1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/module.h>
35 #include <asm/irq.h>
36 
37 /*
38  * This code has been heavily tested on a Nokia 770, and lightly
39  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
40  * TSC2046 is just newer ads7846 silicon.
41  * Support for ads7843 tested on Atmel at91sam926x-EK.
42  * Support for ads7845 has only been stubbed in.
43  * Support for Analog Devices AD7873 and AD7843 tested.
44  *
45  * IRQ handling needs a workaround because of a shortcoming in handling
46  * edge triggered IRQs on some platforms like the OMAP1/2. These
47  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
48  * have to maintain our own SW IRQ disabled status. This should be
49  * removed as soon as the affected platform's IRQ handling is fixed.
50  *
51  * App note sbaa036 talks in more detail about accurate sampling...
52  * that ought to help in situations like LCDs inducing noise (which
53  * can also be helped by using synch signals) and more generally.
54  * This driver tries to utilize the measures described in the app
55  * note. The strength of filtering can be set in the board-* specific
56  * files.
57  */
58 
59 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
60 #define TS_POLL_PERIOD	5	/* ms delay between samples */
61 
62 /* this driver doesn't aim at the peak continuous sample rate */
63 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
64 
65 struct ts_event {
66 	/*
67 	 * For portability, we can't read 12 bit values using SPI (which
68 	 * would make the controller deliver them as native byte order u16
69 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
70 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
71 	 */
72 	u16	x;
73 	u16	y;
74 	u16	z1, z2;
75 	bool	ignore;
76 	u8	x_buf[3];
77 	u8	y_buf[3];
78 };
79 
80 /*
81  * We allocate this separately to avoid cache line sharing issues when
82  * driver is used with DMA-based SPI controllers (like atmel_spi) on
83  * systems where main memory is not DMA-coherent (most non-x86 boards).
84  */
85 struct ads7846_packet {
86 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
87 	u16			dummy;		/* for the pwrdown read */
88 	struct ts_event		tc;
89 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
90 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
91 };
92 
93 struct ads7846 {
94 	struct input_dev	*input;
95 	char			phys[32];
96 	char			name[32];
97 
98 	struct spi_device	*spi;
99 	struct regulator	*reg;
100 
101 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
102 	struct attribute_group	*attr_group;
103 	struct device		*hwmon;
104 #endif
105 
106 	u16			model;
107 	u16			vref_mv;
108 	u16			vref_delay_usecs;
109 	u16			x_plate_ohms;
110 	u16			pressure_max;
111 
112 	bool			swap_xy;
113 	bool			use_internal;
114 
115 	struct ads7846_packet	*packet;
116 
117 	struct spi_transfer	xfer[18];
118 	struct spi_message	msg[5];
119 	int			msg_count;
120 	wait_queue_head_t	wait;
121 
122 	bool			pendown;
123 
124 	int			read_cnt;
125 	int			read_rep;
126 	int			last_read;
127 
128 	u16			debounce_max;
129 	u16			debounce_tol;
130 	u16			debounce_rep;
131 
132 	u16			penirq_recheck_delay_usecs;
133 
134 	struct mutex		lock;
135 	bool			stopped;	/* P: lock */
136 	bool			disabled;	/* P: lock */
137 	bool			suspended;	/* P: lock */
138 
139 	int			(*filter)(void *data, int data_idx, int *val);
140 	void			*filter_data;
141 	void			(*filter_cleanup)(void *data);
142 	int			(*get_pendown_state)(void);
143 	int			gpio_pendown;
144 
145 	void			(*wait_for_sync)(void);
146 };
147 
148 /* leave chip selected when we're done, for quicker re-select? */
149 #if	0
150 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
151 #else
152 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
153 #endif
154 
155 /*--------------------------------------------------------------------------*/
156 
157 /* The ADS7846 has touchscreen and other sensors.
158  * Earlier ads784x chips are somewhat compatible.
