xref: /openbmc/linux/drivers/interconnect/core.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21 
22 static DEFINE_IDR(icc_idr);
23 static LIST_HEAD(icc_providers);
24 static DEFINE_MUTEX(icc_lock);
25 static struct dentry *icc_debugfs_dir;
26 
27 /**
28  * struct icc_req - constraints that are attached to each node
29  * @req_node: entry in list of requests for the particular @node
30  * @node: the interconnect node to which this constraint applies
31  * @dev: reference to the device that sets the constraints
32  * @avg_bw: an integer describing the average bandwidth in kBps
33  * @peak_bw: an integer describing the peak bandwidth in kBps
34  */
35 struct icc_req {
36 	struct hlist_node req_node;
37 	struct icc_node *node;
38 	struct device *dev;
39 	u32 avg_bw;
40 	u32 peak_bw;
41 };
42 
43 /**
44  * struct icc_path - interconnect path structure
45  * @num_nodes: number of hops (nodes)
46  * @reqs: array of the requests applicable to this path of nodes
47  */
48 struct icc_path {
49 	size_t num_nodes;
50 	struct icc_req reqs[];
51 };
52 
53 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
54 {
55 	if (!n)
56 		return;
57 
58 	seq_printf(s, "%-30s %12u %12u\n",
59 		   n->name, n->avg_bw, n->peak_bw);
60 }
61 
62 static int icc_summary_show(struct seq_file *s, void *data)
63 {
64 	struct icc_provider *provider;
65 
66 	seq_puts(s, " node                                   avg         peak\n");
67 	seq_puts(s, "--------------------------------------------------------\n");
68 
69 	mutex_lock(&icc_lock);
70 
71 	list_for_each_entry(provider, &icc_providers, provider_list) {
72 		struct icc_node *n;
73 
74 		list_for_each_entry(n, &provider->nodes, node_list) {
75 			struct icc_req *r;
76 
77 			icc_summary_show_one(s, n);
78 			hlist_for_each_entry(r, &n->req_list, req_node) {
79 				if (!r->dev)
80 					continue;
81 
82 				seq_printf(s, "    %-26s %12u %12u\n",
83 					   dev_name(r->dev), r->avg_bw,
84 					   r->peak_bw);
85 			}
86 		}
87 	}
88 
89 	mutex_unlock(&icc_lock);
90 
91 	return 0;
92 }
93 DEFINE_SHOW_ATTRIBUTE(icc_summary);
94 
95 static struct icc_node *node_find(const int id)
96 {
97 	return idr_find(&icc_idr, id);
98 }
99 
100 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
101 				  ssize_t num_nodes)
102 {
103 	struct icc_node *node = dst;
104 	struct icc_path *path;
105 	int i;
106 
107 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
108 	if (!path)
109 		return ERR_PTR(-ENOMEM);
110 
111 	path->num_nodes = num_nodes;
112 
113 	for (i = num_nodes - 1; i >= 0; i--) {
114 		node->provider->users++;
115 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
116 		path->reqs[i].node = node;
117 		path->reqs[i].dev = dev;
118 		/* reference to previous node was saved during path traversal */
119 		node = node->reverse;
120 	}
121 
122 	return path;
123 }
124 
125 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
126 				  struct icc_node *dst)
127 {
128 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
129 	struct icc_node *n, *node = NULL;
130 	struct list_head traverse_list;
131 	struct list_head edge_list;
132 	struct list_head visited_list;
133 	size_t i, depth = 1;
134 	bool found = false;
135 
136 	INIT_LIST_HEAD(&traverse_list);
137 	INIT_LIST_HEAD(&edge_list);
138 	INIT_LIST_HEAD(&visited_list);
139 
140 	list_add(&src->search_list, &traverse_list);
141 	src->reverse = NULL;
142 
143 	do {
144 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
145 			if (node == dst) {
146 				found = true;
147 				list_splice_init(&edge_list, &visited_list);
148 				list_splice_init(&traverse_list, &visited_list);
