xref: /openbmc/linux/drivers/interconnect/core.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Interconnect framework core driver
4  *
5  * Copyright (c) 2017-2019, Linaro Ltd.
6  * Author: Georgi Djakov <georgi.djakov@linaro.org>
7  */
8 
9 #include <linux/debugfs.h>
10 #include <linux/device.h>
11 #include <linux/idr.h>
12 #include <linux/init.h>
13 #include <linux/interconnect.h>
14 #include <linux/interconnect-provider.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/overflow.h>
21 
22 #include "internal.h"
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 static DEFINE_IDR(icc_idr);
28 static LIST_HEAD(icc_providers);
29 static DEFINE_MUTEX(icc_lock);
30 static struct dentry *icc_debugfs_dir;
31 
32 static void icc_summary_show_one(struct seq_file *s, struct icc_node *n)
33 {
34 	if (!n)
35 		return;
36 
37 	seq_printf(s, "%-42s %12u %12u\n",
38 		   n->name, n->avg_bw, n->peak_bw);
39 }
40 
41 static int icc_summary_show(struct seq_file *s, void *data)
42 {
43 	struct icc_provider *provider;
44 
45 	seq_puts(s, " node                                  tag          avg         peak\n");
46 	seq_puts(s, "--------------------------------------------------------------------\n");
47 
48 	mutex_lock(&icc_lock);
49 
50 	list_for_each_entry(provider, &icc_providers, provider_list) {
51 		struct icc_node *n;
52 
53 		list_for_each_entry(n, &provider->nodes, node_list) {
54 			struct icc_req *r;
55 
56 			icc_summary_show_one(s, n);
57 			hlist_for_each_entry(r, &n->req_list, req_node) {
58 				if (!r->dev)
59 					continue;
60 
61 				seq_printf(s, "  %-27s %12u %12u %12u\n",
62 					   dev_name(r->dev), r->tag, r->avg_bw,
63 					   r->peak_bw);
64 			}
65 		}
66 	}
67 
68 	mutex_unlock(&icc_lock);
69 
70 	return 0;
71 }
72 DEFINE_SHOW_ATTRIBUTE(icc_summary);
73 
74 static void icc_graph_show_link(struct seq_file *s, int level,
75 				struct icc_node *n, struct icc_node *m)
76 {
77 	seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n",
78 		   level == 2 ? "\t\t" : "\t",
79 		   n->id, n->name, m->id, m->name);
80 }
81 
82 static void icc_graph_show_node(struct seq_file *s, struct icc_node *n)
83 {
84 	seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s",
85 		   n->id, n->name, n->id, n->name);
86 	seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw);
87 	seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw);
88 	seq_puts(s, "\"]\n");
89 }
90 
91 static int icc_graph_show(struct seq_file *s, void *data)
92 {
93 	struct icc_provider *provider;
94 	struct icc_node *n;
95 	int cluster_index = 0;
96 	int i;
97 
98 	seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n");
99 	mutex_lock(&icc_lock);
100 
101 	/* draw providers as cluster subgraphs */
102 	cluster_index = 0;
103 	list_for_each_entry(provider, &icc_providers, provider_list) {
104 		seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index);
105 		if (provider->dev)
106 			seq_printf(s, "\t\tlabel = \"%s\"\n",
107 				   dev_name(provider->dev));
108 
109 		/* draw nodes */
110 		list_for_each_entry(n, &provider->nodes, node_list)
111 			icc_graph_show_node(s, n);
112 
113 		/* draw internal links */
114 		list_for_each_entry(n, &provider->nodes, node_list)
115 			for (i = 0; i < n->num_links; ++i)
116 				if (n->provider == n->links[i]->provider)
117 					icc_graph_show_link(s, 2, n,
118 							    n->links[i]);
119 
120 		seq_puts(s, "\t}\n");
121 	}
122 
123 	/* draw external links */
124 	list_for_each_entry(provider, &icc_providers, provider_list)
125 		list_for_each_entry(n, &provider->nodes, node_list)
126 			for (i = 0; i < n->num_links; ++i)
127 				if (n->provider != n->links[i]->provider)
128 					icc_graph_show_link(s, 1, n,
129 							    n->links[i]);
130 