159  */
160 #define	ADS_START		(1 << 7)
161 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
162 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
163 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
164 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
165 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
166 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
167 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
168 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
169 #define	ADS_8_BIT		(1 << 3)
170 #define	ADS_12_BIT		(0 << 3)
171 #define	ADS_SER			(1 << 2)	/* non-differential */
172 #define	ADS_DFR			(0 << 2)	/* differential */
173 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
174 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
175 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
176 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
177 
178 #define	MAX_12BIT	((1<<12)-1)
179 
180 /* leave ADC powered up (disables penirq) between differential samples */
181 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
182 	| ADS_12_BIT | ADS_DFR | \
183 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
184 
185 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
186 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
187 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
188 
189 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
190 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
191 
192 /* single-ended samples need to first power up reference voltage;
193  * we leave both ADC and VREF powered
194  */
195 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
196 	| ADS_12_BIT | ADS_SER)
197 
198 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
199 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
200 
201 /* Must be called with ts->lock held */
202 static void ads7846_stop(struct ads7846 *ts)
203 {
204 	if (!ts->disabled && !ts->suspended) {
205 		/* Signal IRQ thread to stop polling and disable the handler. */
206 		ts->stopped = true;
207 		mb();
208 		wake_up(&ts->wait);
209 		disable_irq(ts->spi->irq);
210 	}
211 }
212 
213 /* Must be called with ts->lock held */
214 static void ads7846_restart(struct ads7846 *ts)
215 {
216 	if (!ts->disabled && !ts->suspended) {
217 		/* Tell IRQ thread that it may poll the device. */
218 		ts->stopped = false;
219 		mb();
220 		enable_irq(ts->spi->irq);
221 	}
222 }
223 
224 /* Must be called with ts->lock held */
225 static void __ads7846_disable(struct ads7846 *ts)
226 {
227 	ads7846_stop(ts);
228 	regulator_disable(ts->reg);
229 
230 	/*
231 	 * We know the chip's in low power mode since we always
232 	 * leave it that way after every request
233 	 */
234 }
235 
236 /* Must be called with ts->lock held */
237 static void __ads7846_enable(struct ads7846 *ts)
238 {
239 	int error;
240 
241 	error = regulator_enable(ts->reg);
242 	if (error != 0)
243 		dev_err(&ts->spi->dev, "Failed to enable supply: %d\n", error);
244 
245 	ads7846_restart(ts);
246 }
247 
248 static void ads7846_disable(struct ads7846 *ts)
249 {
250 	mutex_lock(&ts->lock);
251 
252 	if (!ts->disabled) {
253 
254 		if  (!ts->suspended)
255 			__ads7846_disable(ts);
256 
257 		ts->disabled = true;
258 	}
259 
260 	mutex_unlock(&ts->lock);
261 }
262 
263 static void ads7846_enable(struct ads7846 *ts)
264 {
265 	mutex_lock(&ts->lock);
266 
267 	if (ts->disabled) {
268 
269 		ts->disabled = false;
270 
271 		if (!ts->suspended)
272 			__ads7846_enable(ts);
273 	}
274 
275 	mutex_unlock(&ts->lock);
276 }
277 
278 /*--------------------------------------------------------------------------*/
279 
280 /*
281  * Non-touchscreen sensors only use single-ended conversions.
282  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
283  * ads7846 lets that pin be unconnected, to use internal vREF.
284  */
285 
286 struct ser_req {
287 	u8			ref_on;
288 	u8			command;
289 	u8			ref_off;
290 	u16			scratch;
291 	struct spi_message	msg;
292 	struct spi_transfer	xfer[6];
293 	/*
294 	 * DMA (thus cache coherency maintenance) requires the
295 	 * transfer buffers to live in their own cache lines.
296 	 */
297 	__be16 sample ____cacheline_aligned;
298 };
299 
300 struct ads7845_ser_req {
301 	u8			command[3];
302 	struct spi_message	msg;
303 	struct spi_transfer	xfer[2];
304 	/*
305 	 * DMA (thus cache coherency maintenance) requires the
306 	 * transfer buffers to live in their own cache lines.
307 	 */
308 	u8 sample[3] ____cacheline_aligned;
309 };
310 
311 static int ads7846_read12_ser(struct device *dev, unsigned command)
312 {
313 	struct spi_device *spi = to_spi_device(dev);
314 	struct ads7846 *ts = dev_get_drvdata(dev);
315 	struct ser_req *req;
316 	int status;
317 
318 	req = kzalloc(sizeof *req, GFP_KERNEL);
319 	if (!req)
320 		return -ENOMEM;
321 
322 	spi_message_init(&req->msg);
323 
324 	/* maybe turn on internal vREF, and let it settle */
325 	if (ts->use_internal) {
326 		req->ref_on = REF_ON;
327 		req->xfer[0].tx_buf = &req->ref_on;
328 		req->xfer[0].len = 1;
329 		spi_message_add_tail(&req->xfer[0], &req->msg);
330 
331 		req->xfer[1].rx_buf = &req->scratch;
332 		req->xfer[1].len = 2;
333 
334 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
335 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
336 		spi_message_add_tail(&req->xfer[1], &req->msg);
337 
338 		/* Enable reference voltage */
339 		command |= ADS_PD10_REF_ON;
340 	}
341 
342 	/* Enable ADC in every case */
343 	command |= ADS_PD10_ADC_ON;
344 
345 	/* take sample */
346 	req->command = (u8) command;
347 	req->xfer[2].tx_buf = &req->command;
348 	req->xfer[2].len = 1;
349 	spi_message_add_tail(&req->xfer[2], &req->msg);
350 
351 	req->xfer[3].rx_buf = &req->sample;
352 	req->xfer[3].len = 2;
353 	spi_message_add_tail(&req->xfer[3], &req->msg);
354 
355 	/* REVISIT:  take a few more samples, and compare ... */
356 
357 	/* converter in low power mode & enable PENIRQ */
358 	req->ref_off = PWRDOWN;
359 	req->xfer[4].tx_buf = &req->ref_off;
360 	req->xfer[4].len = 1;
361 	spi_message_add_tail(&req->xfer[4], &req->msg);
362 
363 	req->xfer[5].rx_buf = &req->scratch;
364 	req->xfer[5].len = 2;
365 	CS_CHANGE(req->xfer[5]);
366 	spi_message_add_tail(&req->xfer[5], &req->msg);
367 
368 	mutex_lock(&ts->lock);
369 	ads7846_stop(ts);
370 	status = spi_sync(spi, &req->msg);
371 	ads7846_restart(ts);
372 	mutex_unlock(&ts->lock);
373 
374 	if (status == 0) {
375 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
376 		status = be16_to_cpu(req->sample);
377 		status = status >> 3;
378 		status &= 0x0fff;
379 	}
380 
381 	kfree(req);
382 	return status;
383 }
384 
385 static int ads7845_read12_ser(struct device *dev, unsigned command)
386 {
387 	struct spi_device *spi = to_spi_device(dev);
388 	struct ads7846 *ts = dev_get_drvdata(dev);
389 	struct ads7845_ser_req *req;
390 	int status;
391 
392 	req = kzalloc(sizeof *req, GFP_KERNEL);
393 	if (!req)
394 		return -ENOMEM;
395 
396 	spi_message_init(&req->msg);
397 
398 	req->command[0] = (u8) command;
399 	req->xfer[0].tx_buf = req->command;
400 	req->xfer[0].rx_buf = req->sample;
401 	req->xfer[0].len = 3;
402 	spi_message_add_tail(&req->xfer[0], &req->msg);
403 
404 	mutex_lock(&ts->lock);
405 	ads7846_stop(ts);
406 	status = spi_sync(spi, &req->msg);
407 	ads7846_restart(ts);
408 	mutex_unlock(&ts->lock);
409 
410 	if (status == 0) {
411 		/* BE12 value, then padding */
412 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
413 		status = status >> 3;
414 		status &= 0x0fff;
415 	}
416 
417 	kfree(req);
418 	return status;
419 }
420 
421 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
422 
423 #define SHOW(name, var, adjust) static ssize_t \
424 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
425 { \
426 	struct ads7846 *ts = dev_get_drvdata(dev); \
427 	ssize_t v = ads7846_read12_ser(dev, \
428 			READ_12BIT_SER(var)); \
429 	if (v < 0) \
430 		return v; \
431 	return sprintf(buf, "%u\n", adjust(ts, v)); \
432 } \
433 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
434 
435 
436 /* Sysfs conventions report temperatures in millidegrees Celsius.
