1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35 
36 /*
37  * This code has been heavily tested on a Nokia 770, and lightly
38  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39  * TSC2046 is just newer ads7846 silicon.
40  * Support for ads7843 tested on Atmel at91sam926x-EK.
41  * Support for ads7845 has only been stubbed in.
42  * Support for Analog Devices AD7873 and AD7843 tested.
43  *
44  * IRQ handling needs a workaround because of a shortcoming in handling
45  * edge triggered IRQs on some platforms like the OMAP1/2. These
46  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47  * have to maintain our own SW IRQ disabled status. This should be
48  * removed as soon as the affected platform's IRQ handling is fixed.
49  *
50  * App note sbaa036 talks in more detail about accurate sampling...
51  * that ought to help in situations like LCDs inducing noise (which
52  * can also be helped by using synch signals) and more generally.
53  * This driver tries to utilize the measures described in the app
54  * note. The strength of filtering can be set in the board-* specific
55  * files.
56  */
57 
58 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
59 #define TS_POLL_PERIOD	5	/* ms delay between samples */
60 
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63 
64 struct ts_event {
65 	/*
66 	 * For portability, we can't read 12 bit values using SPI (which
67 	 * would make the controller deliver them as native byte order u16
68 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
69 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 	 */
71 	u16	x;
72 	u16	y;
73 	u16	z1, z2;
74 	bool	ignore;
75 	u8	x_buf[3];
76 	u8	y_buf[3];
77 };
78 
79 /*
80  * We allocate this separately to avoid cache line sharing issues when
81  * driver is used with DMA-based SPI controllers (like atmel_spi) on
82  * systems where main memory is not DMA-coherent (most non-x86 boards).
83  */
84 struct ads7846_packet {
85 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
86 	u16			dummy;		/* for the pwrdown read */
87 	struct ts_event		tc;
88 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91 
92 struct ads7846 {
93 	struct input_dev	*input;
94 	char			phys[32];
95 	char			name[32];
96 
97 	struct spi_device	*spi;
98 	struct regulator	*reg;
99 
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 	struct attribute_group	*attr_group;
102 	struct device		*hwmon;
103 #endif
104 
105 	u16			model;
106 	u16			vref_mv;
107 	u16			vref_delay_usecs;
108 	u16			x_plate_ohms;
109 	u16			pressure_max;
110 
111 	bool			swap_xy;
112 	bool			use_internal;
113 
114 	struct ads7846_packet	*packet;
115 
116 	struct spi_transfer	xfer[18];
117 	struct spi_message	msg[5];
118 	int			msg_count;
119 	wait_queue_head_t	wait;
120 
121 	bool			pendown;
122 
123 	int			read_cnt;
124 	int			read_rep;
125 	int			last_read;
126 
127 	u16			debounce_max;
128 	u16			debounce_tol;
129 	u16			debounce_rep;
130 
131 	u16			penirq_recheck_delay_usecs;
132 
133 	struct mutex		lock;
134 	bool			stopped;	/* P: lock */
135 	bool			disabled;	/* P: lock */
136 	bool			suspended;	/* P: lock */
137 
138 	int			(*filter)(void *data, int data_idx, int *val);
139 	void			*filter_data;
140 	void			(*filter_cleanup)(void *data);
141 	int			(*get_pendown_state)(void);
142 	int			gpio_pendown;
143 
144 	void			(*wait_for_sync)(void);
145 };
146 
147 /* leave chip selected when we're done, for quicker re-select? */
148 #if	0
149 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
150 #else
151 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
152 #endif
153 
154 /*--------------------------------------------------------------------------*/
155 
156 /* The ADS7846 has touchscreen and other sensors.
157  * Earlier ads784x chips are somewhat compatible.