131 	mutex_unlock(&icc_lock);
132 	seq_puts(s, "}");
133 
134 	return 0;
135 }
136 DEFINE_SHOW_ATTRIBUTE(icc_graph);
137 
138 static struct icc_node *node_find(const int id)
139 {
140 	return idr_find(&icc_idr, id);
141 }
142 
143 static struct icc_path *path_init(struct device *dev, struct icc_node *dst,
144 				  ssize_t num_nodes)
145 {
146 	struct icc_node *node = dst;
147 	struct icc_path *path;
148 	int i;
149 
150 	path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL);
151 	if (!path)
152 		return ERR_PTR(-ENOMEM);
153 
154 	path->num_nodes = num_nodes;
155 
156 	for (i = num_nodes - 1; i >= 0; i--) {
157 		node->provider->users++;
158 		hlist_add_head(&path->reqs[i].req_node, &node->req_list);
159 		path->reqs[i].node = node;
160 		path->reqs[i].dev = dev;
161 		/* reference to previous node was saved during path traversal */
162 		node = node->reverse;
163 	}
164 
165 	return path;
166 }
167 
168 static struct icc_path *path_find(struct device *dev, struct icc_node *src,
169 				  struct icc_node *dst)
170 {
171 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
172 	struct icc_node *n, *node = NULL;
173 	struct list_head traverse_list;
174 	struct list_head edge_list;
175 	struct list_head visited_list;
176 	size_t i, depth = 1;
177 	bool found = false;
178 
179 	INIT_LIST_HEAD(&traverse_list);
180 	INIT_LIST_HEAD(&edge_list);
181 	INIT_LIST_HEAD(&visited_list);
182 
183 	list_add(&src->search_list, &traverse_list);
184 	src->reverse = NULL;
185 
186 	do {
187 		list_for_each_entry_safe(node, n, &traverse_list, search_list) {
188 			if (node == dst) {
189 				found = true;
190 				list_splice_init(&edge_list, &visited_list);
191 				list_splice_init(&traverse_list, &visited_list);
192 				break;
193 			}
194 			for (i = 0; i < node->num_links; i++) {
195 				struct icc_node *tmp = node->links[i];
196 
197 				if (!tmp) {
198 					path = ERR_PTR(-ENOENT);
199 					goto out;
200 				}
201 
202 				if (tmp->is_traversed)
203 					continue;
204 
205 				tmp->is_traversed = true;
206 				tmp->reverse = node;
207 				list_add_tail(&tmp->search_list, &edge_list);
208 			}
209 		}
210 
211 		if (found)
212 			break;
213 
214 		list_splice_init(&traverse_list, &visited_list);
215 		list_splice_init(&edge_list, &traverse_list);
216 
217 		/* count the hops including the source */
218 		depth++;
219 
220 	} while (!list_empty(&traverse_list));
221 
222 out:
223 
224 	/* reset the traversed state */
225 	list_for_each_entry_reverse(n, &visited_list, search_list)
226 		n->is_traversed = false;
227 
228 	if (found)
229 		path = path_init(dev, dst, depth);
230 
231 	return path;
232 }
233 
234 /*
235  * We want the path to honor all bandwidth requests, so the average and peak
236  * bandwidth requirements from each consumer are aggregated at each node.
237  * The aggregation is platform specific, so each platform can customize it by
238  * implementing its own aggregate() function.
239  */
240 
241 static int aggregate_requests(struct icc_node *node)
242 {
243 	struct icc_provider *p = node->provider;
244 	struct icc_req *r;
245 
246 	node->avg_bw = 0;
247 	node->peak_bw = 0;
248 
249 	if (p->pre_aggregate)
250 		p->pre_aggregate(node);
251 
252 	hlist_for_each_entry(r, &node->req_list, req_node)
253 		p->aggregate(node, r->tag, r->avg_bw, r->peak_bw,
254 			     &node->avg_bw, &node->peak_bw);
255 
256 	return 0;
257 }
258 
259 static int apply_constraints(struct icc_path *path)
260 {
261 	struct icc_node *next, *prev = NULL;
262 	int ret = -EINVAL;
263 	int i;
264 
265 	for (i = 0; i < path->num_nodes; i++) {
266 		next = path->reqs[i].node;
267 
268 		/*
269 		 * Both endpoints should be valid master-slave pairs of the
270 		 * same interconnect provider that will be configured.