437  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
438  * accuracy scheme without calibration data.  For now we won't try either;
439  * userspace sees raw sensor values, and must scale/calibrate appropriately.
440  */
441 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
442 {
443 	return v;
444 }
445 
446 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
447 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
448 
449 
450 /* sysfs conventions report voltages in millivolts.  We can convert voltages
451  * if we know vREF.  userspace may need to scale vAUX to match the board's
452  * external resistors; we assume that vBATT only uses the internal ones.
453  */
454 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
455 {
456 	unsigned retval = v;
457 
458 	/* external resistors may scale vAUX into 0..vREF */
459 	retval *= ts->vref_mv;
460 	retval = retval >> 12;
461 
462 	return retval;
463 }
464 
465 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
466 {
467 	unsigned retval = vaux_adjust(ts, v);
468 
469 	/* ads7846 has a resistor ladder to scale this signal down */
470 	if (ts->model == 7846)
471 		retval *= 4;
472 
473 	return retval;
474 }
475 
476 SHOW(in0_input, vaux, vaux_adjust)
477 SHOW(in1_input, vbatt, vbatt_adjust)
478 
479 static struct attribute *ads7846_attributes[] = {
480 	&dev_attr_temp0.attr,
481 	&dev_attr_temp1.attr,
482 	&dev_attr_in0_input.attr,
483 	&dev_attr_in1_input.attr,
484 	NULL,
485 };
486 
487 static struct attribute_group ads7846_attr_group = {
488 	.attrs = ads7846_attributes,
489 };
490 
491 static struct attribute *ads7843_attributes[] = {
492 	&dev_attr_in0_input.attr,
493 	&dev_attr_in1_input.attr,
494 	NULL,
495 };
496 
497 static struct attribute_group ads7843_attr_group = {
498 	.attrs = ads7843_attributes,
499 };
500 
501 static struct attribute *ads7845_attributes[] = {
502 	&dev_attr_in0_input.attr,
503 	NULL,
504 };
505 
506 static struct attribute_group ads7845_attr_group = {
507 	.attrs = ads7845_attributes,
508 };
509 
510 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
511 {
512 	struct device *hwmon;
513 	int err;
514 
515 	/* hwmon sensors need a reference voltage */
516 	switch (ts->model) {
517 	case 7846:
518 		if (!ts->vref_mv) {
519 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
520 			ts->vref_mv = 2500;
521 			ts->use_internal = true;
522 		}
523 		break;
524 	case 7845:
525 	case 7843:
526 		if (!ts->vref_mv) {
527 			dev_warn(&spi->dev,
528 				"external vREF for ADS%d not specified\n",
529 				ts->model);
530 			return 0;
531 		}
532 		break;
533 	}
534 
535 	/* different chips have different sensor groups */
536 	switch (ts->model) {
537 	case 7846:
538 		ts->attr_group = &ads7846_attr_group;
539 		break;
540 	case 7845:
541 		ts->attr_group = &ads7845_attr_group;
542 		break;
543 	case 7843:
544 		ts->attr_group = &ads7843_attr_group;
545 		break;
546 	default:
547 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
548 		return 0;
549 	}
550 
551 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
552 	if (err)
553 		return err;
554 
555 	hwmon = hwmon_device_register(&spi->dev);
556 	if (IS_ERR(hwmon)) {
557 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
558 		return PTR_ERR(hwmon);
559 	}
560 
561 	ts->hwmon = hwmon;
562 	return 0;
563 }
564 
565 static void ads784x_hwmon_unregister(struct spi_device *spi,
566 				     struct ads7846 *ts)
567 {
568 	if (ts->hwmon) {
569 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
570 		hwmon_device_unregister(ts->hwmon);
571 	}
572 }
573 
574 #else
575 static inline int ads784x_hwmon_register(struct spi_device *spi,
576 					 struct ads7846 *ts)
577 {
578 	return 0;
579 }
580 
581 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
582 					    struct ads7846 *ts)
583 {
584 }
585 #endif
586 
587 static ssize_t ads7846_pen_down_show(struct device *dev,
588 				     struct device_attribute *attr, char *buf)
589 {
590 	struct ads7846 *ts = dev_get_drvdata(dev);
591 
592 	return sprintf(buf, "%u\n", ts->pendown);
593 }
594 
595 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
596 
597 static ssize_t ads7846_disable_show(struct device *dev,
598 				     struct device_attribute *attr, char *buf)
599 {
600 	struct ads7846 *ts = dev_get_drvdata(dev);
601 
602 	return sprintf(buf, "%u\n", ts->disabled);
603 }
604 
605 static ssize_t ads7846_disable_store(struct device *dev,
606 				     struct device_attribute *attr,
