1 /* 2 * ADS7846 based touchscreen and sensor driver 3 * 4 * Copyright (c) 2005 David Brownell 5 * Copyright (c) 2006 Nokia Corporation 6 * Various changes: Imre Deak <imre.deak@nokia.com> 7 * 8 * Using code from: 9 * - corgi_ts.c 10 * Copyright (C) 2004-2005 Richard Purdie 11 * - omap_ts.[hc], ads7846.h, ts_osk.c 12 * Copyright (C) 2002 MontaVista Software 13 * Copyright (C) 2004 Texas Instruments 14 * Copyright (C) 2005 Dirk Behme 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License version 2 as 18 * published by the Free Software Foundation. 19 */ 20 #include <linux/hwmon.h> 21 #include <linux/init.h> 22 #include <linux/err.h> 23 #include <linux/delay.h> 24 #include <linux/input.h> 25 #include <linux/interrupt.h> 26 #include <linux/slab.h> 27 #include <linux/gpio.h> 28 #include <linux/spi/spi.h> 29 #include <linux/spi/ads7846.h> 30 #include <asm/irq.h> 31 32 33 /* 34 * This code has been heavily tested on a Nokia 770, and lightly 35 * tested on other ads7846 devices (OSK/Mistral, Lubbock). 36 * TSC2046 is just newer ads7846 silicon. 37 * Support for ads7843 tested on Atmel at91sam926x-EK. 38 * Support for ads7845 has only been stubbed in. 39 * 40 * IRQ handling needs a workaround because of a shortcoming in handling 41 * edge triggered IRQs on some platforms like the OMAP1/2. These 42 * platforms don't handle the ARM lazy IRQ disabling properly, thus we 43 * have to maintain our own SW IRQ disabled status. This should be 44 * removed as soon as the affected platform's IRQ handling is fixed. 45 * 46 * app note sbaa036 talks in more detail about accurate sampling... 47 * that ought to help in situations like LCDs inducing noise (which 48 * can also be helped by using synch signals) and more generally. 49 * This driver tries to utilize the measures described in the app 50 * note. The strength of filtering can be set in the board-* specific 51 * files. 52 */ 53 54 #define TS_POLL_DELAY (1 * 1000000) /* ns delay before the first sample */ 55 #define TS_POLL_PERIOD (5 * 1000000) /* ns delay between samples */ 56 57 /* this driver doesn't aim at the peak continuous sample rate */ 58 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */) 59 60 struct ts_event { 61 /* For portability, we can't read 12 bit values using SPI (which 62 * would make the controller deliver them as native byteorder u16 63 * with msbs zeroed). Instead, we read them as two 8-bit values, 64 * *** WHICH NEED BYTESWAPPING *** and range adjustment. 65 */ 66 u16 x; 67 u16 y; 68 u16 z1, z2; 69 int ignore; 70 }; 71 72 /* 73 * We allocate this separately to avoid cache line sharing issues when 74 * driver is used with DMA-based SPI controllers (like atmel_spi) on 75 * systems where main memory is not DMA-coherent (most non-x86 boards). 76 */ 77 struct ads7846_packet { 78 u8 read_x, read_y, read_z1, read_z2, pwrdown; 79 u16 dummy; /* for the pwrdown read */ 80 struct ts_event tc; 81 }; 82 83 struct ads7846 { 84 struct input_dev *input; 85 char phys[32]; 86 char name[32]; 87 88 struct spi_device *spi; 89 90 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE) 91 struct attribute_group *attr_group; 92 struct device *hwmon; 93 #endif 94 95 u16 model; 96 u16 vref_mv; 97 u16 vref_delay_usecs; 98 u16 x_plate_ohms; 99 u16 pressure_max; 100 101 bool swap_xy; 102 103 struct ads7846_packet *packet; 104 105 struct spi_transfer xfer[18]; 106 struct spi_message msg[5]; 107 struct spi_message *last_msg; 108 int msg_idx; 109 int read_cnt; 110 int read_rep; 111 int last_read; 112 113 u16 debounce_max; 114 u16 debounce_tol; 115 u16 debounce_rep; 116 117 u16 penirq_recheck_delay_usecs; 118 119 spinlock_t lock; 120 struct hrtimer timer; 121 unsigned pendown:1; /* P: lock */ 122 unsigned pending:1; /* P: lock */ 123 // FIXME remove "irq_disabled" 124 unsigned irq_disabled:1; /* P: lock */ 125 unsigned disabled:1; 126 unsigned is_suspended:1; 127 128 int (*filter)(void *data, int data_idx, int *val); 129 void *filter_data; 130 void (*filter_cleanup)(void *data); 131 int (*get_pendown_state)(void); 132 int gpio_pendown; 133 134 void (*wait_for_sync)(void); 135 }; 136 137 /* leave chip selected when we're done, for quicker re-select? */ 138 #if 0 139 #define CS_CHANGE(xfer) ((xfer).cs_change = 1) 140 #else 141 #define CS_CHANGE(xfer) ((xfer).cs_change = 0) 142 #endif 143 144 /*--------------------------------------------------------------------------*/ 145 146 /* The ADS7846 has touchscreen and other sensors. 