1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Interconnect framework core driver 4 * 5 * Copyright (c) 2017-2019, Linaro Ltd. 6 * Author: Georgi Djakov <georgi.djakov@linaro.org> 7 */ 8 9 #include <linux/debugfs.h> 10 #include <linux/device.h> 11 #include <linux/idr.h> 12 #include <linux/init.h> 13 #include <linux/interconnect.h> 14 #include <linux/interconnect-provider.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/slab.h> 19 #include <linux/of.h> 20 #include <linux/overflow.h> 21 22 static DEFINE_IDR(icc_idr); 23 static LIST_HEAD(icc_providers); 24 static DEFINE_MUTEX(icc_lock); 25 static struct dentry *icc_debugfs_dir; 26 27 /** 28 * struct icc_req - constraints that are attached to each node 29 * @req_node: entry in list of requests for the particular @node 30 * @node: the interconnect node to which this constraint applies 31 * @dev: reference to the device that sets the constraints 32 * @tag: path tag (optional) 33 * @avg_bw: an integer describing the average bandwidth in kBps 34 * @peak_bw: an integer describing the peak bandwidth in kBps 35 */ 36 struct icc_req { 37 struct hlist_node req_node; 38 struct icc_node *node; 39 struct device *dev; 40 u32 tag; 41 u32 avg_bw; 42 u32 peak_bw; 43 }; 44 45 /** 46 * struct icc_path - interconnect path structure 47 * @num_nodes: number of hops (nodes) 48 * @reqs: array of the requests applicable to this path of nodes 49 */ 50 struct icc_path { 51 size_t num_nodes; 52 struct icc_req reqs[]; 53 }; 54 55 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) 56 { 57 if (!n) 58 return; 59 60 seq_printf(s, "%-30s %12u %12u\n", 61 n->name, n->avg_bw, n->peak_bw); 62 } 63 64 static int icc_summary_show(struct seq_file *s, void *data) 65 { 66 struct icc_provider *provider; 67 68 seq_puts(s, " node avg peak\n"); 69 seq_puts(s, "--------------------------------------------------------\n"); 70 71 mutex_lock(&icc_lock); 72 73 list_for_each_entry(provider, &icc_providers, provider_list) { 74 struct icc_node *n; 75 76 list_for_each_entry(n, &provider->nodes, node_list) { 77 struct icc_req *r; 78 79 icc_summary_show_one(s, n); 80 hlist_for_each_entry(r, &n->req_list, req_node) { 81 if (!r->dev) 82 continue; 83 84 seq_printf(s, " %-26s %12u %12u\n", 85 dev_name(r->dev), r->avg_bw, 86 r->peak_bw); 87 } 88 } 89 } 90 91 mutex_unlock(&icc_lock); 92 93 return 0; 94 } 95 DEFINE_SHOW_ATTRIBUTE(icc_summary); 96 97 static struct icc_node *node_find(const int id) 98 { 99 return idr_find(&icc_idr, id); 100 } 101 102 static struct icc_path *path_init(struct device *dev, struct icc_node *dst, 103 ssize_t num_nodes) 104 { 105 struct icc_node *node = dst; 106 struct icc_path *path; 107 int i; 108 109 path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); 110 if (!path) 111 return ERR_PTR(-ENOMEM); 112 113 path->num_nodes = num_nodes; 114 115 for (i = num_nodes - 1; i >= 0; i--) { 116 node->provider->users++; 117 hlist_add_head(&path->reqs[i].req_node, &node->req_list); 118 path->reqs[i].node = node; 119 path->reqs[i].dev = dev; 120 /* reference to previous node was saved during path traversal */ 121 node = node->reverse; 122 } 123 124 return path; 125 } 126 127 static struct icc_path *path_find(struct device *dev, struct icc_node *src, 128 struct icc_node *dst) 129 { 130 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 131 struct icc_node *n, *node = NULL; 132 struct list_head traverse_list; 133 struct list_head edge_list; 134 struct list_head visited_list; 135 size_t i, depth = 1; 136 bool found = false; 137 138 INIT_LIST_HEAD(&traverse_list); 139 INIT_LIST_HEAD(&edge_list); 