607 				     const char *buf, size_t count)
608 {
609 	struct ads7846 *ts = dev_get_drvdata(dev);
610 	unsigned int i;
611 	int err;
612 
613 	err = kstrtouint(buf, 10, &i);
614 	if (err)
615 		return err;
616 
617 	if (i)
618 		ads7846_disable(ts);
619 	else
620 		ads7846_enable(ts);
621 
622 	return count;
623 }
624 
625 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
626 
627 static struct attribute *ads784x_attributes[] = {
628 	&dev_attr_pen_down.attr,
629 	&dev_attr_disable.attr,
630 	NULL,
631 };
632 
633 static struct attribute_group ads784x_attr_group = {
634 	.attrs = ads784x_attributes,
635 };
636 
637 /*--------------------------------------------------------------------------*/
638 
639 static int get_pendown_state(struct ads7846 *ts)
640 {
641 	if (ts->get_pendown_state)
642 		return ts->get_pendown_state();
643 
644 	return !gpio_get_value(ts->gpio_pendown);
645 }
646 
647 static void null_wait_for_sync(void)
648 {
649 }
650 
651 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
652 {
653 	struct ads7846 *ts = ads;
654 
655 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
656 		/* Start over collecting consistent readings. */
657 		ts->read_rep = 0;
658 		/*
659 		 * Repeat it, if this was the first read or the read
660 		 * wasn't consistent enough.
661 		 */
662 		if (ts->read_cnt < ts->debounce_max) {
663 			ts->last_read = *val;
664 			ts->read_cnt++;
665 			return ADS7846_FILTER_REPEAT;
666 		} else {
667 			/*
668 			 * Maximum number of debouncing reached and still
669 			 * not enough number of consistent readings. Abort
670 			 * the whole sample, repeat it in the next sampling
671 			 * period.
672 			 */
673 			ts->read_cnt = 0;
674 			return ADS7846_FILTER_IGNORE;
675 		}
676 	} else {
677 		if (++ts->read_rep > ts->debounce_rep) {
678 			/*
679 			 * Got a good reading for this coordinate,
680 			 * go for the next one.
681 			 */
682 			ts->read_cnt = 0;
683 			ts->read_rep = 0;
684 			return ADS7846_FILTER_OK;
685 		} else {
686 			/* Read more values that are consistent. */
687 			ts->read_cnt++;
688 			return ADS7846_FILTER_REPEAT;
689 		}
690 	}
691 }
692 
693 static int ads7846_no_filter(void *ads, int data_idx, int *val)
694 {
695 	return ADS7846_FILTER_OK;
696 }
697 
698 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
699 {
700 	struct spi_transfer *t =
701 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
702 
703 	if (ts->model == 7845) {
704 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
705 	} else {
706 		/*
707 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
708 		 * padding; built from two 8 bit values written msb-first.
709 		 */
710 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
711 	}
712 }
713 
714 static void ads7846_update_value(struct spi_message *m, int val)
715 {
716 	struct spi_transfer *t =
717 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
718 
719 	*(u16 *)t->rx_buf = val;
720 }
721 
722 static void ads7846_read_state(struct ads7846 *ts)
723 {
724 	struct ads7846_packet *packet = ts->packet;
725 	struct spi_message *m;
726 	int msg_idx = 0;
727 	int val;
728 	int action;
729 	int error;
730 
731 	while (msg_idx < ts->msg_count) {
732 
733 		ts->wait_for_sync();
734 
735 		m = &ts->msg[msg_idx];
736 		error = spi_sync(ts->spi, m);
737 		if (error) {
738 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
739 			packet->tc.ignore = true;
740 			return;
741 		}
742 
743 		/*
744 		 * Last message is power down request, no need to convert
745 		 * or filter the value.
746 		 */
747 		if (msg_idx < ts->msg_count - 1) {
748 
749 			val = ads7846_get_value(ts, m);
750 
751 			action = ts->filter(ts->filter_data, msg_idx, &val);
752 			switch (action) {
753 			case ADS7846_FILTER_REPEAT:
754 				continue;
755 
756 			case ADS7846_FILTER_IGNORE:
757 				packet->tc.ignore = true;
758 				msg_idx = ts->msg_count - 1;
759 				continue;
760 
761 			case ADS7846_FILTER_OK:
762 				ads7846_update_value(m, val);
763 				packet->tc.ignore = false;
764 				msg_idx++;
765 				break;
766 
767 			default:
768 				BUG();
769 			}
770 		} else {
771 			msg_idx++;
772 		}
773 	}
774 }
775 
776 static void ads7846_report_state(struct ads7846 *ts)
777 {
778 	struct ads7846_packet *packet = ts->packet;
779 	unsigned int Rt;
780 	u16 x, y, z1, z2;
781 
782 	/*
783 	 * ads7846_get_value() does in-place conversion (including byte swap)
784 	 * from on-the-wire format as part of debouncing to get stable
785 	 * readings.