149 				break;
150 			}
151 			for (i = 0; i < node->num_links; i++) {
152 				struct icc_node *tmp = node->links[i];
153 
154 				if (!tmp) {
155 					path = ERR_PTR(-ENOENT);
156 					goto out;
157 				}
158 
159 				if (tmp->is_traversed)
160 					continue;
161 
162 				tmp->is_traversed = true;
163 				tmp->reverse = node;
164 				list_add_tail(&tmp->search_list, &edge_list);
165 			}
166 		}
167 
168 		if (found)
169 			break;
170 
171 		list_splice_init(&traverse_list, &visited_list);
172 		list_splice_init(&edge_list, &traverse_list);
173 
174 		/* count the hops including the source */
175 		depth++;
176 
177 	} while (!list_empty(&traverse_list));
178 
179 out:
180 
181 	/* reset the traversed state */
182 	list_for_each_entry_reverse(n, &visited_list, search_list)
183 		n->is_traversed = false;
184 
185 	if (found)
186 		path = path_init(dev, dst, depth);
187 
188 	return path;
189 }
190 
191 /*
192  * We want the path to honor all bandwidth requests, so the average and peak
193  * bandwidth requirements from each consumer are aggregated at each node.
194  * The aggregation is platform specific, so each platform can customize it by
195  * implementing its own aggregate() function.
196  */
197 
198 static int aggregate_requests(struct icc_node *node)
199 {
200 	struct icc_provider *p = node->provider;
201 	struct icc_req *r;
202 
203 	node->avg_bw = 0;
204 	node->peak_bw = 0;
205 
206 	hlist_for_each_entry(r, &node->req_list, req_node)
207 		p->aggregate(node, r->avg_bw, r->peak_bw,
208 			     &node->avg_bw, &node->peak_bw);
209 
210 	return 0;
211 }
212 
213 static int apply_constraints(struct icc_path *path)
214 {
215 	struct icc_node *next, *prev = NULL;
216 	int ret = -EINVAL;
217 	int i;
218 
219 	for (i = 0; i < path->num_nodes; i++) {
220 		next = path->reqs[i].node;
221 
222 		/*
223 		 * Both endpoints should be valid master-slave pairs of the
224 		 * same interconnect provider that will be configured.
225 		 */
226 		if (!prev || next->provider != prev->provider) {
227 			prev = next;
228 			continue;
229 		}
230 
231 		/* set the constraints */
232 		ret = next->provider->set(prev, next);
233 		if (ret)
234 			goto out;
235 
236 		prev = next;
237 	}
238 out:
239 	return ret;
240 }
241 
242 /* of_icc_xlate_onecell() - Translate function using a single index.
243  * @spec: OF phandle args to map into an interconnect node.
244  * @data: private data (pointer to struct icc_onecell_data)
245  *
246  * This is a generic translate function that can be used to model simple
247  * interconnect providers that have one device tree node and provide
248  * multiple interconnect nodes. A single cell is used as an index into
249  * an array of icc nodes specified in the icc_onecell_data struct when
250  * registering the provider.
251  */
252 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
253 				      void *data)
254 {
255 	struct icc_onecell_data *icc_data = data;
256 	unsigned int idx = spec->args[0];
257 
258 	if (idx >= icc_data->num_nodes) {
259 		pr_err("%s: invalid index %u\n", __func__, idx);
260 		return ERR_PTR(-EINVAL);
261 	}
262 
263 	return icc_data->nodes[idx];
264 }
265 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
266 
267 /**
268  * of_icc_get_from_provider() - Look-up interconnect node
269  * @spec: OF phandle args to use for look-up
270  *
271  * Looks for interconnect provider under the node specified by @spec and if
272  * found, uses xlate function of the provider to map phandle args to node.
273  *
274  * Returns a valid pointer to struct icc_node on success or ERR_PTR()
275  * on failure.