140 INIT_LIST_HEAD(&visited_list); 141 142 list_add(&src->search_list, &traverse_list); 143 src->reverse = NULL; 144 145 do { 146 list_for_each_entry_safe(node, n, &traverse_list, search_list) { 147 if (node == dst) { 148 found = true; 149 list_splice_init(&edge_list, &visited_list); 150 list_splice_init(&traverse_list, &visited_list); 151 break; 152 } 153 for (i = 0; i < node->num_links; i++) { 154 struct icc_node *tmp = node->links[i]; 155 156 if (!tmp) { 157 path = ERR_PTR(-ENOENT); 158 goto out; 159 } 160 161 if (tmp->is_traversed) 162 continue; 163 164 tmp->is_traversed = true; 165 tmp->reverse = node; 166 list_add_tail(&tmp->search_list, &edge_list); 167 } 168 } 169 170 if (found) 171 break; 172 173 list_splice_init(&traverse_list, &visited_list); 174 list_splice_init(&edge_list, &traverse_list); 175 176 /* count the hops including the source */ 177 depth++; 178 179 } while (!list_empty(&traverse_list)); 180 181 out: 182 183 /* reset the traversed state */ 184 list_for_each_entry_reverse(n, &visited_list, search_list) 185 n->is_traversed = false; 186 187 if (found) 188 path = path_init(dev, dst, depth); 189 190 return path; 191 } 192 193 /* 194 * We want the path to honor all bandwidth requests, so the average and peak 195 * bandwidth requirements from each consumer are aggregated at each node. 196 * The aggregation is platform specific, so each platform can customize it by 197 * implementing its own aggregate() function. 198 */ 199 200 static int aggregate_requests(struct icc_node *node) 201 { 202 struct icc_provider *p = node->provider; 203 struct icc_req *r; 204 205 node->avg_bw = 0; 206 node->peak_bw = 0; 207 208 if (p->pre_aggregate) 209 p->pre_aggregate(node); 210 211 hlist_for_each_entry(r, &node->req_list, req_node) 212 p->aggregate(node, r->tag, r->avg_bw, r->peak_bw, 213 &node->avg_bw, &node->peak_bw); 214 215 return 0; 216 } 217 218 static int apply_constraints(struct icc_path *path) 219 { 220 struct icc_node *next, *prev = NULL; 221 int ret = -EINVAL; 222 int i; 223 224 for (i = 0; i < path->num_nodes; i++) { 225 next = path->reqs[i].node; 226 227 /* 228 * Both endpoints should be valid master-slave pairs of the 229 * same interconnect provider that will be configured. 230 */ 231 if (!prev || next->provider != prev->provider) { 232 prev = next; 233 continue; 234 } 235 236 /* set the constraints */ 237 ret = next->provider->set(prev, next); 238 if (ret) 239 goto out; 240 241 prev = next; 242 } 243 out: 244 return ret; 245 } 246 247 /* of_icc_xlate_onecell() - Translate function using a single index. 248 * @spec: OF phandle args to map into an interconnect node. 249 * @data: private data (pointer to struct icc_onecell_data) 250 * 251 * This is a generic translate function that can be used to model simple 252 * interconnect providers that have one device tree node and provide 253 * multiple interconnect nodes. A single cell is used as an index into 254 * an array of icc nodes specified in the icc_onecell_data struct when 255 * registering the provider. 256 */ 257 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec, 258 void *data) 259 { 260 struct icc_onecell_data *icc_data = data; 261 unsigned int idx = spec->args[0]; 262 263 if (idx >= icc_data->num_nodes) { 264 pr_err("%s: invalid index %u\n", __func__, idx); 265 return ERR_PTR(-EINVAL); 266 } 267 268 return icc_data->nodes[idx]; 269 } 270 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); 271 272 /** 273 * of_icc_get_from_provider() - Look-up interconnect node 274 * @spec: OF phandle args to use for look-up 275 * 276 * Looks for interconnect provider under the node specified by @spec and if 277 * found, uses xlate function of the provider to map phandle args to node. 278 * 279 * Returns a valid pointer to struct icc_node on success or ERR_PTR() 280 * on failure. 