786 	 */
787 	if (ts->model == 7845) {
788 		x = *(u16 *)packet->tc.x_buf;
789 		y = *(u16 *)packet->tc.y_buf;
790 		z1 = 0;
791 		z2 = 0;
792 	} else {
793 		x = packet->tc.x;
794 		y = packet->tc.y;
795 		z1 = packet->tc.z1;
796 		z2 = packet->tc.z2;
797 	}
798 
799 	/* range filtering */
800 	if (x == MAX_12BIT)
801 		x = 0;
802 
803 	if (ts->model == 7843) {
804 		Rt = ts->pressure_max / 2;
805 	} else if (ts->model == 7845) {
806 		if (get_pendown_state(ts))
807 			Rt = ts->pressure_max / 2;
808 		else
809 			Rt = 0;
810 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
811 	} else if (likely(x && z1)) {
812 		/* compute touch pressure resistance using equation #2 */
813 		Rt = z2;
814 		Rt -= z1;
815 		Rt *= x;
816 		Rt *= ts->x_plate_ohms;
817 		Rt /= z1;
818 		Rt = (Rt + 2047) >> 12;
819 	} else {
820 		Rt = 0;
821 	}
822 
823 	/*
824 	 * Sample found inconsistent by debouncing or pressure is beyond
825 	 * the maximum. Don't report it to user space, repeat at least
826 	 * once more the measurement
827 	 */
828 	if (packet->tc.ignore || Rt > ts->pressure_max) {
829 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
830 			 packet->tc.ignore, Rt);
831 		return;
832 	}
833 
834 	/*
835 	 * Maybe check the pendown state before reporting. This discards
836 	 * false readings when the pen is lifted.
837 	 */
838 	if (ts->penirq_recheck_delay_usecs) {
839 		udelay(ts->penirq_recheck_delay_usecs);
840 		if (!get_pendown_state(ts))
841 			Rt = 0;
842 	}
843 
844 	/*
845 	 * NOTE: We can't rely on the pressure to determine the pen down
846 	 * state, even this controller has a pressure sensor. The pressure
847 	 * value can fluctuate for quite a while after lifting the pen and
848 	 * in some cases may not even settle at the expected value.
849 	 *
850 	 * The only safe way to check for the pen up condition is in the
851 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
852 	 */
853 	if (Rt) {
854 		struct input_dev *input = ts->input;
855 
856 		if (ts->swap_xy)
857 			swap(x, y);
858 
859 		if (!ts->pendown) {
860 			input_report_key(input, BTN_TOUCH, 1);
861 			ts->pendown = true;
862 			dev_vdbg(&ts->spi->dev, "DOWN\n");
863 		}
864 
865 		input_report_abs(input, ABS_X, x);
866 		input_report_abs(input, ABS_Y, y);
867 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
868 
869 		input_sync(input);
870 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
871 	}
872 }
873 
874 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
875 {
876 	struct ads7846 *ts = handle;
877 
878 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
879 }
880 
881 
882 static irqreturn_t ads7846_irq(int irq, void *handle)
883 {
884 	struct ads7846 *ts = handle;
885 
886 	/* Start with a small delay before checking pendown state */
887 	msleep(TS_POLL_DELAY);
888 
889 	while (!ts->stopped && get_pendown_state(ts)) {
890 
891 		/* pen is down, continue with the measurement */
892 		ads7846_read_state(ts);
893 
894 		if (!ts->stopped)
895 			ads7846_report_state(ts);
896 
897 		wait_event_timeout(ts->wait, ts->stopped,
898 				   msecs_to_jiffies(TS_POLL_PERIOD));
899 	}
900 
901 	if (ts->pendown) {
902 		struct input_dev *input = ts->input;
903 
904 		input_report_key(input, BTN_TOUCH, 0);
905 		input_report_abs(input, ABS_PRESSURE, 0);
906 		input_sync(input);
907 
908 		ts->pendown = false;
909 		dev_vdbg(&ts->spi->dev, "UP\n");
910 	}
911 
912 	return IRQ_HANDLED;
913 }
914 
915 #ifdef CONFIG_PM_SLEEP
916 static int ads7846_suspend(struct device *dev)
917 {
918 	struct ads7846 *ts = dev_get_drvdata(dev);
919 
920 	mutex_lock(&ts->lock);
921 
922 	if (!ts->suspended) {
923 
924 		if (!ts->disabled)
925 			__ads7846_disable(ts);
926 
927 		if (device_may_wakeup(&ts->spi->dev))
928 			enable_irq_wake(ts->spi->irq);
929 
930 		ts->suspended = true;
931 	}
932 
933 	mutex_unlock(&ts->lock);
934 
935 	return 0;
936 }
937 
938 static int ads7846_resume(struct device *dev)
939 {
940 	struct ads7846 *ts = dev_get_drvdata(dev);
941 
942 	mutex_lock(&ts->lock);
943 
944 	if (ts->suspended) {
945 
946 		ts->suspended = false;
947 
948 		if (device_may_wakeup(&ts->spi->dev))
949 			disable_irq_wake(ts->spi->irq);
950 
951 		if (!ts->disabled)
952 			__ads7846_enable(ts);
953 	}
954 
955 	mutex_unlock(&ts->lock);
956 
957 	return 0;
958 }
959 #endif
960 
961 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
962 
963 static int ads7846_setup_pendown(struct spi_device *spi,
964 					   struct ads7846 *ts)
965 {
966 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
967 	int err;
968 
969 	/*
970 	 * REVISIT when the irq can be triggered active-low, or if for some
971 	 * reason the touchscreen isn't hooked up, we don't need to access
972 	 * the pendown state.