158  */
159 #define	ADS_START		(1 << 7)
160 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
161 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
162 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
163 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
164 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
165 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
166 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
167 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
168 #define	ADS_8_BIT		(1 << 3)
169 #define	ADS_12_BIT		(0 << 3)
170 #define	ADS_SER			(1 << 2)	/* non-differential */
171 #define	ADS_DFR			(0 << 2)	/* differential */
172 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
173 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
174 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
175 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
176 
177 #define	MAX_12BIT	((1<<12)-1)
178 
179 /* leave ADC powered up (disables penirq) between differential samples */
180 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
181 	| ADS_12_BIT | ADS_DFR | \
182 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
183 
184 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
185 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
186 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
187 
188 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
189 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
190 
191 /* single-ended samples need to first power up reference voltage;
192  * we leave both ADC and VREF powered
193  */
194 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
195 	| ADS_12_BIT | ADS_SER)
196 
197 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
198 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
199 
200 /* Must be called with ts->lock held */
201 static void ads7846_stop(struct ads7846 *ts)
202 {
203 	if (!ts->disabled && !ts->suspended) {
204 		/* Signal IRQ thread to stop polling and disable the handler. */
205 		ts->stopped = true;
206 		mb();
207 		wake_up(&ts->wait);
208 		disable_irq(ts->spi->irq);
209 	}
210 }
211 
212 /* Must be called with ts->lock held */
213 static void ads7846_restart(struct ads7846 *ts)
214 {
215 	if (!ts->disabled && !ts->suspended) {
216 		/* Tell IRQ thread that it may poll the device. */
217 		ts->stopped = false;
218 		mb();
219 		enable_irq(ts->spi->irq);
220 	}
221 }
222 
223 /* Must be called with ts->lock held */
224 static void __ads7846_disable(struct ads7846 *ts)
225 {
226 	ads7846_stop(ts);
227 	regulator_disable(ts->reg);
228 
229 	/*
230 	 * We know the chip's in low power mode since we always
231 	 * leave it that way after every request
232 	 */
233 }
234 
235 /* Must be called with ts->lock held */
236 static void __ads7846_enable(struct ads7846 *ts)
237 {
238 	regulator_enable(ts->reg);
239 	ads7846_restart(ts);
240 }
241 
242 static void ads7846_disable(struct ads7846 *ts)
243 {
244 	mutex_lock(&ts->lock);
245 
246 	if (!ts->disabled) {
247 
248 		if  (!ts->suspended)
249 			__ads7846_disable(ts);
250 
251 		ts->disabled = true;
252 	}
253 
254 	mutex_unlock(&ts->lock);
255 }
256 
257 static void ads7846_enable(struct ads7846 *ts)
258 {
259 	mutex_lock(&ts->lock);
260 
261 	if (ts->disabled) {
262 
263 		ts->disabled = false;
264 
265 		if (!ts->suspended)
266 			__ads7846_enable(ts);
267 	}
268 
269 	mutex_unlock(&ts->lock);
270 }
271 
272 /*--------------------------------------------------------------------------*/
273 
274 /*
275  * Non-touchscreen sensors only use single-ended conversions.
276  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
277  * ads7846 lets that pin be unconnected, to use internal vREF.
278  */
279 
280 struct ser_req {
281 	u8			ref_on;
282 	u8			command;
283 	u8			ref_off;
284 	u16			scratch;
285 	__be16			sample;
286 	struct spi_message	msg;
287 	struct spi_transfer	xfer[6];
288 };
289 
290 struct ads7845_ser_req {
291 	u8			command[3];
292 	u8			pwrdown[3];
293 	u8			sample[3];
294 	struct spi_message	msg;
295 	struct spi_transfer	xfer[2];
296 };
297 
298 static int ads7846_read12_ser(struct device *dev, unsigned command)
299 {