281 */ 282 static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec) 283 { 284 struct icc_node *node = ERR_PTR(-EPROBE_DEFER); 285 struct icc_provider *provider; 286 287 if (!spec || spec->args_count != 1) 288 return ERR_PTR(-EINVAL); 289 290 mutex_lock(&icc_lock); 291 list_for_each_entry(provider, &icc_providers, provider_list) { 292 if (provider->dev->of_node == spec->np) 293 node = provider->xlate(spec, provider->data); 294 if (!IS_ERR(node)) 295 break; 296 } 297 mutex_unlock(&icc_lock); 298 299 return node; 300 } 301 302 /** 303 * of_icc_get() - get a path handle from a DT node based on name 304 * @dev: device pointer for the consumer device 305 * @name: interconnect path name 306 * 307 * This function will search for a path between two endpoints and return an 308 * icc_path handle on success. Use icc_put() to release constraints when they 309 * are not needed anymore. 310 * If the interconnect API is disabled, NULL is returned and the consumer 311 * drivers will still build. Drivers are free to handle this specifically, 312 * but they don't have to. 313 * 314 * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned 315 * when the API is disabled or the "interconnects" DT property is missing. 316 */ 317 struct icc_path *of_icc_get(struct device *dev, const char *name) 318 { 319 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 320 struct icc_node *src_node, *dst_node; 321 struct device_node *np = NULL; 322 struct of_phandle_args src_args, dst_args; 323 int idx = 0; 324 int ret; 325 326 if (!dev || !dev->of_node) 327 return ERR_PTR(-ENODEV); 328 329 np = dev->of_node; 330 331 /* 332 * When the consumer DT node do not have "interconnects" property 333 * return a NULL path to skip setting constraints. 334 */ 335 if (!of_find_property(np, "interconnects", NULL)) 336 return NULL; 337 338 /* 339 * We use a combination of phandle and specifier for endpoint. For now 340 * lets support only global ids and extend this in the future if needed 341 * without breaking DT compatibility. 342 */ 343 if (name) { 344 idx = of_property_match_string(np, "interconnect-names", name); 345 if (idx < 0) 346 return ERR_PTR(idx); 347 } 348 349 ret = of_parse_phandle_with_args(np, "interconnects", 350 "#interconnect-cells", idx * 2, 351 &src_args); 352 if (ret) 353 return ERR_PTR(ret); 354 355 of_node_put(src_args.np); 356 357 ret = of_parse_phandle_with_args(np, "interconnects", 358 "#interconnect-cells", idx * 2 + 1, 359 &dst_args); 360 if (ret) 361 return ERR_PTR(ret); 362 363 of_node_put(dst_args.np); 364 365 src_node = of_icc_get_from_provider(&src_args); 366 367 if (IS_ERR(src_node)) { 368 if (PTR_ERR(src_node) != -EPROBE_DEFER) 369 dev_err(dev, "error finding src node: %ld\n", 370 PTR_ERR(src_node)); 371 return ERR_CAST(src_node); 372 } 373 374 dst_node = of_icc_get_from_provider(&dst_args); 375 376 if (IS_ERR(dst_node)) { 377 if (PTR_ERR(dst_node) != -EPROBE_DEFER) 378 dev_err(dev, "error finding dst node: %ld\n", 379 PTR_ERR(dst_node)); 380 return ERR_CAST(dst_node); 381 } 382 383 mutex_lock(&icc_lock); 384 path = path_find(dev, src_node, dst_node); 385 if (IS_ERR(path)) 386 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 387 mutex_unlock(&icc_lock); 388 389 return path; 390 } 391 EXPORT_SYMBOL_GPL(of_icc_get); 392 393 /** 394 * icc_set_tag() - set an optional