973 	 */
974 
975 	if (pdata->get_pendown_state) {
976 		ts->get_pendown_state = pdata->get_pendown_state;
977 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
978 
979 		err = gpio_request_one(pdata->gpio_pendown, GPIOF_IN,
980 				       "ads7846_pendown");
981 		if (err) {
982 			dev_err(&spi->dev,
983 				"failed to request/setup pendown GPIO%d: %d\n",
984 				pdata->gpio_pendown, err);
985 			return err;
986 		}
987 
988 		ts->gpio_pendown = pdata->gpio_pendown;
989 
990 		if (pdata->gpio_pendown_debounce)
991 			gpio_set_debounce(pdata->gpio_pendown,
992 					  pdata->gpio_pendown_debounce);
993 	} else {
994 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
995 		return -EINVAL;
996 	}
997 
998 	return 0;
999 }
1000 
1001 /*
1002  * Set up the transfers to read touchscreen state; this assumes we
1003  * use formula #2 for pressure, not #3.
1004  */
1005 static void ads7846_setup_spi_msg(struct ads7846 *ts,
1006 				const struct ads7846_platform_data *pdata)
1007 {
1008 	struct spi_message *m = &ts->msg[0];
1009 	struct spi_transfer *x = ts->xfer;
1010 	struct ads7846_packet *packet = ts->packet;
1011 	int vref = pdata->keep_vref_on;
1012 
1013 	if (ts->model == 7873) {
1014 		/*
1015 		 * The AD7873 is almost identical to the ADS7846
1016 		 * keep VREF off during differential/ratiometric
1017 		 * conversion modes.
1018 		 */
1019 		ts->model = 7846;
1020 		vref = 0;
1021 	}
1022 
1023 	ts->msg_count = 1;
1024 	spi_message_init(m);
1025 	m->context = ts;
1026 
1027 	if (ts->model == 7845) {
1028 		packet->read_y_cmd[0] = READ_Y(vref);
1029 		packet->read_y_cmd[1] = 0;
1030 		packet->read_y_cmd[2] = 0;
1031 		x->tx_buf = &packet->read_y_cmd[0];
1032 		x->rx_buf = &packet->tc.y_buf[0];
1033 		x->len = 3;
1034 		spi_message_add_tail(x, m);
1035 	} else {
1036 		/* y- still on; turn on only y+ (and ADC) */
1037 		packet->read_y = READ_Y(vref);
1038 		x->tx_buf = &packet->read_y;
1039 		x->len = 1;
1040 		spi_message_add_tail(x, m);
1041 
1042 		x++;
1043 		x->rx_buf = &packet->tc.y;
1044 		x->len = 2;
1045 		spi_message_add_tail(x, m);
1046 	}
1047 
1048 	/*
1049 	 * The first sample after switching drivers can be low quality;
1050 	 * optionally discard it, using a second one after the signals
1051 	 * have had enough time to stabilize.
1052 	 */
1053 	if (pdata->settle_delay_usecs) {
1054 		x->delay_usecs = pdata->settle_delay_usecs;
1055 
1056 		x++;
1057 		x->tx_buf = &packet->read_y;
1058 		x->len = 1;
1059 		spi_message_add_tail(x, m);
1060 
1061 		x++;
1062 		x->rx_buf = &packet->tc.y;
1063 		x->len = 2;
1064 		spi_message_add_tail(x, m);
1065 	}
1066 
1067 	ts->msg_count++;
1068 	m++;
1069 	spi_message_init(m);
1070 	m->context = ts;
1071 
1072 	if (ts->model == 7845) {
1073 		x++;
1074 		packet->read_x_cmd[0] = READ_X(vref);
1075 		packet->read_x_cmd[1] = 0;
1076 		packet->read_x_cmd[2] = 0;
1077 		x->tx_buf = &packet->read_x_cmd[0];
1078 		x->rx_buf = &packet->tc.x_buf[0];
1079 		x->len = 3;
1080 		spi_message_add_tail(x, m);
1081 	} else {
1082 		/* turn y- off, x+ on, then leave in lowpower */
1083 		x++;
1084 		packet->read_x = READ_X(vref);
1085 		x->tx_buf = &packet->read_x;
1086 		x->len = 1;
1087 		spi_message_add_tail(x, m);
1088 
1089 		x++;
1090 		x->rx_buf = &packet->tc.x;
1091 		x->len = 2;
1092 		spi_message_add_tail(x, m);
1093 	}
1094 
1095 	/* ... maybe discard first sample ... */
1096 	if (pdata->settle_delay_usecs) {
1097 		x->delay_usecs = pdata->settle_delay_usecs;
1098 
1099 		x++;
1100 		x->tx_buf = &packet->read_x;
1101 		x->len = 1;
1102 		spi_message_add_tail(x, m);
1103 
1104 		x++;
1105 		x->rx_buf = &packet->tc.x;
1106 		x->len = 2;
1107 		spi_message_add_tail(x, m);
1108 	}
1109 
1110 	/* turn y+ off, x- on; we'll use formula #2 */
1111 	if (ts->model == 7846) {
1112 		ts->msg_count++;
1113 		m++;
1114 		spi_message_init(m);
1115 		m->context = ts;
1116 
1117 		x++;
1118 		packet->read_z1 = READ_Z1(vref);
1119 		x->tx_buf = &packet->read_z1;
1120 		x->len = 1;
1121 		spi_message_add_tail(x, m);
1122 
1123 		x++;
1124 		x->rx_buf = &packet->tc.z1;
1125 		x->len = 2;
1126 		spi_message_add_tail(x, m);
1127 
1128 		/* ... maybe discard first sample ... */
1129 		if (pdata->settle_delay_usecs) {
1130 			x->delay_usecs = pdata->settle_delay_usecs;
1131 
1132 			x++;
1133 			x->tx_buf = &packet->read_z1;
1134 			x->len = 1;
1135 			spi_message_add_tail(x, m);