300 	struct spi_device *spi = to_spi_device(dev);
301 	struct ads7846 *ts = dev_get_drvdata(dev);
302 	struct ser_req *req;
303 	int status;
304 
305 	req = kzalloc(sizeof *req, GFP_KERNEL);
306 	if (!req)
307 		return -ENOMEM;
308 
309 	spi_message_init(&req->msg);
310 
311 	/* maybe turn on internal vREF, and let it settle */
312 	if (ts->use_internal) {
313 		req->ref_on = REF_ON;
314 		req->xfer[0].tx_buf = &req->ref_on;
315 		req->xfer[0].len = 1;
316 		spi_message_add_tail(&req->xfer[0], &req->msg);
317 
318 		req->xfer[1].rx_buf = &req->scratch;
319 		req->xfer[1].len = 2;
320 
321 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
322 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
323 		spi_message_add_tail(&req->xfer[1], &req->msg);
324 
325 		/* Enable reference voltage */
326 		command |= ADS_PD10_REF_ON;
327 	}
328 
329 	/* Enable ADC in every case */
330 	command |= ADS_PD10_ADC_ON;
331 
332 	/* take sample */
333 	req->command = (u8) command;
334 	req->xfer[2].tx_buf = &req->command;
335 	req->xfer[2].len = 1;
336 	spi_message_add_tail(&req->xfer[2], &req->msg);
337 
338 	req->xfer[3].rx_buf = &req->sample;
339 	req->xfer[3].len = 2;
340 	spi_message_add_tail(&req->xfer[3], &req->msg);
341 
342 	/* REVISIT:  take a few more samples, and compare ... */
343 
344 	/* converter in low power mode & enable PENIRQ */
345 	req->ref_off = PWRDOWN;
346 	req->xfer[4].tx_buf = &req->ref_off;
347 	req->xfer[4].len = 1;
348 	spi_message_add_tail(&req->xfer[4], &req->msg);
349 
350 	req->xfer[5].rx_buf = &req->scratch;
351 	req->xfer[5].len = 2;
352 	CS_CHANGE(req->xfer[5]);
353 	spi_message_add_tail(&req->xfer[5], &req->msg);
354 
355 	mutex_lock(&ts->lock);
356 	ads7846_stop(ts);
357 	status = spi_sync(spi, &req->msg);
358 	ads7846_restart(ts);
359 	mutex_unlock(&ts->lock);
360 
361 	if (status == 0) {
362 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
363 		status = be16_to_cpu(req->sample);
364 		status = status >> 3;
365 		status &= 0x0fff;
366 	}
367 
368 	kfree(req);
369 	return status;
370 }
371 
372 static int ads7845_read12_ser(struct device *dev, unsigned command)
373 {
374 	struct spi_device *spi = to_spi_device(dev);
375 	struct ads7846 *ts = dev_get_drvdata(dev);
376 	struct ads7845_ser_req *req;
377 	int status;
378 
379 	req = kzalloc(sizeof *req, GFP_KERNEL);
380 	if (!req)
381 		return -ENOMEM;
382 
383 	spi_message_init(&req->msg);
384 
385 	req->command[0] = (u8) command;
386 	req->xfer[0].tx_buf = req->command;
387 	req->xfer[0].rx_buf = req->sample;
388 	req->xfer[0].len = 3;
389 	spi_message_add_tail(&req->xfer[0], &req->msg);
390 
391 	mutex_lock(&ts->lock);
392 	ads7846_stop(ts);
393 	status = spi_sync(spi, &req->msg);
394 	ads7846_restart(ts);
395 	mutex_unlock(&ts->lock);
396 
397 	if (status == 0) {
398 		/* BE12 value, then padding */
399 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
400 		status = status >> 3;
401 		status &= 0x0fff;
402 	}
403 
404 	kfree(req);
405 	return status;
406 }
407 
408 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
409 
410 #define SHOW(name, var, adjust) static ssize_t \
411 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
412 { \
413 	struct ads7846 *ts = dev_get_drvdata(dev); \
414 	ssize_t v = ads7846_read12_ser(dev, \
415 			READ_12BIT_SER(var)); \
416 	if (v < 0) \
417 		return v; \
418 	return sprintf(buf, "%u\n", adjust(ts, v)); \
419 } \
420 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
421 
422 
423 /* Sysfs conventions report temperatures in millidegrees Celsius.
424  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
425  * accuracy scheme without calibration data.  For now we won't try either;
426  * userspace sees raw sensor values, and must scale/calibrate appropriately.
427  */
428 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
429 {
430 	return v;
431 }
432 
433 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
434 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
435 
436 
437 /* sysfs conventions report voltages in millivolts.  We can convert voltages
438  * if we know vREF.  userspace may need to scale vAUX to match the board's
439  * external resistors; we assume that vBATT only uses the internal ones.