271 		 */
272 		if (!prev || next->provider != prev->provider) {
273 			prev = next;
274 			continue;
275 		}
276 
277 		/* set the constraints */
278 		ret = next->provider->set(prev, next);
279 		if (ret)
280 			goto out;
281 
282 		prev = next;
283 	}
284 out:
285 	return ret;
286 }
287 
288 int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw,
289 		      u32 peak_bw, u32 *agg_avg, u32 *agg_peak)
290 {
291 	*agg_avg += avg_bw;
292 	*agg_peak = max(*agg_peak, peak_bw);
293 
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(icc_std_aggregate);
297 
298 /* of_icc_xlate_onecell() - Translate function using a single index.
299  * @spec: OF phandle args to map into an interconnect node.
300  * @data: private data (pointer to struct icc_onecell_data)
301  *
302  * This is a generic translate function that can be used to model simple
303  * interconnect providers that have one device tree node and provide
304  * multiple interconnect nodes. A single cell is used as an index into
305  * an array of icc nodes specified in the icc_onecell_data struct when
306  * registering the provider.
307  */
308 struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec,
309 				      void *data)
310 {
311 	struct icc_onecell_data *icc_data = data;
312 	unsigned int idx = spec->args[0];
313 
314 	if (idx >= icc_data->num_nodes) {
315 		pr_err("%s: invalid index %u\n", __func__, idx);
316 		return ERR_PTR(-EINVAL);
317 	}
318 
319 	return icc_data->nodes[idx];
320 }
321 EXPORT_SYMBOL_GPL(of_icc_xlate_onecell);
322 
323 /**
324  * of_icc_get_from_provider() - Look-up interconnect node
325  * @spec: OF phandle args to use for look-up
326  *
327  * Looks for interconnect provider under the node specified by @spec and if
328  * found, uses xlate function of the provider to map phandle args to node.
329  *
330  * Returns a valid pointer to struct icc_node on success or ERR_PTR()
331  * on failure.
332  */
333 static struct icc_node *of_icc_get_from_provider(struct of_phandle_args *spec)
334 {
335 	struct icc_node *node = ERR_PTR(-EPROBE_DEFER);
336 	struct icc_provider *provider;
337 
338 	if (!spec || spec->args_count != 1)
339 		return ERR_PTR(-EINVAL);
340 
341 	mutex_lock(&icc_lock);
342 	list_for_each_entry(provider, &icc_providers, provider_list) {
343 		if (provider->dev->of_node == spec->np)
344 			node = provider->xlate(spec, provider->data);
345 		if (!IS_ERR(node))
346 			break;
347 	}
348 	mutex_unlock(&icc_lock);
349 
350 	return node;
351 }
352 
353 /**
354  * of_icc_get() - get a path handle from a DT node based on name
355  * @dev: device pointer for the consumer device
356  * @name: interconnect path name
357  *
358  * This function will search for a path between two endpoints and return an
359  * icc_path handle on success. Use icc_put() to release constraints when they
360  * are not needed anymore.
361  * If the interconnect API is disabled, NULL is returned and the consumer
362  * drivers will still build. Drivers are free to handle this specifically,
363  * but they don't have to.
364  *
365  * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned
366  * when the API is disabled or the "interconnects" DT property is missing.
367  */
368 struct icc_path *of_icc_get(struct device *dev, const char *name)
369 {
370 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
371 	struct icc_node *src_node, *dst_node;
372 	struct device_node *np = NULL;
373 	struct of_phandle_args src_args, dst_args;
374 	int idx = 0;
375 	int ret;
376 
377 	if (!dev || !dev->of_node)
378 		return ERR_PTR(-ENODEV);
379 
380 	np = dev->of_node;
381 
382 	/*
383 	 * When the consumer DT node do not have "interconnects" property
384 	 * return a NULL path to skip setting constraints.
385 	 */
386 	if (!of_find_property(np, "interconnects", NULL))
387 		return NULL;
388 
389 	/*
390 	 * We use a combination of phandle and specifier for endpoint. For now
391 	 * lets support only global ids and extend this in the future if needed
392 	 * without breaking DT compatibility.