276  */
277 static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
278 {
279 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
280 	struct icc_provider *provider;
281 
282 	if (!spec || spec->args_count != 1)
283 		return ERR_PTR(-EINVAL);
284 
285 	mutex_lock(&icc_lock);
286 	list_for_each_entry(provider, &icc_providers, provider_list) {
287 		if (provider->dev->of_node == spec->np)
288 			node = provider->xlate(spec, provider->data);
289 		if (!IS_ERR(node))
290 			break;
291 	}
292 	mutex_unlock(&icc_lock);
293 
294 	return node;
295 }
296 
297 /**
298  * of_icc_get() - get a path handle from a DT node based on name
299  * @dev: device pointer for the consumer device
300  * @name: interconnect path name
301  *
302  * This function will search for a path between two endpoints and return an
303  * icc_path handle on success. Use icc_put() to release constraints when they
304  * are not needed anymore.
305  * If the interconnect API is disabled, NULL is returned and the consumer
306  * drivers will still build. Drivers are free to handle this specifically,
307  * but they don't have to.
308  *
309  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
310  * when the API is disabled or the "interconnects" DT property is missing.
311  */
312 struct icc_path *of_icc_get(struct device *dev, const char *name)
313 {
314 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
315 	struct icc_node *src_node, *dst_node;
316 	struct device_node *np = NULL;
317 	struct of_phandle_args src_args, dst_args;
318 	int idx = 0;
319 	int ret;
320 
321 	if (!dev || !dev->of_node)
322 		return ERR_PTR(-ENODEV);
323 
324 	np = dev->of_node;
325 
326 	/*
327 	 * When the consumer DT node do not have "interconnects" property
328 	 * return a NULL path to skip setting constraints.
329 	 */
330 	if (!of_find_property(np, "interconnects", NULL))
331 		return NULL;
332 
333 	/*
334 	 * We use a combination of phandle and specifier for endpoint. For now
335 	 * lets support only global ids and extend this in the future if needed
336 	 * without breaking DT compatibility.
337 	 */
338 	if (name) {
339 		idx = of_property_match_string(np, "interconnect-names", name);
340 		if (idx < 0)
341 			return ERR_PTR(idx);
342 	}
343 
344 	ret = of_parse_phandle_with_args(np, "interconnects",
345 					 "#interconnect-cells", idx * 2,
346 					 &src_args);
347 	if (ret)
348 		return ERR_PTR(ret);
349 
350 	of_node_put(src_args.np);
351 
352 	ret = of_parse_phandle_with_args(np, "interconnects",
353 					 "#interconnect-cells", idx * 2 + 1,
354 					 &dst_args);
355 	if (ret)
356 		return ERR_PTR(ret);
357 
358 	of_node_put(dst_args.np);
359 
360 	src_node = of_icc_get_from_provider(&src_args);
361 
362 	if (IS_ERR(src_node)) {
363 		if (PTR_ERR(src_node) != -EPROBE_DEFER)
364 			dev_err(dev, "error finding src node: %ld\n",
365 				PTR_ERR(src_node));
366 		return ERR_CAST(src_node);
367 	}
368 
369 	dst_node = of_icc_get_from_provider(&dst_args);
370 
371 	if (IS_ERR(dst_node)) {
372 		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
373 			dev_err(dev, "error finding dst node: %ld\n",
374 				PTR_ERR(dst_node));
375 		return ERR_CAST(dst_node);
376 	}
377 
378 	mutex_lock(&icc_lock);
379 	path = path_find(dev, src_node, dst_node);
380 	if (IS_ERR(path))
381 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
382 	mutex_unlock(&icc_lock);
383 
384 	return path;
385 }
386 EXPORT_SYMBOL_GPL(of_icc_get);
387 
388 /**
389  * icc_set_bw() - set bandwidth constraints on an interconnect path
390  * @path: reference to the path returned by icc_get()
391  * @avg_bw: average bandwidth in kilobytes per second
392  * @peak_bw: peak bandwidth in kilobytes per second
393  *
394  * This function is used by an interconnect consumer to express its own needs
395  * in terms of bandwidth for a previously requested path between two endpoints.