440  */
441 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
442 {
443 	unsigned retval = v;
444 
445 	/* external resistors may scale vAUX into 0..vREF */
446 	retval *= ts->vref_mv;
447 	retval = retval >> 12;
448 
449 	return retval;
450 }
451 
452 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
453 {
454 	unsigned retval = vaux_adjust(ts, v);
455 
456 	/* ads7846 has a resistor ladder to scale this signal down */
457 	if (ts->model == 7846)
458 		retval *= 4;
459 
460 	return retval;
461 }
462 
463 SHOW(in0_input, vaux, vaux_adjust)
464 SHOW(in1_input, vbatt, vbatt_adjust)
465 
466 static struct attribute *ads7846_attributes[] = {
467 	&dev_attr_temp0.attr,
468 	&dev_attr_temp1.attr,
469 	&dev_attr_in0_input.attr,
470 	&dev_attr_in1_input.attr,
471 	NULL,
472 };
473 
474 static struct attribute_group ads7846_attr_group = {
475 	.attrs = ads7846_attributes,
476 };
477 
478 static struct attribute *ads7843_attributes[] = {
479 	&dev_attr_in0_input.attr,
480 	&dev_attr_in1_input.attr,
481 	NULL,
482 };
483 
484 static struct attribute_group ads7843_attr_group = {
485 	.attrs = ads7843_attributes,
486 };
487 
488 static struct attribute *ads7845_attributes[] = {
489 	&dev_attr_in0_input.attr,
490 	NULL,
491 };
492 
493 static struct attribute_group ads7845_attr_group = {
494 	.attrs = ads7845_attributes,
495 };
496 
497 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
498 {
499 	struct device *hwmon;
500 	int err;
501 
502 	/* hwmon sensors need a reference voltage */
503 	switch (ts->model) {
504 	case 7846:
505 		if (!ts->vref_mv) {
506 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
507 			ts->vref_mv = 2500;
508 			ts->use_internal = true;
509 		}
510 		break;
511 	case 7845:
512 	case 7843:
513 		if (!ts->vref_mv) {
514 			dev_warn(&spi->dev,
515 				"external vREF for ADS%d not specified\n",
516 				ts->model);
517 			return 0;
518 		}
519 		break;
520 	}
521 
522 	/* different chips have different sensor groups */
523 	switch (ts->model) {
524 	case 7846:
525 		ts->attr_group = &ads7846_attr_group;
526 		break;
527 	case 7845:
528 		ts->attr_group = &ads7845_attr_group;
529 		break;
530 	case 7843:
531 		ts->attr_group = &ads7843_attr_group;
532 		break;
533 	default:
534 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
535 		return 0;
536 	}
537 
538 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
539 	if (err)
540 		return err;
541 
542 	hwmon = hwmon_device_register(&spi->dev);
543 	if (IS_ERR(hwmon)) {
544 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
545 		return PTR_ERR(hwmon);
546 	}
547 
548 	ts->hwmon = hwmon;
549 	return 0;
550 }
551 
552 static void ads784x_hwmon_unregister(struct spi_device *spi,
553 				     struct ads7846 *ts)
554 {
555 	if (ts->hwmon) {
556 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
557 		hwmon_device_unregister(ts->hwmon);
558 	}
559 }
560 
561 #else
562 static inline int ads784x_hwmon_register(struct spi_device *spi,
563 					 struct ads7846 *ts)
564 {
565 	return 0;
566 }
567 
568 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
569 					    struct ads7846 *ts)
570 {
571 }
572 #endif
573 
574 static ssize_t ads7846_pen_down_show(struct device *dev,
575 				     struct device_attribute *attr, char *buf)
576 {
577 	struct ads7846 *ts = dev_get_drvdata(dev);
578 
579 	return sprintf(buf, "%u\n", ts->pendown);
580 }
581 
582 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
583 
584 static ssize_t ads7846_disable_show(struct device *dev,
585 				     struct device_attribute *attr, char *buf)
586 {
587 	struct ads7846 *ts = dev_get_drvdata(dev);
588 
589 	return sprintf(buf, "%u\n", ts->disabled);