393 	 */
394 	if (name) {
395 		idx = of_property_match_string(np, "interconnect-names", name);
396 		if (idx < 0)
397 			return ERR_PTR(idx);
398 	}
399 
400 	ret = of_parse_phandle_with_args(np, "interconnects",
401 					 "#interconnect-cells", idx * 2,
402 					 &src_args);
403 	if (ret)
404 		return ERR_PTR(ret);
405 
406 	of_node_put(src_args.np);
407 
408 	ret = of_parse_phandle_with_args(np, "interconnects",
409 					 "#interconnect-cells", idx * 2 + 1,
410 					 &dst_args);
411 	if (ret)
412 		return ERR_PTR(ret);
413 
414 	of_node_put(dst_args.np);
415 
416 	src_node = of_icc_get_from_provider(&src_args);
417 
418 	if (IS_ERR(src_node)) {
419 		if (PTR_ERR(src_node) != -EPROBE_DEFER)
420 			dev_err(dev, "error finding src node: %ld\n",
421 				PTR_ERR(src_node));
422 		return ERR_CAST(src_node);
423 	}
424 
425 	dst_node = of_icc_get_from_provider(&dst_args);
426 
427 	if (IS_ERR(dst_node)) {
428 		if (PTR_ERR(dst_node) != -EPROBE_DEFER)
429 			dev_err(dev, "error finding dst node: %ld\n",
430 				PTR_ERR(dst_node));
431 		return ERR_CAST(dst_node);
432 	}
433 
434 	mutex_lock(&icc_lock);
435 	path = path_find(dev, src_node, dst_node);
436 	mutex_unlock(&icc_lock);
437 	if (IS_ERR(path)) {
438 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
439 		return path;
440 	}
441 
442 	if (name)
443 		path->name = kstrdup_const(name, GFP_KERNEL);
444 	else
445 		path->name = kasprintf(GFP_KERNEL, "%s-%s",
446 				       src_node->name, dst_node->name);
447 
448 	if (!path->name) {
449 		kfree(path);
450 		return ERR_PTR(-ENOMEM);
451 	}
452 
453 	return path;
454 }
455 EXPORT_SYMBOL_GPL(of_icc_get);
456 
457 /**
458  * icc_set_tag() - set an optional tag on a path
459  * @path: the path we want to tag
460  * @tag: the tag value
461  *
462  * This function allows consumers to append a tag to the requests associated
463  * with a path, so that a different aggregation could be done based on this tag.
464  */
465 void icc_set_tag(struct icc_path *path, u32 tag)
466 {
467 	int i;
468 
469 	if (!path)
470 		return;
471 
472 	mutex_lock(&icc_lock);
473 
474 	for (i = 0; i < path->num_nodes; i++)
475 		path->reqs[i].tag = tag;
476 
477 	mutex_unlock(&icc_lock);
478 }
479 EXPORT_SYMBOL_GPL(icc_set_tag);
480 
481 /**
482  * icc_set_bw() - set bandwidth constraints on an interconnect path
483  * @path: reference to the path returned by icc_get()
484  * @avg_bw: average bandwidth in kilobytes per second
485  * @peak_bw: peak bandwidth in kilobytes per second
486  *
487  * This function is used by an interconnect consumer to express its own needs
488  * in terms of bandwidth for a previously requested path between two endpoints.
489  * The requests are aggregated and each node is updated accordingly. The entire
490  * path is locked by a mutex to ensure that the set() is completed.
491  * The @path can be NULL when the "interconnects" DT properties is missing,
492  * which will mean that no constraints will be set.
493  *
494  * Returns 0 on success, or an appropriate error code otherwise.