tag on a path 395 * @path: the path we want to tag 396 * @tag: the tag value 397 * 398 * This function allows consumers to append a tag to the requests associated 399 * with a path, so that a different aggregation could be done based on this tag. 400 */ 401 void icc_set_tag(struct icc_path *path, u32 tag) 402 { 403 int i; 404 405 if (!path) 406 return; 407 408 for (i = 0; i < path->num_nodes; i++) 409 path->reqs[i].tag = tag; 410 } 411 EXPORT_SYMBOL_GPL(icc_set_tag); 412 413 /** 414 * icc_set_bw() - set bandwidth constraints on an interconnect path 415 * @path: reference to the path returned by icc_get() 416 * @avg_bw: average bandwidth in kilobytes per second 417 * @peak_bw: peak bandwidth in kilobytes per second 418 * 419 * This function is used by an interconnect consumer to express its own needs 420 * in terms of bandwidth for a previously requested path between two endpoints. 421 * The requests are aggregated and each node is updated accordingly. The entire 422 * path is locked by a mutex to ensure that the set() is completed. 423 * The @path can be NULL when the "interconnects" DT properties is missing, 424 * which will mean that no constraints will be set. 425 * 426 * Returns 0 on success, or an appropriate error code otherwise. 427 */ 428 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) 429 { 430 struct icc_node *node; 431 u32 old_avg, old_peak; 432 size_t i; 433 int ret; 434 435 if (!path || !path->num_nodes) 436 return 0; 437 438 mutex_lock(&icc_lock); 439 440 old_avg = path->reqs[0].avg_bw; 441 old_peak = path->reqs[0].peak_bw; 442 443 for (i = 0; i < path->num_nodes; i++) { 444 node = path->reqs[i].node; 445 446 /* update the consumer request for this path */ 447 path->reqs[i].avg_bw = avg_bw; 448 path->reqs[i].peak_bw = peak_bw; 449 450 /* aggregate requests for this node */ 451 aggregate_requests(node); 452 } 453 454 ret = apply_constraints(path); 455 if (ret) { 456 pr_debug("interconnect: error applying constraints (%d)\n", 457 ret); 458 459 for (i = 0; i < path->num_nodes; i++) { 460 node = path->reqs[i].node; 461 path->reqs[i].avg_bw = old_avg; 462 path->reqs[i].peak_bw = old_peak; 463 aggregate_requests(node); 464 } 465 apply_constraints(path); 466 } 467 468 mutex_unlock(&icc_lock); 469 470 return ret; 471 } 472 EXPORT_SYMBOL_GPL(icc_set_bw); 473 474 /** 475 * icc_get() - return a handle for path between two endpoints 476 * @dev: the device requesting the path 477 * @src_id: source device port id 478 * @dst_id: destination device port id 479 * 480 * This function will search for a path between two endpoints and return an 481 * icc_path handle on success. Use icc_put() to release 482 * constraints when they are not needed anymore. 483 * If the interconnect API is disabled, NULL is returned and the consumer 484 * drivers will still build. Drivers are free to handle this specifically, 485 * but they don't have to. 486 * 487 * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the 488 * interconnect API is disabled. 489 */ 490 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id) 491 { 492 struct icc_node *src, *dst; 493 struct icc_path *path = ERR_PTR(-EPROBE_DEFER); 494 495 mutex_lock(&icc_lock); 496 497 src = node_find(src_id); 498 if (!src) 499 goto out; 500 501 dst = node_find(dst_id); 502 if (!dst) 503 goto out; 504 505 path = path_find(dev, src, dst); 506 if (IS_ERR(path)) 507 dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); 508 509 out: 510 mutex_unlock(&icc_lock); 511 return path; 512 } 513 EXPORT_SYMBOL_GPL(icc_get); 514 515 /** 516 * icc_put() - release the reference to the icc_path 517 * @path: interconnect path 518 * 519 * Use this function to release the constraints on a path when the path is 520 * no longer needed. The constraints will be re-aggregated. 