590 }
591 
592 static ssize_t ads7846_disable_store(struct device *dev,
593 				     struct device_attribute *attr,
594 				     const char *buf, size_t count)
595 {
596 	struct ads7846 *ts = dev_get_drvdata(dev);
597 	unsigned long i;
598 
599 	if (strict_strtoul(buf, 10, &i))
600 		return -EINVAL;
601 
602 	if (i)
603 		ads7846_disable(ts);
604 	else
605 		ads7846_enable(ts);
606 
607 	return count;
608 }
609 
610 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
611 
612 static struct attribute *ads784x_attributes[] = {
613 	&dev_attr_pen_down.attr,
614 	&dev_attr_disable.attr,
615 	NULL,
616 };
617 
618 static struct attribute_group ads784x_attr_group = {
619 	.attrs = ads784x_attributes,
620 };
621 
622 /*--------------------------------------------------------------------------*/
623 
624 static int get_pendown_state(struct ads7846 *ts)
625 {
626 	if (ts->get_pendown_state)
627 		return ts->get_pendown_state();
628 
629 	return !gpio_get_value(ts->gpio_pendown);
630 }
631 
632 static void null_wait_for_sync(void)
633 {
634 }
635 
636 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
637 {
638 	struct ads7846 *ts = ads;
639 
640 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
641 		/* Start over collecting consistent readings. */
642 		ts->read_rep = 0;
643 		/*
644 		 * Repeat it, if this was the first read or the read
645 		 * wasn't consistent enough.
646 		 */
647 		if (ts->read_cnt < ts->debounce_max) {
648 			ts->last_read = *val;
649 			ts->read_cnt++;
650 			return ADS7846_FILTER_REPEAT;
651 		} else {
652 			/*
653 			 * Maximum number of debouncing reached and still
654 			 * not enough number of consistent readings. Abort
655 			 * the whole sample, repeat it in the next sampling
656 			 * period.
657 			 */
658 			ts->read_cnt = 0;
659 			return ADS7846_FILTER_IGNORE;
660 		}
661 	} else {
662 		if (++ts->read_rep > ts->debounce_rep) {
663 			/*
664 			 * Got a good reading for this coordinate,
665 			 * go for the next one.
666 			 */
667 			ts->read_cnt = 0;
668 			ts->read_rep = 0;
669 			return ADS7846_FILTER_OK;
670 		} else {
671 			/* Read more values that are consistent. */
672 			ts->read_cnt++;
673 			return ADS7846_FILTER_REPEAT;
674 		}
675 	}
676 }
677 
678 static int ads7846_no_filter(void *ads, int data_idx, int *val)
679 {
680 	return ADS7846_FILTER_OK;
681 }
682 
683 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
684 {
685 	struct spi_transfer *t =
686 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
687 
688 	if (ts->model == 7845) {
689 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
690 	} else {
691 		/*
692 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
693 		 * padding; built from two 8 bit values written msb-first.
694 		 */
695 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
696 	}
697 }
698 
699 static void ads7846_update_value(struct spi_message *m, int val)
700 {
701 	struct spi_transfer *t =
702 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
703 
704 	*(u16 *)t->rx_buf = val;
705 }
706 
707 static void ads7846_read_state(struct ads7846 *ts)
708 {
709 	struct ads7846_packet *packet = ts->packet;
710 	struct spi_message *m;
711 	int msg_idx = 0;
712 	int val;
713 	int action;
714 	int error;
715 
716 	while (msg_idx < ts->msg_count) {
717 
718 		ts->wait_for_sync();
719 
720 		m = &ts->msg[msg_idx];
721 		error = spi_sync(ts->spi, m);
722 		if (error) {
723 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
724 			packet->tc.ignore = true;
725 			return;
726 		}
727 
728 		/*
729 		 * Last message is power down request, no need to convert
730 		 * or filter the value.