1136 
1137 			x++;
1138 			x->rx_buf = &packet->tc.z1;
1139 			x->len = 2;
1140 			spi_message_add_tail(x, m);
1141 		}
1142 
1143 		ts->msg_count++;
1144 		m++;
1145 		spi_message_init(m);
1146 		m->context = ts;
1147 
1148 		x++;
1149 		packet->read_z2 = READ_Z2(vref);
1150 		x->tx_buf = &packet->read_z2;
1151 		x->len = 1;
1152 		spi_message_add_tail(x, m);
1153 
1154 		x++;
1155 		x->rx_buf = &packet->tc.z2;
1156 		x->len = 2;
1157 		spi_message_add_tail(x, m);
1158 
1159 		/* ... maybe discard first sample ... */
1160 		if (pdata->settle_delay_usecs) {
1161 			x->delay_usecs = pdata->settle_delay_usecs;
1162 
1163 			x++;
1164 			x->tx_buf = &packet->read_z2;
1165 			x->len = 1;
1166 			spi_message_add_tail(x, m);
1167 
1168 			x++;
1169 			x->rx_buf = &packet->tc.z2;
1170 			x->len = 2;
1171 			spi_message_add_tail(x, m);
1172 		}
1173 	}
1174 
1175 	/* power down */
1176 	ts->msg_count++;
1177 	m++;
1178 	spi_message_init(m);
1179 	m->context = ts;
1180 
1181 	if (ts->model == 7845) {
1182 		x++;
1183 		packet->pwrdown_cmd[0] = PWRDOWN;
1184 		packet->pwrdown_cmd[1] = 0;
1185 		packet->pwrdown_cmd[2] = 0;
1186 		x->tx_buf = &packet->pwrdown_cmd[0];
1187 		x->len = 3;
1188 	} else {
1189 		x++;
1190 		packet->pwrdown = PWRDOWN;
1191 		x->tx_buf = &packet->pwrdown;
1192 		x->len = 1;
1193 		spi_message_add_tail(x, m);
1194 
1195 		x++;
1196 		x->rx_buf = &packet->dummy;
1197 		x->len = 2;
1198 	}
1199 
1200 	CS_CHANGE(*x);
1201 	spi_message_add_tail(x, m);
1202 }
1203 
1204 static int ads7846_probe(struct spi_device *spi)
1205 {
1206 	struct ads7846 *ts;
1207 	struct ads7846_packet *packet;
1208 	struct input_dev *input_dev;
1209 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1210 	unsigned long irq_flags;
1211 	int err;
1212 
1213 	if (!spi->irq) {
1214 		dev_dbg(&spi->dev, "no IRQ?\n");
1215 		return -ENODEV;
1216 	}
1217 
1218 	if (!pdata) {
1219 		dev_dbg(&spi->dev, "no platform data?\n");
1220 		return -ENODEV;
1221 	}
1222 
1223 	/* don't exceed max specified sample rate */
1224 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1225 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1226 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1227 		return -EINVAL;
1228 	}
1229 
1230 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1231 	 * that even if the hardware can do that, the SPI controller driver
1232 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1233 	 */
1234 	spi->bits_per_word = 8;
1235 	spi->mode = SPI_MODE_0;
1236 	err = spi_setup(spi);
1237 	if (err < 0)
1238 		return err;
1239 
1240 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1241 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1242 	input_dev = input_allocate_device();
1243 	if (!ts || !packet || !input_dev) {
1244 		err = -ENOMEM;
1245 		goto err_free_mem;
1246 	}
1247 
1248 	dev_set_drvdata(&spi->dev, ts);
1249 
1250 	ts->packet = packet;
1251 	ts->spi = spi;
1252 	ts->input = input_dev;
1253 	ts->vref_mv = pdata->vref_mv;
1254 	ts->swap_xy = pdata->swap_xy;
1255 
1256 	mutex_init(&ts->lock);
1257 	init_waitqueue_head(&ts->wait);
1258 
1259 	ts->model = pdata->model ? : 7846;
1260 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1261 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1262 	ts->pressure_max = pdata->pressure_max ? : ~0;
1263 
1264 	if (pdata->filter != NULL) {
1265 		if (pdata->filter_init != NULL) {
1266 			err = pdata->filter_init(pdata, &ts->filter_data);
1267 			if (err < 0)
1268 				goto err_free_mem;
1269 		}
1270 		ts->filter = pdata->filter;
1271 		ts->filter_cleanup = pdata->filter_cleanup;
1272 	} else if (pdata->debounce_max) {
1273 		ts->debounce_max = pdata->debounce_max;
1274 		if (ts->debounce_max < 2)
1275 			ts->debounce_max = 2;
1276 		ts->debounce_tol = pdata->debounce_tol;
1277 		ts->debounce_rep = pdata->debounce_rep;
1278 		ts->filter = ads7846_debounce_filter;
1279 		ts->filter_data = ts;
1280 	} else {
1281 		ts->filter = ads7846_no_filter;
1282 	}
1283 
1284 	err = ads7846_setup_pendown(spi, ts);
1285 	if (err)
1286 		goto err_cleanup_filter;
1287 
1288 	if (pdata->penirq_recheck_delay_usecs)
1289 		ts->penirq_recheck_delay_usecs =
1290 				pdata->penirq_recheck_delay_usecs;
1291 
1292 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1293 
1294 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1295 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1296 