396  * The requests are aggregated and each node is updated accordingly. The entire
397  * path is locked by a mutex to ensure that the set() is completed.
398  * The @path can be NULL when the "interconnects" DT properties is missing,
399  * which will mean that no constraints will be set.
400  *
401  * Returns 0 on success, or an appropriate error code otherwise.
402  */
403 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
404 {
405 	struct icc_node *node;
406 	u32 old_avg, old_peak;
407 	size_t i;
408 	int ret;
409 
410 	if (!path || !path->num_nodes)
411 		return 0;
412 
413 	mutex_lock(&icc_lock);
414 
415 	old_avg = path->reqs[0].avg_bw;
416 	old_peak = path->reqs[0].peak_bw;
417 
418 	for (i = 0; i < path->num_nodes; i++) {
419 		node = path->reqs[i].node;
420 
421 		/* update the consumer request for this path */
422 		path->reqs[i].avg_bw = avg_bw;
423 		path->reqs[i].peak_bw = peak_bw;
424 
425 		/* aggregate requests for this node */
426 		aggregate_requests(node);
427 	}
428 
429 	ret = apply_constraints(path);
430 	if (ret) {
431 		pr_debug("interconnect: error applying constraints (%d)\n",
432 			 ret);
433 
434 		for (i = 0; i < path->num_nodes; i++) {
435 			node = path->reqs[i].node;
436 			path->reqs[i].avg_bw = old_avg;
437 			path->reqs[i].peak_bw = old_peak;
438 			aggregate_requests(node);
439 		}
440 		apply_constraints(path);
441 	}
442 
443 	mutex_unlock(&icc_lock);
444 
445 	return ret;
446 }
447 EXPORT_SYMBOL_GPL(icc_set_bw);
448 
449 /**
450  * icc_get() - return a handle for path between two endpoints
451  * @dev: the device requesting the path
452  * @src_id: source device port id
453  * @dst_id: destination device port id
454  *
455  * This function will search for a path between two endpoints and return an
456  * icc_path handle on success. Use icc_put() to release
457  * constraints when they are not needed anymore.
458  * If the interconnect API is disabled, NULL is returned and the consumer
459  * drivers will still build. Drivers are free to handle this specifically,
460  * but they don't have to.
461  *
462  * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
463  * interconnect API is disabled.
464  */
465 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
466 {
467 	struct icc_node *src, *dst;
468 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
469 
470 	mutex_lock(&icc_lock);
471 
472 	src = node_find(src_id);
473 	if (!src)
474 		goto out;
475 
476 	dst = node_find(dst_id);
477 	if (!dst)
478 		goto out;
479 
480 	path = path_find(dev, src, dst);
481 	if (IS_ERR(path))
482 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
483 
484 out:
485 	mutex_unlock(&icc_lock);
486 	return path;
487 }
488 EXPORT_SYMBOL_GPL(icc_get);
489 
490 /**
491  * icc_put() - release the reference to the icc_path
492  * @path: interconnect path
493  *
494  * Use this function to release the constraints on a path when the path is
495  * no longer needed. The constraints will be re-aggregated.