147 * Earlier ads784x chips are somewhat compatible. 148 */ 149 #define ADS_START (1 << 7) 150 #define ADS_A2A1A0_d_y (1 << 4) /* differential */ 151 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */ 152 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */ 153 #define ADS_A2A1A0_d_x (5 << 4) /* differential */ 154 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */ 155 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */ 156 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */ 157 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */ 158 #define ADS_8_BIT (1 << 3) 159 #define ADS_12_BIT (0 << 3) 160 #define ADS_SER (1 << 2) /* non-differential */ 161 #define ADS_DFR (0 << 2) /* differential */ 162 #define ADS_PD10_PDOWN (0 << 0) /* lowpower mode + penirq */ 163 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */ 164 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */ 165 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */ 166 167 #define MAX_12BIT ((1<<12)-1) 168 169 /* leave ADC powered up (disables penirq) between differential samples */ 170 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \ 171 | ADS_12_BIT | ADS_DFR | \ 172 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0)) 173 174 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref)) 175 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref)) 176 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref)) 177 178 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref)) 179 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */ 180 181 /* single-ended samples need to first power up reference voltage; 182 * we leave both ADC and VREF powered 183 */ 184 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \ 185 | ADS_12_BIT | ADS_SER) 186 187 #define REF_ON (READ_12BIT_DFR(x, 1, 1)) 188 #define REF_OFF (READ_12BIT_DFR(y, 0, 0)) 189 190 /*--------------------------------------------------------------------------*/ 191 192 /* 193 * Non-touchscreen sensors only use single-ended conversions. 194 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF; 195 * ads7846 lets that pin be unconnected, to use internal vREF. 196 */ 197 198 struct ser_req { 199 u8 ref_on; 200 u8 command; 201 u8 ref_off; 202 u16 scratch; 203 __be16 sample; 204 struct spi_message msg; 205 struct spi_transfer xfer[6]; 206 }; 207 208 static void ads7846_enable(struct ads7846 *ts); 209 static void ads7846_disable(struct ads7846 *ts); 210 211 static int device_suspended(struct device *dev) 212 { 213 struct ads7846 *ts = dev_get_drvdata(dev); 214 return ts->is_suspended || ts->disabled; 215 } 216 217 static int ads7846_read12_ser(struct device *dev, unsigned command) 218 { 219 struct spi_device *spi = to_spi_device(dev); 220 struct ads7846 *ts = dev_get_drvdata(dev); 221 struct ser_req *req = kzalloc(sizeof *req, GFP_KERNEL); 222 int status; 223 int use_internal; 224 225 if (!req) 226 return -ENOMEM; 227 228 spi_message_init(&req->msg); 229 230 /* FIXME boards with ads7846 might use external vref instead ... */ 231 use_internal = (ts->model == 7846); 232 233 /* maybe turn on internal vREF, and let it settle */ 234 if (use_internal) { 235 req->ref_on = REF_ON; 236 req->xfer[0].tx_buf = &req->ref_on; 237 req->xfer[0].len = 1; 238 spi_message_add_tail(&req->xfer[0], &req->msg); 239 240 req->xfer[1].rx_buf = &req->scratch; 241 req->xfer[1].len = 2; 242 243 /* for 1uF, settle for 800 usec; no cap, 100 usec. */ 244 req->xfer[1].delay_usecs = ts->vref_delay_usecs; 245 spi_message_add_tail(&req->xfer[1], &req->msg); 246 } 247 248 /* take sample */ 249 req->command = (u8) command; 250 req->xfer[2].tx_buf = &req->command; 251 req->xfer[2].len = 1; 252 spi_message_add_tail(&req->xfer[2], &req->msg); 253 254 req->xfer[3].rx_buf = &req->sample; 255 req->xfer[3].len = 2; 256 spi_message_add_tail(&req->xfer[3], &req->msg); 257 258 /* REVISIT: take a few more samples, and compare ... */ 259 260 /* converter in low power mode & enable PENIRQ */ 261 req->ref_off = PWRDOWN; 262 req->xfer[4].tx_buf = &req->ref_off; 263 req->xfer[4].len = 1; 264 spi_message_add_tail(&req->xfer[4], &req->msg); 265 266 req->xfer[5].rx_buf = &req->scratch; 267 req->xfer[5].len = 2; 268 CS_CHANGE(req->xfer[5]); 269 spi_message_add_tail(&req->xfer[5], &req->msg); 270 271 ts->irq_disabled = 1; 272 disable_irq(spi->irq); 273 status = spi_sync(spi, &req->msg); 274 ts->irq_disabled = 0; 275 enable_irq(spi->irq); 276 277 if (status == 0) { 278 /* on-wire is a must-ignore bit, a BE12 value, then padding */ 279 status = be16_to_cpu(req->sample); 280 status = status >> 3; 281 status &= 0x0fff; 282 } 283 284 kfree(req); 285 return status; 286 } 287 288 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE) 289 290 #define SHOW(name, var, adjust) static ssize_t \ 291 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \ 292 { \ 293 struct ads7846 *ts = dev_get_drvdata(dev); \ 294 ssize_t v = ads7846_read12_ser(dev, \ 295 READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \ 296 if (v < 0) \ 297 return v; \ 298 return sprintf(buf, "%u\n", adjust(ts, v)); \ 299 } \ 300 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL); 301 302 303 /* Sysfs conventions report temperatures in millidegrees Celsius. 304 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high 305 * accuracy scheme without calibration data. For now we won't try either; 306 * userspace sees raw sensor values, and must scale/calibrate appropriately. 307 */ 308 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v) 309 { 310 return v; 311 } 312 313 SHOW(temp0, temp0, null_adjust) /* temp1_input */ 314 SHOW(temp1, temp1, null_adjust) /* temp2_input */ 315 316 317 /* sysfs conventions report voltages in millivolts. We can convert voltages 318 * if we know vREF. userspace may need to scale vAUX to match the board's 319 * external resistors; we assume that vBATT only uses the internal ones. 320 */ 321 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v) 322 { 323 unsigned retval = v; 324 325 /* external resistors may scale vAUX into 0..vREF */ 326 retval *= ts->vref_mv; 327 retval = retval >> 12; 328 return retval; 329 } 330 331 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v) 332 { 333 unsigned retval = vaux_adjust(ts, v); 334 335 /* ads7846 has a resistor ladder to scale this signal down */ 336 if (ts->model == 7846) 337 retval *= 4; 338 return retval; 339 } 340 341 SHOW(in0_input, vaux, vaux_adjust) 342 SHOW(in1_input, vbatt, vbatt_adjust) 343 344 345 static struct attribute *ads7846_attributes[] = { 346 &dev_attr_temp0.attr, 347 &dev_attr_temp1.attr, 348 &dev_attr_in0_input.attr, 349 &dev_attr_in1_input.attr, 350 NULL, 351 }; 352 353 static struct attribute_group ads7846_attr_group = { 354 .attrs = ads7846_attributes, 355 }; 356 357 static struct attribute *ads7843_attributes[] = { 358 &dev_attr_in0_input.attr, 359 &dev_attr_in1_input.attr, 360 NULL, 361 }; 362 363 static struct attribute_group ads7843_attr_group = { 364 .attrs = ads7843_attributes, 365 }; 366 367 static struct attribute *ads7845_attributes[] = { 368 &dev_attr_in0_input.attr, 369 NULL, 370 }; 371 372 static struct attribute_group ads7845_attr_group = { 373 .attrs = ads7845_attributes, 374 }; 375 376 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts) 377 { 378 struct device *hwmon; 379 int err; 380 381 /* hwmon sensors need a reference voltage */ 382 switch (ts->model) { 383 case 7846: 384 if (!ts->vref_mv) { 385 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n"); 386 ts->vref_mv = 2500; 387 } 388 break; 389 case 7845: 390 case 7843: 391 if (!ts->vref_mv) { 392 dev_warn(&spi->dev, 393 "external vREF for ADS%d not specified\n", 394 ts->model); 395 return 0; 396 } 397 break; 398 } 399 400 /* different chips have different sensor groups */ 401 switch (ts->model) { 402 case 7846: 403 ts->attr_group = &ads7846_attr_group; 404 break; 405 case 7845: 406 ts->attr_group = &ads7845_attr_group; 407 break; 408 case 7843: 409 ts->attr_group = &ads7843_attr_group; 410 break; 411 default: 412 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model); 413 return 0; 414 } 415 416 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group); 417 if (err) 418 return err; 419 420 hwmon = hwmon_device_register(&spi->dev); 421 if (IS_ERR(hwmon)) { 422 sysfs_remove_group(&spi->dev.kobj, ts->attr_group); 423 return PTR_ERR(hwmon); 424 } 425 426 ts->hwmon = hwmon; 427 return 0; 428 } 429 430 static void ads784x_hwmon_unregister(struct