495  */
496 int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw)
497 {
498 	struct icc_node *node;
499 	u32 old_avg, old_peak;
500 	size_t i;
501 	int ret;
502 
503 	if (!path)
504 		return 0;
505 
506 	if (WARN_ON(IS_ERR(path) || !path->num_nodes))
507 		return -EINVAL;
508 
509 	mutex_lock(&icc_lock);
510 
511 	old_avg = path->reqs[0].avg_bw;
512 	old_peak = path->reqs[0].peak_bw;
513 
514 	for (i = 0; i < path->num_nodes; i++) {
515 		node = path->reqs[i].node;
516 
517 		/* update the consumer request for this path */
518 		path->reqs[i].avg_bw = avg_bw;
519 		path->reqs[i].peak_bw = peak_bw;
520 
521 		/* aggregate requests for this node */
522 		aggregate_requests(node);
523 
524 		trace_icc_set_bw(path, node, i, avg_bw, peak_bw);
525 	}
526 
527 	ret = apply_constraints(path);
528 	if (ret) {
529 		pr_debug("interconnect: error applying constraints (%d)\n",
530 			 ret);
531 
532 		for (i = 0; i < path->num_nodes; i++) {
533 			node = path->reqs[i].node;
534 			path->reqs[i].avg_bw = old_avg;
535 			path->reqs[i].peak_bw = old_peak;
536 			aggregate_requests(node);
537 		}
538 		apply_constraints(path);
539 	}
540 
541 	mutex_unlock(&icc_lock);
542 
543 	trace_icc_set_bw_end(path, ret);
544 
545 	return ret;
546 }
547 EXPORT_SYMBOL_GPL(icc_set_bw);
548 
549 /**
550  * icc_get() - return a handle for path between two endpoints
551  * @dev: the device requesting the path
552  * @src_id: source device port id
553  * @dst_id: destination device port id
554  *
555  * This function will search for a path between two endpoints and return an
556  * icc_path handle on success. Use icc_put() to release
557  * constraints when they are not needed anymore.
558  * If the interconnect API is disabled, NULL is returned and the consumer
559  * drivers will still build. Drivers are free to handle this specifically,
560  * but they don't have to.
561  *
562  * Return: icc_path pointer on success, ERR_PTR() on error or NULL if the
563  * interconnect API is disabled.
564  */
565 struct icc_path *icc_get(struct device *dev, const int src_id, const int dst_id)
566 {
567 	struct icc_node *src, *dst;
568 	struct icc_path *path = ERR_PTR(-EPROBE_DEFER);
569 
570 	mutex_lock(&icc_lock);
571 
572 	src = node_find(src_id);
573 	if (!src)
574 		goto out;
575 
576 	dst = node_find(dst_id);
577 	if (!dst)
578 		goto out;
579 
580 	path = path_find(dev, src, dst);
581 	if (IS_ERR(path)) {
582 		dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path));
583 		goto out;
584 	}
585 
586 	path->name = kasprintf(GFP_KERNEL, "%s-%s", src->name, dst->name);
587 	if (!path->name) {
588 		kfree(path);
589 		path = ERR_PTR(-ENOMEM);
590 	}
591 out:
592 	mutex_unlock(&icc_lock);
593 	return path;
594 }
595 EXPORT_SYMBOL_GPL(icc_get);
596 
597 /**
598  * icc_put() - release the reference to the icc_path
599  * @path: interconnect path
600  *
601  * Use this function to release the constraints on a path when the path is
602  * no longer needed. The constraints will be re-aggregated.
603  */
604 void icc_put(struct icc_path *path)
605 {
606 	struct icc_node *node;
607 	size_t i;
608 	int ret;
609 
610 	if (!path || WARN_ON(IS_ERR(path)))
611 		return;
612 
613 	ret = icc_set_bw(path, 0, 0);
614 	if (ret)
615 		pr_err("%s: error (%d)\n", __func__, ret);
616 
617 	mutex_lock(&icc_lock);
618 	for (i = 0; i < path->num_nodes; i++) {
619 		node = path->reqs[i].node;
620 		hlist_del(&path->reqs[i].req_node);
621 		if (!WARN_ON(!node->provider->users))
622 			node->provider->users--;
623 	}
624 	mutex_unlock(&icc_lock);
625 
626 	kfree_const(path->name);
627 	kfree(path);
628 }
629 EXPORT_SYMBOL_GPL(icc_put);
630 