731 		 */
732 		if (msg_idx < ts->msg_count - 1) {
733 
734 			val = ads7846_get_value(ts, m);
735 
736 			action = ts->filter(ts->filter_data, msg_idx, &val);
737 			switch (action) {
738 			case ADS7846_FILTER_REPEAT:
739 				continue;
740 
741 			case ADS7846_FILTER_IGNORE:
742 				packet->tc.ignore = true;
743 				msg_idx = ts->msg_count - 1;
744 				continue;
745 
746 			case ADS7846_FILTER_OK:
747 				ads7846_update_value(m, val);
748 				packet->tc.ignore = false;
749 				msg_idx++;
750 				break;
751 
752 			default:
753 				BUG();
754 			}
755 		} else {
756 			msg_idx++;
757 		}
758 	}
759 }
760 
761 static void ads7846_report_state(struct ads7846 *ts)
762 {
763 	struct ads7846_packet *packet = ts->packet;
764 	unsigned int Rt;
765 	u16 x, y, z1, z2;
766 
767 	/*
768 	 * ads7846_get_value() does in-place conversion (including byte swap)
769 	 * from on-the-wire format as part of debouncing to get stable
770 	 * readings.
771 	 */
772 	if (ts->model == 7845) {
773 		x = *(u16 *)packet->tc.x_buf;
774 		y = *(u16 *)packet->tc.y_buf;
775 		z1 = 0;
776 		z2 = 0;
777 	} else {
778 		x = packet->tc.x;
779 		y = packet->tc.y;
780 		z1 = packet->tc.z1;
781 		z2 = packet->tc.z2;
782 	}
783 
784 	/* range filtering */
785 	if (x == MAX_12BIT)
786 		x = 0;
787 
788 	if (ts->model == 7843) {
789 		Rt = ts->pressure_max / 2;
790 	} else if (ts->model == 7845) {
791 		if (get_pendown_state(ts))
792 			Rt = ts->pressure_max / 2;
793 		else
794 			Rt = 0;
795 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
796 	} else if (likely(x && z1)) {
797 		/* compute touch pressure resistance using equation #2 */
798 		Rt = z2;
799 		Rt -= z1;
800 		Rt *= x;
801 		Rt *= ts->x_plate_ohms;
802 		Rt /= z1;
803 		Rt = (Rt + 2047) >> 12;
804 	} else {
805 		Rt = 0;
806 	}
807 
808 	/*
809 	 * Sample found inconsistent by debouncing or pressure is beyond
810 	 * the maximum. Don't report it to user space, repeat at least
811 	 * once more the measurement
812 	 */
813 	if (packet->tc.ignore || Rt > ts->pressure_max) {
814 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
815 			 packet->tc.ignore, Rt);
816 		return;
817 	}
818 
819 	/*
820 	 * Maybe check the pendown state before reporting. This discards
821 	 * false readings when the pen is lifted.
822 	 */
823 	if (ts->penirq_recheck_delay_usecs) {
824 		udelay(ts->penirq_recheck_delay_usecs);
825 		if (!get_pendown_state(ts))
826 			Rt = 0;
827 	}
828 
829 	/*
830 	 * NOTE: We can't rely on the pressure to determine the pen down
831 	 * state, even this controller has a pressure sensor. The pressure
832 	 * value can fluctuate for quite a while after lifting the pen and
833 	 * in some cases may not even settle at the expected value.