521 */ 522 void icc_put(struct icc_path *path) 523 { 524 struct icc_node *node; 525 size_t i; 526 int ret; 527 528 if (!path || WARN_ON(IS_ERR(path))) 529 return; 530 531 ret = icc_set_bw(path, 0, 0); 532 if (ret) 533 pr_err("%s: error (%d)\n", __func__, ret); 534 535 mutex_lock(&icc_lock); 536 for (i = 0; i < path->num_nodes; i++) { 537 node = path->reqs[i].node; 538 hlist_del(&path->reqs[i].req_node); 539 if (!WARN_ON(!node->provider->users)) 540 node->provider->users--; 541 } 542 mutex_unlock(&icc_lock); 543 544 kfree(path); 545 } 546 EXPORT_SYMBOL_GPL(icc_put); 547 548 static struct icc_node *icc_node_create_nolock(int id) 549 { 550 struct icc_node *node; 551 552 /* check if node already exists */ 553 node = node_find(id); 554 if (node) 555 return node; 556 557 node = kzalloc(sizeof(*node), GFP_KERNEL); 558 if (!node) 559 return ERR_PTR(-ENOMEM); 560 561 id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); 562 if (id < 0) { 563 WARN(1, "%s: couldn't get idr\n", __func__); 564 kfree(node); 565 return ERR_PTR(id); 566 } 567 568 node->id = id; 569 570 return node; 571 } 572 573 /** 574 * icc_node_create() - create a node 575 * @id: node id 576 * 577 * Return: icc_node pointer on success, or ERR_PTR() on error 578 */ 579 struct icc_node *icc_node_create(int id) 580 { 581 struct icc_node *node; 582 583 mutex_lock(&icc_lock); 584 585 node = icc_node_create_nolock(id); 586 587 mutex_unlock(&icc_lock); 588 589 return node; 590 } 591 EXPORT_SYMBOL_GPL(icc_node_create); 592 593 /** 594 * icc_node_destroy() - destroy a node 595 * @id: node id 596 */ 597 void icc_node_destroy(int id) 598 { 599 struct icc_node *node; 600 601 mutex_lock(&icc_lock); 602 603 node = node_find(id); 604 if (node) { 605 idr_remove(&icc_idr, node->id); 606 WARN_ON(!hlist_empty(&node->req_list)); 607 } 608 609 mutex_unlock(&icc_lock); 610 611 kfree(node); 612 } 613 EXPORT_SYMBOL_GPL(icc_node_destroy); 614 615 /** 616 * icc_link_create() - create a link between two nodes 617 * @node: source node id 618 * @dst_id: destination node id 619 * 620 * Create a link between two nodes. The nodes might belong to different 621 * interconnect providers and the @dst_id node might not exist (if the 622 * provider driver has not probed yet). So just create the @dst_id node 623 * and when the actual provider driver is probed, the rest of the node 624 * data is filled. 625 * 626 * Return: 0 on success, or an error code otherwise 627 */ 628 int icc_link_create(struct icc_node *node, const int dst_id) 629 { 630 struct icc_node *dst; 631 struct icc_node **new; 632 int ret = 0; 633 634 if (!node->provider) 635 return -EINVAL; 636 637 mutex_lock(&icc_lock); 638 639 dst = node_find(dst_id); 640 if (!dst) { 641 dst = icc_node_create_nolock(dst_id); 642 643 if (IS_ERR(dst)) { 644 ret = PTR_ERR(dst); 645 goto out; 646 } 647 } 648 649 new = krealloc(node->links, 650 (node->num_links + 1) * sizeof(*node->links), 651 GFP_KERNEL); 652 if (!new) { 653 ret = -ENOMEM; 654 goto out; 655 } 656 657 node->links = new; 658 node->links[node->num_links++] = dst; 659 660 out: 661 mutex_unlock(&icc_lock); 662 663 return ret; 664 } 665 EXPORT_SYMBOL_GPL(icc_link_create); 666 667 /** 668 * icc_link_destroy() - destroy a link between two nodes 669 * @src: pointer to source node 670 * @dst: pointer to destination node 671 * 672 * Return: 0 on success, or an error code otherwise 673 */ 674 int icc_link_destroy(struct icc_node *src, struct icc_node *dst) 675 { 676 struct icc_node **new; 677 size_t slot; 678 int ret = 0; 679 680 if (IS_ERR_OR_NULL(src)) 681 return -EINVAL; 682 683 if (IS_ERR_OR_NULL(dst)) 684 return -EINVAL; 685 686 mutex_lock(&icc_lock); 687 688 for (slot = 0; slot < src->num_links; slot++) 689 if (src->links[slot] == dst) 690 break; 691 692 if (WARN_ON(slot == src->num_links)) { 693 ret = -ENXIO; 694 goto out; 695 } 696 697 src->links[slot] = src->links[--src->num_links]; 698 699 new = krealloc(src->links, src->num_links * sizeof(*src->links), 700 GFP_KERNEL); 701 if (new) 702 src->links = new; 703 704 out: 705 mutex_unlock(&icc_lock); 706 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(icc_link_destroy); 710 711 /** 712 * icc_node_add() - add interconnect node to interconnect provider 713 * @node: pointer to the interconnect node 714 * @provider: pointer to the interconnect provider 715 */ 716 void icc_node_add(struct icc_node *node, struct icc_provider *provider) 717 { 718 mutex_lock(&icc_lock); 719 720 node->provider = provider; 721 list_add_tail(&node->node_list, &provider->nodes); 722 723 mutex_unlock(&icc_lock); 724 } 725 EXPORT_SYMBOL_GPL(icc_node_add); 726 727 /** 728 * icc_node_del() - delete interconnect node from interconnect provider 729 * @node: pointer to the interconnect node 730 */ 731 void icc_node_del(struct icc_node *node) 732 { 733 mutex_lock(&icc_lock); 734 735 list_del(&node->node_list); 736 737 mutex_unlock(&icc_lock); 738 } 739 EXPORT_SYMBOL_GPL(icc_node_del); 740 741 /** 742 * icc_provider_add() - add a new interconnect provider 743 * @provider: the interconnect provider that will be added into topology 744 * 745 * Return: 0 on success, or an error code otherwise 746 */ 747 int icc_provider_add(struct icc_provider *provider) 748 { 749 if (WARN_ON(!provider->set)) 750 return -EINVAL; 751 if (WARN_ON(!provider->xlate)) 752 return -EINVAL; 753 754 mutex_lock(&icc_lock); 755 756 INIT_LIST_HEAD(&provider->nodes); 757 list_add_tail(&provider->provider_list, &icc_providers); 758 759 mutex_unlock(&icc_lock); 760 761 dev_dbg(provider->dev, "interconnect provider added to topology\n"); 762 763 return 0; 764 } 765 EXPORT_SYMBOL_GPL(icc_provider_add); 766 767 /** 768 * icc_provider_del() - delete previously added interconnect provider 769 * @provider: the interconnect provider that will be removed from topology 770 * 771 * Return: 0 on success, or an error code otherwise 772 */ 773 int icc_provider_del(struct icc_provider *provider) 774 { 775 mutex_lock(&icc_lock); 776 if (provider->users) { 777 pr_warn("interconnect provider still has %d users\n", 778 provider->users); 779 mutex_unlock(&icc_lock); 780 return -EBUSY; 781 } 782 783 if (!list_empty(&provider->nodes)) { 784 pr_warn("interconnect provider still has nodes\n"); 785 mutex_unlock(&icc_lock); 786 return -EBUSY; 787 } 788 789 list_del(&provider->provider_list); 790 mutex_unlock(&icc_lock); 791 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(icc_provider_del); 795 796 static int __init icc_init(void) 797 { 798 icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); 799 debugfs_create_file("interconnect_summary", 0444, 800 icc_debugfs_dir, NULL, &icc_summary_fops); 801 return 0; 802 } 803 804 static void __exit icc_exit(void) 805 { 806 debugfs_remove_recursive(icc_debugfs_dir); 807 } 808 module_init(icc_init); 809 module_exit(icc_exit); 810 811 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>"); 812 MODULE_DESCRIPTION("Interconnect Driver Core"); 813 MODULE_LICENSE("GPL v2"); 814