631 static struct icc_node *icc_node_create_nolock(int id)
632 {
633 	struct icc_node *node;
634 
635 	/* check if node already exists */
636 	node = node_find(id);
637 	if (node)
638 		return node;
639 
640 	node = kzalloc(sizeof(*node), GFP_KERNEL);
641 	if (!node)
642 		return ERR_PTR(-ENOMEM);
643 
644 	id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL);
645 	if (id < 0) {
646 		WARN(1, "%s: couldn't get idr\n", __func__);
647 		kfree(node);
648 		return ERR_PTR(id);
649 	}
650 
651 	node->id = id;
652 
653 	return node;
654 }
655 
656 /**
657  * icc_node_create() - create a node
658  * @id: node id
659  *
660  * Return: icc_node pointer on success, or ERR_PTR() on error
661  */
662 struct icc_node *icc_node_create(int id)
663 {
664 	struct icc_node *node;
665 
666 	mutex_lock(&icc_lock);
667 
668 	node = icc_node_create_nolock(id);
669 
670 	mutex_unlock(&icc_lock);
671 
672 	return node;
673 }
674 EXPORT_SYMBOL_GPL(icc_node_create);
675 
676 /**
677  * icc_node_destroy() - destroy a node
678  * @id: node id
679  */
680 void icc_node_destroy(int id)
681 {
682 	struct icc_node *node;
683 
684 	mutex_lock(&icc_lock);
685 
686 	node = node_find(id);
687 	if (node) {
688 		idr_remove(&icc_idr, node->id);
689 		WARN_ON(!hlist_empty(&node->req_list));
690 	}
691 
692 	mutex_unlock(&icc_lock);
693 
694 	kfree(node);
695 }
696 EXPORT_SYMBOL_GPL(icc_node_destroy);
697 
698 /**
699  * icc_link_create() - create a link between two nodes
700  * @node: source node id
701  * @dst_id: destination node id
702  *
703  * Create a link between two nodes. The nodes might belong to different
704  * interconnect providers and the @dst_id node might not exist (if the
705  * provider driver has not probed yet). So just create the @dst_id node
706  * and when the actual provider driver is probed, the rest of the node
707  * data is filled.
708  *
709  * Return: 0 on success, or an error code otherwise
710  */
711 int icc_link_create(struct icc_node *node, const int dst_id)
712 {
713 	struct icc_node *dst;
714 	struct icc_node **new;
715 	int ret = 0;
716 
717 	if (!node->provider)
718 		return -EINVAL;
719 
720 	mutex_lock(&icc_lock);
721 
722 	dst = node_find(dst_id);
723 	if (!dst) {
724 		dst = icc_node_create_nolock(dst_id);
725 
726 		if (IS_ERR(dst)) {
727 			ret = PTR_ERR(dst);
728 			goto out;
729 		}
730 	}
731 
732 	new = krealloc(node->links,
733 		       (node->num_links + 1) * sizeof(*node->links),
734 		       GFP_KERNEL);
735 	if (!new) {
736 		ret = -ENOMEM;
737 		goto out;
738 	}
739 
740 	node->links = new;
741 	node->links[node->num_links++] = dst;
742 
743 out:
744 	mutex_unlock(&icc_lock);
745 
746 	return ret;
747 }
748 EXPORT_SYMBOL_GPL(icc_link_create);
749 
750 /**
751  * icc_link_destroy() - destroy a link between two nodes
752  * @src: pointer to source node
753  * @dst: pointer to destination node
754  *
755  * Return: 0 on success, or an error code otherwise
756  */
757 int icc_link_destroy(struct icc_node *src, struct icc_node *dst)
758 {
759 	struct icc_node **new;
760 	size_t slot;
761 	int ret = 0;
762 
763 	if (IS_ERR_OR_NULL(src))
764 		return -EINVAL;
765 
766 	if (IS_ERR_OR_NULL(dst))
767 		return -EINVAL;
768 
769 	mutex_lock(&icc_lock);
770 
771 	for (slot = 0; slot < src->num_links; slot++)
772 		if (src->links[slot] == dst)
773 			break;
774 
775 	if (WARN_ON(slot == src->num_links)) {
776 		ret = -ENXIO;
777 		goto out;
778 	}
779 
780 	src->links[slot] = src->links[--src->num_links];
781 
782 	new = krealloc(src->links, src->num_links * sizeof(*src->links),
783 		       GFP_KERNEL);
784 	if (new)
785 		src->links = new;
786 
787 out:
788 	mutex_unlock(&icc_lock);
789 