496  */
497 void icc_put(struct icc_path *path)
498 {
499 	struct icc_node *node;
500 	size_t i;
501 	int ret;
502 
503 	if (!path || WARN_ON(IS_ERR(path)))
504 		return;
505 
506 	ret = icc_set_bw(path, 0, 0);
507 	if (ret)
508 		pr_err("%s: error (%d)\n", __func__, ret);
509 
510 	mutex_lock(&icc_lock);
511 	for (i = 0; i < path->num_nodes; i++) {
512 		node = path->reqs[i].node;
513 		hlist_del(&path->reqs[i].req_node);
514 		if (!WARN_ON(!node->provider->users))
515 			node->provider->users--;
516 	}
517 	mutex_unlock(&icc_lock);
518 
519 	kfree(path);
520 }
521 EXPORT_SYMBOL_GPL(icc_put);
522 
523 static struct icc_node *icc_node_create_nolock(int id)
524 {
525 	struct icc_node *node;
526 
527 	/* check if node already exists */
528 	node = node_find(id);
529 	if (node)
530 		return node;
531 
532 	node = kzalloc(sizeof(*node), GFP_KERNEL);
533 	if (!node)
534 		return ERR_PTR(-ENOMEM);
535 
536 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
537 	if (id < 0) {
538 		WARN(1, "%s: couldn't get idr\n", __func__);
539 		kfree(node);
540 		return ERR_PTR(id);
541 	}
542 
543 	node->id = id;
544 
545 	return node;
546 }
547 
548 /**
549  * icc_node_create() - create a node
550  * @id: node id
551  *
552  * Return: icc_node pointer on success, or ERR_PTR() on error
553  */
554 struct icc_node *icc_node_create(int id)
555 {
556 	struct icc_node *node;
557 
558 	mutex_lock(&icc_lock);
559 
560 	node = icc_node_create_nolock(id);
561 
562 	mutex_unlock(&icc_lock);
563 
564 	return node;
565 }
566 EXPORT_SYMBOL_GPL(icc_node_create);
567 
568 /**
569  * icc_node_destroy() - destroy a node
570  * @id: node id
571  */
572 void icc_node_destroy(int id)
573 {
574 	struct icc_node *node;
575 
576 	mutex_lock(&icc_lock);
577 
578 	node = node_find(id);
579 	if (node) {
580 		idr_remove(&icc_idr, node->id);
581 		WARN_ON(!hlist_empty(&node->req_list));
582 	}
583 
584 	mutex_unlock(&icc_lock);
585 
586 	kfree(node);
587 }
588 EXPORT_SYMBOL_GPL(icc_node_destroy);
589 
590 /**
591  * icc_link_create() - create a link between two nodes
592  * @node: source node id
593  * @dst_id: destination node id
594  *
595  * Create a link between two nodes. The nodes might belong to different
596  * interconnect providers and the @dst_id node might not exist (if the
597  * provider driver has not probed yet). So just create the @dst_id node
598  * and when the actual provider driver is probed, the rest of the node
599  * data is filled.
600  *
601  * Return: 0 on success, or an error code otherwise
602  */
603 int icc_link_create(struct icc_node *node, const int dst_id)
604 {
605 	struct icc_node *dst;
606 	struct icc_node **new;
607 	int ret = 0;
608 
609 	if (!node->provider)
610 		return -EINVAL;
611 
612 	mutex_lock(&icc_lock);
613 
614 	dst = node_find(dst_id);
615 	if (!dst) {
616 		dst = icc_node_create_nolock(dst_id);
617 
618 		if (IS_ERR(dst)) {
619 			ret = PTR_ERR(dst);
620 			goto out;
621 		}
622 	}
623 
624 	new = krealloc(node->links,
625 		       (node->num_links + 1) * sizeof(*node->links),
626 		       GFP_KERNEL);
627 	if (!new) {
628 		ret = -ENOMEM;
629 		goto out;
630 	}
631 
632 	node->links = new;
633 	node->links[node->num_links++] = dst;
634 
635 out:
636 	mutex_unlock(&icc_lock);
637 
638 	return ret;
639 }
640 EXPORT_SYMBOL_GPL(icc_link_create);
641 
642 /**
643  * icc_link_destroy() - destroy a link between two nodes
644  * @src: pointer to source node
645  * @dst: pointer to destination node
646  *
647  * Return: 0 on success, or an error code otherwise
648  */
649 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