spi_device *spi, 431 struct ads7846 *ts) 432 { 433 if (ts->hwmon) { 434 sysfs_remove_group(&spi->dev.kobj, ts->attr_group); 435 hwmon_device_unregister(ts->hwmon); 436 } 437 } 438 439 #else 440 static inline int ads784x_hwmon_register(struct spi_device *spi, 441 struct ads7846 *ts) 442 { 443 return 0; 444 } 445 446 static inline void ads784x_hwmon_unregister(struct spi_device *spi, 447 struct ads7846 *ts) 448 { 449 } 450 #endif 451 452 static int is_pen_down(struct device *dev) 453 { 454 struct ads7846 *ts = dev_get_drvdata(dev); 455 456 return ts->pendown; 457 } 458 459 static ssize_t ads7846_pen_down_show(struct device *dev, 460 struct device_attribute *attr, char *buf) 461 { 462 return sprintf(buf, "%u\n", is_pen_down(dev)); 463 } 464 465 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL); 466 467 static ssize_t ads7846_disable_show(struct device *dev, 468 struct device_attribute *attr, char *buf) 469 { 470 struct ads7846 *ts = dev_get_drvdata(dev); 471 472 return sprintf(buf, "%u\n", ts->disabled); 473 } 474 475 static ssize_t ads7846_disable_store(struct device *dev, 476 struct device_attribute *attr, 477 const char *buf, size_t count) 478 { 479 struct ads7846 *ts = dev_get_drvdata(dev); 480 unsigned long i; 481 482 if (strict_strtoul(buf, 10, &i)) 483 return -EINVAL; 484 485 spin_lock_irq(&ts->lock); 486 487 if (i) 488 ads7846_disable(ts); 489 else 490 ads7846_enable(ts); 491 492 spin_unlock_irq(&ts->lock); 493 494 return count; 495 } 496 497 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store); 498 499 static struct attribute *ads784x_attributes[] = { 500 &dev_attr_pen_down.attr, 501 &dev_attr_disable.attr, 502 NULL, 503 }; 504 505 static struct attribute_group ads784x_attr_group = { 506 .attrs = ads784x_attributes, 507 }; 508 509 /*--------------------------------------------------------------------------*/ 510 511 static int get_pendown_state(struct ads7846 *ts) 512 { 513 if (ts->get_pendown_state) 514 return ts->get_pendown_state(); 515 516 return !gpio_get_value(ts->gpio_pendown); 517 } 518 519 static void null_wait_for_sync(void) 520 { 521 } 522 523 /* 524 * PENIRQ only kicks the timer. The timer only reissues the SPI transfer, 525 * to retrieve touchscreen status. 526 * 527 * The SPI transfer completion callback does the real work. It reports 528 * touchscreen events and reactivates the timer (or IRQ) as appropriate. 529 */ 530 531 static void ads7846_rx(void *ads) 532 { 533 struct ads7846 *ts = ads; 534 struct ads7846_packet *packet = ts->packet; 535 unsigned Rt; 536 u16 x, y, z1, z2; 537 538 /* ads7846_rx_val() did in-place conversion (including byteswap) from 539 * on-the-wire format as part of debouncing to get stable readings. 540 */ 541 x = packet->tc.x; 542 y = packet->tc.y; 543 z1 = packet->tc.z1; 544 z2 = packet->tc.z2; 545 546 /* range filtering */ 547 if (x == MAX_12BIT) 548 x = 0; 549 550 if (ts->model == 7843) { 551 Rt = ts->pressure_max / 2; 552 } else if (likely(x && z1)) { 553 /* compute touch pressure resistance using equation #2 */ 554 Rt = z2; 555 Rt -= z1; 556 Rt *= x; 557 Rt *= ts->x_plate_ohms; 558 Rt /= z1; 559 Rt = (Rt + 2047) >> 12; 560 } else { 561 Rt = 0; 562 } 563 564 /* Sample found inconsistent by debouncing or pressure is beyond 565 * the maximum. Don't report it to user space, repeat at least 566 * once more the measurement 567 */ 568 if (packet->tc.ignore || Rt > ts->pressure_max) { 569 #ifdef VERBOSE 570 pr_debug("%s: ignored %d pressure %d\n", 571 dev_name(&ts->spi->dev), packet->tc.ignore, Rt); 572 #endif 573 hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_PERIOD), 574 HRTIMER_MODE_REL); 575 return; 576 } 577 578 /* Maybe check the pendown state before reporting. This discards 579 * false readings when the pen is lifted. 580 */ 581 if (ts->penirq_recheck_delay_usecs) { 582 udelay(ts->penirq_recheck_delay_usecs); 583 if (!get_pendown_state(ts)) 584 Rt = 0; 585 } 586 587 /* NOTE: We can't rely on the pressure to determine the pen down 588 * state, even this controller has a pressure sensor. The pressure 589 * value can fluctuate for quite a while after lifting the pen and 590 * in some cases may not even settle at the expected value. 591 * 592 * The only safe way to check for the pen up condition is in the 593 * timer by reading the pen signal state (it's a GPIO _and_ IRQ). 