790 	return ret;
791 }
792 EXPORT_SYMBOL_GPL(icc_link_destroy);
793 
794 /**
795  * icc_node_add() - add interconnect node to interconnect provider
796  * @node: pointer to the interconnect node
797  * @provider: pointer to the interconnect provider
798  */
799 void icc_node_add(struct icc_node *node, struct icc_provider *provider)
800 {
801 	mutex_lock(&icc_lock);
802 
803 	node->provider = provider;
804 	list_add_tail(&node->node_list, &provider->nodes);
805 
806 	mutex_unlock(&icc_lock);
807 }
808 EXPORT_SYMBOL_GPL(icc_node_add);
809 
810 /**
811  * icc_node_del() - delete interconnect node from interconnect provider
812  * @node: pointer to the interconnect node
813  */
814 void icc_node_del(struct icc_node *node)
815 {
816 	mutex_lock(&icc_lock);
817 
818 	list_del(&node->node_list);
819 
820 	mutex_unlock(&icc_lock);
821 }
822 EXPORT_SYMBOL_GPL(icc_node_del);
823 
824 /**
825  * icc_nodes_remove() - remove all previously added nodes from provider
826  * @provider: the interconnect provider we are removing nodes from
827  *
828  * Return: 0 on success, or an error code otherwise
829  */
830 int icc_nodes_remove(struct icc_provider *provider)
831 {
832 	struct icc_node *n, *tmp;
833 
834 	if (WARN_ON(IS_ERR_OR_NULL(provider)))
835 		return -EINVAL;
836 
837 	list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) {
838 		icc_node_del(n);
839 		icc_node_destroy(n->id);
840 	}
841 
842 	return 0;
843 }
844 EXPORT_SYMBOL_GPL(icc_nodes_remove);
845 
846 /**
847  * icc_provider_add() - add a new interconnect provider
848  * @provider: the interconnect provider that will be added into topology
849  *
850  * Return: 0 on success, or an error code otherwise
851  */
852 int icc_provider_add(struct icc_provider *provider)
853 {
854 	if (WARN_ON(!provider->set))
855 		return -EINVAL;
856 	if (WARN_ON(!provider->xlate))
857 		return -EINVAL;
858 
859 	mutex_lock(&icc_lock);
860 
861 	INIT_LIST_HEAD(&provider->nodes);
862 	list_add_tail(&provider->provider_list, &icc_providers);
863 
864 	mutex_unlock(&icc_lock);
865 
866 	dev_dbg(provider->dev, "interconnect provider added to topology\n");
867 
868 	return 0;
869 }
870 EXPORT_SYMBOL_GPL(icc_provider_add);
871 
872 /**
873  * icc_provider_del() - delete previously added interconnect provider
874  * @provider: the interconnect provider that will be removed from topology
875  *
876  * Return: 0 on success, or an error code otherwise
877  */
878 int icc_provider_del(struct icc_provider *provider)
879 {
880 	mutex_lock(&icc_lock);
881 	if (provider->users) {
882 		pr_warn("interconnect provider still has %d users\n",
883 			provider->users);
884 		mutex_unlock(&icc_lock);
885 		return -EBUSY;
886 	}
887 
888 	if (!list_empty(&provider->nodes)) {
889 		pr_warn("interconnect provider still has nodes\n");
890 		mutex_unlock(&icc_lock);
891 		return -EBUSY;
892 	}
893 
894 	list_del(&provider->provider_list);
895 	mutex_unlock(&icc_lock);
896 
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(icc_provider_del);
900 
901 static int __init icc_init(void)
902 {
903 	icc_debugfs_dir = debugfs_create_dir("interconnect", NULL);
904 	debugfs_create_file("interconnect_summary", 0444,
905 			    icc_debugfs_dir, NULL, &icc_summary_fops);
906 	debugfs_create_file("interconnect_graph", 0444,
907 			    icc_debugfs_dir, NULL, &icc_graph_fops);
908 	return 0;
909 }
910 
911 static void __exit icc_exit(void)
912 {
913 	debugfs_remove_recursive(icc_debugfs_dir);
914 }
915 module_init(icc_init);
916 module_exit(icc_exit);
917 
918 MODULE_AUTHOR("Georgi Djakov <georgi.djakov@linaro.org>");
919 MODULE_DESCRIPTION("Interconnect Driver Core");
920 MODULE_LICENSE("GPL v2");
921