1297 	input_dev->name = ts->name;
1298 	input_dev->phys = ts->phys;
1299 	input_dev->dev.parent = &spi->dev;
1300 
1301 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1302 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1303 	input_set_abs_params(input_dev, ABS_X,
1304 			pdata->x_min ? : 0,
1305 			pdata->x_max ? : MAX_12BIT,
1306 			0, 0);
1307 	input_set_abs_params(input_dev, ABS_Y,
1308 			pdata->y_min ? : 0,
1309 			pdata->y_max ? : MAX_12BIT,
1310 			0, 0);
1311 	input_set_abs_params(input_dev, ABS_PRESSURE,
1312 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1313 
1314 	ads7846_setup_spi_msg(ts, pdata);
1315 
1316 	ts->reg = regulator_get(&spi->dev, "vcc");
1317 	if (IS_ERR(ts->reg)) {
1318 		err = PTR_ERR(ts->reg);
1319 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1320 		goto err_free_gpio;
1321 	}
1322 
1323 	err = regulator_enable(ts->reg);
1324 	if (err) {
1325 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1326 		goto err_put_regulator;
1327 	}
1328 
1329 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1330 	irq_flags |= IRQF_ONESHOT;
1331 
1332 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1333 				   irq_flags, spi->dev.driver->name, ts);
1334 	if (err && !pdata->irq_flags) {
1335 		dev_info(&spi->dev,
1336 			"trying pin change workaround on irq %d\n", spi->irq);
1337 		irq_flags |= IRQF_TRIGGER_RISING;
1338 		err = request_threaded_irq(spi->irq,
1339 				  ads7846_hard_irq, ads7846_irq,
1340 				  irq_flags, spi->dev.driver->name, ts);
1341 	}
1342 
1343 	if (err) {
1344 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1345 		goto err_disable_regulator;
1346 	}
1347 
1348 	err = ads784x_hwmon_register(spi, ts);
1349 	if (err)
1350 		goto err_free_irq;
1351 
1352 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1353 
1354 	/*
1355 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1356 	 * the touchscreen, in case it's not connected.
1357 	 */
1358 	if (ts->model == 7845)
1359 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1360 	else
1361 		(void) ads7846_read12_ser(&spi->dev, READ_12BIT_SER(vaux));
1362 
1363 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1364 	if (err)
1365 		goto err_remove_hwmon;
1366 
1367 	err = input_register_device(input_dev);
1368 	if (err)
1369 		goto err_remove_attr_group;
1370 
1371 	device_init_wakeup(&spi->dev, pdata->wakeup);
1372 
1373 	return 0;
1374 
1375  err_remove_attr_group:
1376 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1377  err_remove_hwmon:
1378 	ads784x_hwmon_unregister(spi, ts);
1379  err_free_irq:
1380 	free_irq(spi->irq, ts);
1381  err_disable_regulator:
1382 	regulator_disable(ts->reg);
1383  err_put_regulator:
1384 	regulator_put(ts->reg);
1385  err_free_gpio:
1386 	if (!ts->get_pendown_state)
1387 		gpio_free(ts->gpio_pendown);
1388  err_cleanup_filter:
1389 	if (ts->filter_cleanup)
1390 		ts->filter_cleanup(ts->filter_data);
1391  err_free_mem:
1392 	input_free_device(input_dev);
1393 	kfree(packet);
1394 	kfree(ts);
1395 	return err;
1396 }
1397 
1398 static int ads7846_remove(struct spi_device *spi)
1399 {
1400 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1401 
1402 	device_init_wakeup(&spi->dev, false);
1403 
1404 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1405 
1406 	ads7846_disable(ts);
1407 	free_irq(ts->spi->irq, ts);
1408 
1409 	input_unregister_device(ts->input);
1410 
1411 	ads784x_hwmon_unregister(spi, ts);
1412 
1413 	regulator_disable(ts->reg);
1414 	regulator_put(ts->reg);
1415 
1416 	if (!ts->get_pendown_state) {
1417 		/*
1418 		 * If we are not using specialized pendown method we must
1419 		 * have been relying on gpio we set up ourselves.
1420 		 */
1421 		gpio_free(ts->gpio_pendown);
1422 	}
1423 
1424 	if (ts->filter_cleanup)
1425 		ts->filter_cleanup(ts->filter_data);
1426 
1427 	kfree(ts->packet);
1428 	kfree(ts);
1429 
1430 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1431 
1432 	return 0;
1433 }
1434 
1435 static struct spi_driver ads7846_driver = {
1436 	.driver = {
1437 		.name	= "ads7846",
1438 		.owner	= THIS_MODULE,
1439 		.pm	= &ads7846_pm,
1440 	},
1441 	.probe		= ads7846_probe,
1442 	.remove		= ads7846_remove,
1443 };
1444 
1445 module_spi_driver(ads7846_driver);
1446 
1447 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1448 MODULE_LICENSE("GPL");
1449 MODULE_ALIAS("spi:ads7846");
1450