594 */ 595 if (Rt) { 596 struct input_dev *input = ts->input; 597 598 if (!ts->pendown) { 599 input_report_key(input, BTN_TOUCH, 1); 600 ts->pendown = 1; 601 #ifdef VERBOSE 602 dev_dbg(&ts->spi->dev, "DOWN\n"); 603 #endif 604 } 605 606 if (ts->swap_xy) 607 swap(x, y); 608 609 input_report_abs(input, ABS_X, x); 610 input_report_abs(input, ABS_Y, y); 611 input_report_abs(input, ABS_PRESSURE, Rt); 612 613 input_sync(input); 614 #ifdef VERBOSE 615 dev_dbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt); 616 #endif 617 } 618 619 hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_PERIOD), 620 HRTIMER_MODE_REL); 621 } 622 623 static int ads7846_debounce(void *ads, int data_idx, int *val) 624 { 625 struct ads7846 *ts = ads; 626 627 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) { 628 /* Start over collecting consistent readings. */ 629 ts->read_rep = 0; 630 /* Repeat it, if this was the first read or the read 631 * wasn't consistent enough. */ 632 if (ts->read_cnt < ts->debounce_max) { 633 ts->last_read = *val; 634 ts->read_cnt++; 635 return ADS7846_FILTER_REPEAT; 636 } else { 637 /* Maximum number of debouncing reached and still 638 * not enough number of consistent readings. Abort 639 * the whole sample, repeat it in the next sampling 640 * period. 641 */ 642 ts->read_cnt = 0; 643 return ADS7846_FILTER_IGNORE; 644 } 645 } else { 646 if (++ts->read_rep > ts->debounce_rep) { 647 /* Got a good reading for this coordinate, 648 * go for the next one. */ 649 ts->read_cnt = 0; 650 ts->read_rep = 0; 651 return ADS7846_FILTER_OK; 652 } else { 653 /* Read more values that are consistent. */ 654 ts->read_cnt++; 655 return ADS7846_FILTER_REPEAT; 656 } 657 } 658 } 659 660 static int ads7846_no_filter(void *ads, int data_idx, int *val) 661 { 662 return ADS7846_FILTER_OK; 663 } 664 665 static void ads7846_rx_val(void *ads) 666 { 667 struct ads7846 *ts = ads; 668 struct ads7846_packet *packet = ts->packet; 669 struct spi_message *m; 670 struct spi_transfer *t; 671 int val; 672 int action; 673 int status; 674 675 m = &ts->msg[ts->msg_idx]; 676 t = list_entry(m->transfers.prev, struct spi_transfer, transfer_list); 677 678 /* adjust: on-wire is a must-ignore bit, a BE12 value, then padding; 679 * built from two 8 bit values written msb-first. 680 */ 681 val = be16_to_cpup((__be16 *)t->rx_buf) >> 3; 682 683 action = ts->filter(ts->filter_data, ts->msg_idx, &val); 684 switch (action) { 685 case ADS7846_FILTER_REPEAT: 686 break; 687 case ADS7846_FILTER_IGNORE: 688 packet->tc.ignore = 1; 689 /* Last message will contain ads7846_rx() as the 690 * completion function. 691 */ 692 m = ts->last_msg; 693 break; 694 case ADS7846_FILTER_OK: 695 *(u16 *)t->rx_buf = val; 696 packet->tc.ignore = 0; 697 m = &ts->msg[++ts->msg_idx]; 698 break; 699 default: 700 BUG(); 701 } 702 ts->wait_for_sync(); 703 status = spi_async(ts->spi, m); 704 if (status) 705 dev_err(&ts->spi->dev, "spi_async --> %d\n", 706 status); 707 } 708 709 static enum hrtimer_restart ads7846_timer(struct hrtimer *handle) 710 { 711 struct ads7846 *ts = container_of(handle, struct ads7846, timer); 712 int status = 0; 713 714 spin_lock(&ts->lock); 715 716 if (unlikely(!get_pendown_state(ts) || 717 device_suspended(&ts->spi->dev))) { 718 if (ts->pendown) { 719 struct input_dev *input = ts->input; 720 721 input_report_key(input, BTN_TOUCH, 0); 722 input_report_abs(input, ABS_PRESSURE, 0); 723 input_sync(input); 724 725 ts->pendown = 0; 726 #ifdef VERBOSE 727 dev_dbg(&ts->spi->dev, "UP\n"); 728 #endif 729 } 730 731 /* measurement cycle ended */ 732 if (!device_suspended(&ts->spi->dev)) { 733 ts->irq_disabled = 0; 734 enable_irq(ts->spi->irq); 735 } 736 ts->pending = 0; 737 } else { 738 /* pen is still down, continue with the measurement */ 739 ts->msg_idx = 0; 740 ts->wait_for_sync(); 741 status = spi_async(ts->spi, &ts->msg[0]); 742 if (status) 743 dev_err(&ts->spi->dev, "spi_async --> %d\n", status); 744 } 745 746 spin_unlock(&ts->lock); 747 return HRTIMER_NORESTART; 748 } 749 750 static irqreturn_t ads7846_irq(int irq, void *handle) 751 { 752 struct ads7846 *ts = handle; 753 unsigned long flags; 754 755 spin_lock_irqsave(&ts->lock, flags); 756 if (likely(get_pendown_state(ts))) { 757 if (!ts->irq_disabled) { 758 /* The ARM do_simple_IRQ() dispatcher doesn't