers);
1036 	mutex_unlock(&icc_lock);
1037 
1038 	dev_dbg(provider->dev, "interconnect provider registered\n");
1039 
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(icc_provider_register);
1043 
1044 /**
1045  * icc_provider_deregister() - deregister an interconnect provider
1046  * @provider: the interconnect provider to deregister
1047  */
1048 void icc_provider_deregister(struct icc_provider *provider)
1049 {
1050 	mutex_lock(&icc_lock);
1051 	WARN_ON(provider->users);
1052 
1053 	list_del(&provider->provider_list);
1054 	mutex_unlock(&icc_lock);
1055 }
1056 EXPORT_SYMBOL_GPL(icc_provider_deregister);
1057 
1058 static const struct of_device_id __maybe_unused ignore_list[] = {
1059 	{ .compatible = "qcom,sc7180-ipa-virt" },
1060 	{ .compatible = "qcom,sc8180x-ipa-virt" },
1061 	{ .compatible = "qcom,sdx55-ipa-virt" },
1062 	{ .compatible = "qcom,sm8150-ipa-virt" },
1063 	{ .compatible = "qcom,sm8250-ipa-virt" },
1064 	{}
1065 };
1066 
1067 static int of_count_icc_providers(struct device_node *np)
1068 {
1069 	struct device_node *child;
1070 	int count = 0;
1071 
1072 	for_each_available_child_of_node(np, child) {
1073 		if (of_property_read_bool(child, "#interconnect-cells") &&
1074 		    likely(!of_match_node(ignore_list, child)))
1075 			count++;
1076 		count += of_count_icc_providers(child);
1077 	}
1078 
1079 	return count;
1080 }
1081 
1082 void icc_sync_state(struct device *dev)
1083 {
1084 	struct icc_provider *p;
1085 	struct icc_node *n;
1086 	static int count;
1087 
1088 	count++;
1089 
1090 	if (count < providers_count)
1091 		return;
1092 
1093 	mutex_lock(&icc_lock);
1094 	mutex_lock(&icc_bw_lock);
1095 	synced_state = true;
1096 	list_for_each_entry(p, &icc_providers, provider_list) {
1097 		dev_dbg(p->dev, "interconnect provider is in synced state\n");
1098 		list_for_each_entry(n, &p->nodes, node_list) {
1099 			if (n->init_avg || n->init_peak) {
1100 				n->init_avg = 0;
1101 				n->init_peak = 0;
1102 				aggregate_requests(n);
1103 				p->set(n, n);
1104 			}
1105 		}
1106 	}
1107 	mutex_unlock(&icc_bw_lock);
1108 	mutex_unlock(&icc_lock);
1109 }
1110 EXPORT_SYMBOL_GPL(icc_sync_state);
1111 
1112 static int __init icc_init(void)
1113 {
1114 	struct device_node *root;
1115 
1116 	/* Teach lockdep about lock ordering wrt. shrinker: */
1117 	fs_reclaim_acquire(GFP_KERNEL);
1118 	might_lock(&icc_bw_lock);
1119 	fs_reclaim_release(GFP_KERNEL);
1120 
1121 	root = of_find_node_by_path("/");
1122 
1123 	providers_count = of_count_icc_providers(root);
1124 	of_node_put(root);
1125 
1126 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
1127 	debugfs_create_file("interconnect_summary", 0444,
1128 			    icc_debugfs_dir, NULL, &icc_summary_fops);
1129 	debugfs_create_file("interconnect_graph", 0444,
1130 			    icc_debugfs_dir, NULL, &icc_graph_fops);
1131 
1132 	icc_debugfs_client_init(icc_debugfs_dir);
1133 
1134 	return 0;
1135 }
1136 
1137 device_initcall(icc_init);
1138