650 {
651 	struct icc_node **new;
652 	size_t slot;
653 	int ret = 0;
654 
655 	if (IS_ERR_OR_NULL(src))
656 		return -EINVAL;
657 
658 	if (IS_ERR_OR_NULL(dst))
659 		return -EINVAL;
660 
661 	mutex_lock(&icc_lock);
662 
663 	for (slot = 0; slot < src->num_links; slot++)
664 		if (src->links[slot] == dst)
665 			break;
666 
667 	if (WARN_ON(slot == src->num_links)) {
668 		ret = -ENXIO;
669 		goto out;
670 	}
671 
672 	src->links[slot] = src->links[--src->num_links];
673 
674 	new = krealloc(src->links, src->num_links * sizeof(*src->links),
675 		       GFP_KERNEL);
676 	if (new)
677 		src->links = new;
678 
679 out:
680 	mutex_unlock(&icc_lock);
681 
682 	return ret;
683 }
684 EXPORT_SYMBOL_GPL(icc_link_destroy);
685 
686 /**
687  * icc_node_add() - add interconnect node to interconnect provider
688  * @node: pointer to the interconnect node
689  * @provider: pointer to the interconnect provider
690  */
691 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
692 {
693 	mutex_lock(&icc_lock);
694 
695 	node->provider = provider;
696 	list_add_tail(&node->node_list, &provider->nodes);
697 
698 	mutex_unlock(&icc_lock);
699 }
700 EXPORT_SYMBOL_GPL(icc_node_add);
701 
702 /**
703  * icc_node_del() - delete interconnect node from interconnect provider
704  * @node: pointer to the interconnect node
705  */
706 void icc_node_del(struct icc_node *node)
707 {
708 	mutex_lock(&icc_lock);
709 
710 	list_del(&node->node_list);
711 
712 	mutex_unlock(&icc_lock);
713 }
714 EXPORT_SYMBOL_GPL(icc_node_del);
715 
716 /**
717  * icc_provider_add() - add a new interconnect provider
718  * @provider: the interconnect provider that will be added into topology
719  *
720  * Return: 0 on success, or an error code otherwise
721  */
722 int icc_provider_add(struct icc_provider *provider)
723 {
724 	if (WARN_ON(!provider->set))
725 		return -EINVAL;
726 	if (WARN_ON(!provider->xlate))
727 		return -EINVAL;
728 
729 	mutex_lock(&icc_lock);
730 
731 	INIT_LIST_HEAD(&provider->nodes);
732 	list_add_tail(&provider->provider_list, &icc_providers);
733 
734 	mutex_unlock(&icc_lock);
735 
736 	dev_dbg(provider->dev, "interconnect provider added to topology\n");
737 
738 	return 0;
739 }
740 EXPORT_SYMBOL_GPL(icc_provider_add);
741 
742 /**
743  * icc_provider_del() - delete previously added interconnect provider
744  * @provider: the interconnect provider that will be removed from topology
745  *
746  * Return: 0 on success, or an error code otherwise
747  */
748 int icc_provider_del(struct icc_provider *provider)
749 {
750 	mutex_lock(&icc_lock);
751 	if (provider->users) {
752 		pr_warn("interconnect provider still has %d users\n",
753 			provider->users);
754 		mutex_unlock(&icc_lock);
755 		return -EBUSY;
756 	}
757 
758 	if (!list_empty(&provider->nodes)) {
759 		pr_warn("interconnect provider still has nodes\n");
760 		mutex_unlock(&icc_lock);
761 		return -EBUSY;
762 	}
763 
764 	list_del(&provider->provider_list);
765 	mutex_unlock(&icc_lock);
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(icc_provider_del);
770 
771 static int __init icc_init(void)
772 {
773 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
774 	debugfs_create_file("interconnect_summary", 0444,
775 			    icc_debugfs_dir, NULL, &icc_summary_fops);
776 	return 0;
777 }
778 
779 static void __exit icc_exit(void)
780 {
781 	debugfs_remove_recursive(icc_debugfs_dir);
782 }
783 module_init(icc_init);
784 module_exit(icc_exit);
785 
786 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
787 MODULE_DESCRIPTION("Interconnect Driver Core");
788 MODULE_LICENSE("GPL v2");
789