act 759 * like the other dispatchers: it will report IRQs 760 * even after they've been disabled. We work around 761 * that here. (The "generic irq" framework may help...) 762 */ 763 ts->irq_disabled = 1; 764 disable_irq_nosync(ts->spi->irq); 765 ts->pending = 1; 766 hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_DELAY), 767 HRTIMER_MODE_REL); 768 } 769 } 770 spin_unlock_irqrestore(&ts->lock, flags); 771 772 return IRQ_HANDLED; 773 } 774 775 /*--------------------------------------------------------------------------*/ 776 777 /* Must be called with ts->lock held */ 778 static void ads7846_disable(struct ads7846 *ts) 779 { 780 if (ts->disabled) 781 return; 782 783 ts->disabled = 1; 784 785 /* are we waiting for IRQ, or polling? */ 786 if (!ts->pending) { 787 ts->irq_disabled = 1; 788 disable_irq(ts->spi->irq); 789 } else { 790 /* the timer will run at least once more, and 791 * leave everything in a clean state, IRQ disabled 792 */ 793 while (ts->pending) { 794 spin_unlock_irq(&ts->lock); 795 msleep(1); 796 spin_lock_irq(&ts->lock); 797 } 798 } 799 800 /* we know the chip's in lowpower mode since we always 801 * leave it that way after every request 802 */ 803 } 804 805 /* Must be called with ts->lock held */ 806 static void ads7846_enable(struct ads7846 *ts) 807 { 808 if (!ts->disabled) 809 return; 810 811 ts->disabled = 0; 812 ts->irq_disabled = 0; 813 enable_irq(ts->spi->irq); 814 } 815 816 static int ads7846_suspend(struct spi_device *spi, pm_message_t message) 817 { 818 struct ads7846 *ts = dev_get_drvdata(&spi->dev); 819 820 spin_lock_irq(&ts->lock); 821 822 ts->is_suspended = 1; 823 ads7846_disable(ts); 824 825 spin_unlock_irq(&ts->lock); 826 827 return 0; 828 829 } 830 831 static int ads7846_resume(struct spi_device *spi) 832 { 833 struct ads7846 *ts = dev_get_drvdata(&spi->dev); 834 835 spin_lock_irq(&ts->lock); 836 837 ts->is_suspended = 0; 838 ads7846_enable(ts); 839 840 spin_unlock_irq(&ts->lock); 841 842 return 0; 843 } 844 845 static int __devinit setup_pendown(struct spi_device *spi, struct ads7846 *ts) 846 { 847 struct ads7846_platform_data *pdata = spi->dev.platform_data; 848 int err; 849 850 /* REVISIT when the irq can be triggered active-low, or if for some 851 * reason the touchscreen isn't hooked up, we don't need to access 852 * the pendown state. 853 */ 854 if (!pdata->get_pendown_state && !gpio_is_valid(pdata->gpio_pendown)) { 855 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n"); 856 return -EINVAL; 857 } 858 859 if (pdata->get_pendown_state) { 860 ts->get_pendown_state = pdata->get_pendown_state; 861 return 0; 862 } 863 864 err = gpio_request(pdata->gpio_pendown, "ads7846_pendown"); 865 if (err) { 866 dev_err(&spi->dev, "failed to request pendown GPIO%d\n", 867 pdata->gpio_pendown); 868 return err; 869 } 870 871 ts->gpio_pendown = pdata->gpio_pendown; 872 return 0; 873 } 874 875 static int __devinit ads7846_probe(struct spi_device *spi) 876 { 877 struct ads7846 *ts; 878 struct ads7846_packet *packet; 879 struct input_dev *input_dev; 880 struct ads7846_platform_data *pdata = spi->dev.platform_data; 881 struct spi_message *m; 882 struct spi_transfer *x; 883 int vref; 884 int err; 885 886 if (!spi->irq) { 887 dev_dbg(&spi->dev, "no IRQ?\n"); 888 return -ENODEV; 889 } 890 891 if (!pdata) { 892 dev_dbg(&spi->dev, "no platform data?\n"); 893 return -ENODEV; 894 } 895 896 /* don't exceed max specified sample rate */ 897 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) { 898 dev_dbg(&spi->dev, "f(sample) %d KHz?\n", 899 (spi->max_speed_hz/SAMPLE_BITS)/1000); 900 return -EINVAL; 901 } 902 903 /* We'd set TX wordsize 8 bits and RX wordsize to 13 bits ... except 904 * that even if the hardware can do that, the SPI controller driver 905 * may not. So we stick to very-portable 8 bit words, both RX and TX. 906 */ 907 spi->bits_per_word = 8; 908 spi->mode = SPI_MODE_0; 909 err = spi_setup(spi); 910 if (err < 0) 911 return err; 912 913 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL); 914 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL); 915 input_dev = input_allocate_device(); 916 if (!ts || !packet || !input_dev) { 917 err = -ENOMEM; 918 goto err_free_mem; 919 } 920 921 dev_set_drvdata(&spi->dev, ts); 922 923 ts->packet = packet; 924 ts->spi = spi; 925 ts->input = input_dev; 926 ts->vref_mv = pdata->vref_mv; 927 ts->swap_xy = pdata->swap_xy; 928 929 hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 930 ts->timer.function = ads7846_timer; 931 932 spin_lock_init(&ts->lock); 933 934 ts->model = pdata->model ? : 7846; 935 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100; 936 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400; 937 ts->pressure_max = pdata->pressure_max ? : ~0; 938 939 if (pdata->filter != NULL) { 940 if (pdata->filter_init != NULL) { 941 err = pdata->filter_init(pdata, &ts->filter_data); 942 if (err < 0) 943 goto err_free_mem; 944 } 945 ts->filter = pdata->filter; 946 ts->filter_cleanup = pdata->filter_cleanup; 947 } else if (pdata->debounce_max) { 948 ts->debounce_max = pdata->debounce_max; 949 if (ts->debounce_max < 2) 950 ts->debounce_max = 2; 951 ts->debounce_tol = pdata->debounce_tol; 952 ts->debounce_rep = pdata->debounce_rep; 953 ts->filter = ads7846_debounce; 954 ts->filter_data = ts; 955 } else 956 ts->filter = ads7846_no_filter; 957 958 err = setup_pendown(spi, ts); 959 if (err) 960 goto err_cleanup_filter; 961 962 if (pdata->penirq_recheck_delay_usecs) 963 ts->penirq_recheck_delay_usecs = 964 pdata->penirq_recheck_delay_usecs; 965 966 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync; 967 968 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev)); 969 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model); 970 971 input_dev->name = ts->name; 972 input_dev->phys = ts->phys; 973 input_dev->dev.parent = &spi->dev; 974 975 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); 976 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); 977 input_set_abs_params(input_dev, ABS_X, 978 pdata->x_min ? : 0, 979 pdata->x_max ? : MAX_12BIT, 980 0, 0); 981 input_set_abs_params(input_dev, ABS_Y, 982 pdata->y_min ? : 0, 983 pdata->y_max ? : MAX_12BIT, 984 0, 0); 985 input_set_abs_params(input_dev, ABS_PRESSURE, 986 pdata->pressure_min, pdata->pressure_max, 0, 0); 987 988 vref = pdata->keep_vref_on; 989 990 /* set up the transfers to read touchscreen state; this assumes we 991 * use formula #2 for pressure, not #3. 992 */ 993 m = &ts->msg[0]; 994 x = ts->xfer; 995 996 spi_message_init(m); 997 998 /* y- still on; turn on only y+ (and ADC) */ 999 packet->read_y = READ_Y(vref); 1000 x->tx_buf = &packet->read_y; 1001 x->len = 1; 1002 spi_message_add_tail(x, m); 1003 1004 x++; 1005 x->rx_buf = &packet->tc.y; 1006 x->len = 2; 1007 spi_message_add_tail(x, m); 1008 1009 /* the first sample after switching drivers can be low quality; 1010 * optionally discard it, using a second one after the signals 1011 * have had enough time to stabilize. 1012 */ 1013 if (pdata->settle_delay_usecs) { 1014 x->delay_usecs = pdata->settle_delay_usecs; 1015 1016 x++; 1017 x->tx_buf = &packet->read_y; 1018 x->len = 1; 1019 spi_message_add_tail(x, m); 1020 1021 x++; 1022 x->rx_buf = &packet->tc.y; 1023 x->len = 2; 1024 spi_message_add_tail(x, m); 1025 } 1026 1027 m->complete = ads7846_rx_val; 1028 m->context = ts; 1029 1030 m++; 1031 spi_message_init(m); 1032 1033 /* turn y- off, x+ on, then leave in lowpower */ 1034 x++; 1035 packet->read_x = READ_X(vref); 1036 x->tx_buf = &packet->read_x; 1037 x->len = 1; 1038 spi_message_add_tail(x, m); 1039 1040 x++; 1041 x->rx_buf = &packet->tc.x; 1042 x->len = 2; 1043 spi_message_add_tail(x, m); 1044 1045 /* ... maybe discard first sample ... */ 1046 if (pdata->settle_delay_usecs) { 1047 x->delay_usecs = pdata->settle_delay_usecs; 1048 1049 x++; 1050 x->tx_buf = &packet->read_x; 1051 x->len = 1; 1052 spi_message_add_tail(x, m); 1053 1054 x++; 1055 x->rx_buf = &packet->tc.x; 1056 x->len = 2; 1057 spi_message_add_tail(x, m); 1058 } 1059 1060 m->complete = ads7846_rx_val; 1061 m->context = ts; 1062 1063 /* turn y+ off, x- on; we'll use formula #2 */ 1064 if (ts->model == 7846) { 1065 m++; 1066 spi_message_init(m); 1067 1068 x++; 1069 packet->read_z1 = READ_Z1(vref); 1070 x->tx_buf = &packet->read_z1; 1071 x->len = 1; 1072 spi_message_add_tail(x, m); 1073 1074 x++; 1075 x->rx_buf = &packet->tc.z1; 1076 x->len = 2; 1077 spi_message_add_tail(x, m); 1078 1079 /* ... maybe discard first sample ... */ 1080 if (pdata->settle_delay_usecs) { 1081 x->delay_usecs = pdata->settle_delay_usecs; 1082 1083 x++; 1084 x->tx_buf = &packet->read_z1; 1085 x->len = 1; 1086 spi_message_add_tail(x, m); 1087 1088 x++; 1089 x->rx_buf = &packet->tc.z1; 1090 x->len = 2; 1091 spi_message_add_tail(x, m); 1092 } 1093 1094 m->complete = ads7846_rx_val; 1095 m->context = ts; 1096 1097 m++; 1098 spi_message_init(m); 1099 1100 x++; 1101 packet->read_z2 = READ_Z2(vref); 1102 x->tx_buf = &packet->read_z2; 1103 x->len = 1; 1104 spi_message_add_tail(x, m); 1105 1106 x++; 1107 x->rx_buf = &packet->tc.z2; 1108 x->len = 2; 1109 spi_message_add_tail(x, m); 1110 1111 /* ... maybe discard first sample ... */ 1112 if (pdata->settle_delay_usecs) { 1113 x->delay_usecs = pdata->settle_delay_usecs; 1114 1115 x++; 1116 x->tx_buf = &packet->read_z2; 1117 x->len = 1; 1118 spi_message_add_tail(x, m); 1119 1120 x++; 1121 x->rx_buf = &packet->tc.z2; 1122 x->len = 2; 1123 spi_message_add_tail(x, m); 1124 } 1125 1126 m->complete = ads7846_rx_val; 1127 m->context = ts; 1128 } 1129 1130 /* power down */ 1131 m++; 1132 spi_message_init(m); 1133 1134 x++; 1135 packet->pwrdown = PWRDOWN; 1136 x->tx_buf = &packet->pwrdown; 1137 x->len = 1; 1138 spi_message_add_tail(x, m); 1139 1140 x++; 1141 x->rx_buf = &packet->dummy; 1142 x->len = 2; 1143 CS_CHANGE(*x); 1144 spi_message_add_tail(x, m); 1145 1146 m->complete = ads7846_rx; 1147 m->context = ts; 1148 1149 ts->last_msg = m; 1150 1151 if (request_irq(spi->irq, ads7846_irq, IRQF_TRIGGER_FALLING, 1152 spi->dev.driver->name, ts)) { 1153 dev_info(&spi->dev, 1154 "trying pin change workaround on irq %d\n", spi->irq); 1155 err = request_irq(spi->irq, ads7846_irq, 1156 IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING, 1157 spi->dev.driver->name, ts); 1158 if (err) { 1159 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq); 1160 goto err_free_gpio; 1161 } 1162 } 1163 1164 err = ads784x_hwmon_register(spi, ts); 1165 if (err) 1166 goto err_free_irq; 1167 1168 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq); 1169 1170 /* take a first sample, leaving nPENIRQ active and vREF off; avoid 1171 * the touchscreen, in case it's not connected. 1172 */ 1173 (void) ads7846_read12_ser(&spi->dev, 1174 READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON); 1175 1176 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group); 1177 if (err) 1178 goto err_remove_hwmon; 1179 1180 err = input_register_device(input_dev); 1181 if (err) 1182 goto err_remove_attr_group; 1183 1184 return 0; 1185 1186 err_remove_attr_group: 1187 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group); 1188 err_remove_hwmon: 1189 ads784x_hwmon_unregister(spi, ts); 1190 err_free_irq: 1191 free_irq(spi->irq, ts); 1192 err_free_gpio: 1193 if (ts->gpio_pendown != -1) 1194 gpio_free(ts->gpio_pendown); 1195 err_cleanup_filter: 1196 if (ts->filter_cleanup) 1197 ts->filter_cleanup(ts->filter_data); 1198 err_free_mem: 1199 input_free_device(input_dev); 1200 kfree(packet); 1201 kfree(ts); 1202 return err; 1203 } 1204 1205 static int __devexit ads7846_remove(struct spi_device *spi) 1206 { 1207 struct ads7846 *ts = dev_get_drvdata(&spi->dev); 1208 1209 ads784x_hwmon_unregister(spi, ts); 1210 input_unregister_device(ts->input); 1211 1212 ads7846_suspend(spi, PMSG_SUSPEND); 1213 1214 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group); 1215 1216 free_irq(ts->spi->irq, ts); 1217 /* suspend left the IRQ disabled */ 1218 enable_irq(ts->spi->irq); 1219 1220 if (ts->gpio_pendown != -1) 1221 gpio_free(ts->gpio_pendown); 1222 1223 if (ts->filter_cleanup) 1224 ts->filter_cleanup(ts->filter_data); 1225 1226 kfree(ts->packet); 1227 kfree(ts); 1228 1229 dev_dbg(&spi->dev, "unregistered touchscreen\n"); 1230 return 0; 1231 } 1232 1233 static struct spi_driver ads7846_driver = { 1234 .driver = { 1235 .name = "ads7846", 1236 .bus = &spi_bus_type, 1237 .owner = THIS_MODULE, 1238 }, 1239 .probe = ads7846_probe, 1240 .remove = __devexit_p(ads7846_remove), 1241 .suspend = ads7846_suspend, 1242 .resume = ads7846_resume, 1243 }; 1244 1245 static int __init ads7846_init(void) 1246 { 1247 return spi_register_driver(&ads7846_driver); 1248 } 1249 module_init(ads7846_init); 1250 1251 static void __exit ads7846_exit(void) 1252 { 1253 spi_unregister_driver(&ads7846_driver); 1254 } 1255 module_exit(ads7846_exit); 1256 1257 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver"); 1258 MODULE_LICENSE("GPL"); 1259