834 	 *
835 	 * The only safe way to check for the pen up condition is in the
836 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
837 	 */
838 	if (Rt) {
839 		struct input_dev *input = ts->input;
840 
841 		if (ts->swap_xy)
842 			swap(x, y);
843 
844 		if (!ts->pendown) {
845 			input_report_key(input, BTN_TOUCH, 1);
846 			ts->pendown = true;
847 			dev_vdbg(&ts->spi->dev, "DOWN\n");
848 		}
849 
850 		input_report_abs(input, ABS_X, x);
851 		input_report_abs(input, ABS_Y, y);
852 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
853 
854 		input_sync(input);
855 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
856 	}
857 }
858 
859 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
860 {
861 	struct ads7846 *ts = handle;
862 
863 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
864 }
865 
866 
867 static irqreturn_t ads7846_irq(int irq, void *handle)
868 {
869 	struct ads7846 *ts = handle;
870 
871 	/* Start with a small delay before checking pendown state */
872 	msleep(TS_POLL_DELAY);
873 
874 	while (!ts->stopped && get_pendown_state(ts)) {
875 
876 		/* pen is down, continue with the measurement */
877 		ads7846_read_state(ts);
878 
879 		if (!ts->stopped)
880 			ads7846_report_state(ts);
881 
882 		wait_event_timeout(ts->wait, ts->stopped,
883 				   msecs_to_jiffies(TS_POLL_PERIOD));
884 	}
885 
886 	if (ts->pendown) {
887 		struct input_dev *input = ts->input;
888 
889 		input_report_key(input, BTN_TOUCH, 0);
890 		input_report_abs(input, ABS_PRESSURE, 0);
891 		input_sync(input);
892 
893 		ts->pendown = false;
894 		dev_vdbg(&ts->spi->dev, "UP\n");
895 	}
896 
897 	return IRQ_HANDLED;
898 }
899 
900 #ifdef CONFIG_PM_SLEEP
901 static int ads7846_suspend(struct device *dev)
902 {
903 	struct ads7846 *ts = dev_get_drvdata(dev);
904 
905 	mutex_lock(&ts->lock);
906 
907 	if (!ts->suspended) {
908 
909 		if (!ts->disabled)
910 			__ads7846_disable(ts);
911 
912 		if (device_may_wakeup(&ts->spi->dev))
913 			enable_irq_wake(ts->spi->irq);
914 
915 		ts->suspended = true;
916 	}
917 
918 	mutex_unlock(&ts->lock);
919 
920 	return 0;
921 }
922 
923 static int ads7846_resume(struct device *dev)
924 {
925 	struct ads7846 *ts = dev_get_drvdata(dev);
926 
927 	mutex_lock(&ts->lock);
928 
929 	if (ts->suspended) {
930 
931 		ts->suspended = false;
932 
933 		if (device_may_wakeup(&ts->spi->dev))
934 			disable_irq_wake(ts->spi->irq);
935 
936 		if (!ts->disabled)
937 			__ads7846_enable(ts);
938 	}
939 
940 	mutex_unlock(&ts->lock);
941 
942 	return 0;
943 }
944 #endif
945 
946 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
947 
948 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
949 {
950 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
951 	int err;
952 
953 	/*
954 	 * REVISIT when the irq can be triggered active-low, or if for some
955 	 * reason the touchscreen isn't hooked up, we don't need to access
956 	 * the pendown state.
957 	 */
958 
959 	if (pdata->get_pendown_state) {
960 		ts->get_pendown_state = pdata->get_pendown_state;
961 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
962 
963 		err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
964 		if (err) {
965 			dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
966 				pdata->gpio_pendown);
967 			return err;
968 		}
969 
970 		ts->gpio_pendown = pdata->gpio_pendown;
971 
972 	} else {
973 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
974 		return -EINVAL;
975 	}
976 
977 	return 0;
978 }
979 
980 /*
981  * Set up the transfers to read touchscreen state; this assumes we
982  * use formula #2 for pressure, not #3.
983  */
984 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
985 				const struct ads7846_platform_data *pdata)
986 {
987 	struct spi_message *m = &ts->msg[0];
988 	struct spi_transfer *x = ts->xfer;
989 	struct ads7846_packet *packet = ts->packet;
990 	int vref = pdata->keep_vref_on;
991 
992 	if (ts->model == 7873) {
993 		/*
994 		 * The AD7873 is almost identical to the ADS7846
995 		 * keep VREF off during differential/ratiometric
996 		 * conversion modes.
997 		 */
998 		ts->model = 7846;
999 		vref = 0;
1000 	}
1001 
1002 	ts->msg_count = 1;
1003 	spi_message_init(m);
1004 	m->context = ts;
1005 
1006 	if (ts->model == 7845) {
1007 		packet->read_y_cmd[0] = READ_Y(vref);
1008 		packet->read_y_cmd[1] = 0;
1009 		packet->read_y_cmd[2] = 0;
1010 		x->tx_buf = &packet->read_y_cmd[0];
1011 		x->rx_buf = &packet->tc.y_buf[0];
1012 		x->len = 3;
1013 		spi_message_add_tail(x, m);
1014 	} else {
1015 		/* y- still on; turn on only y+ (and ADC) */
1016 		packet->read_y = READ_Y(vref);
1017 		x->tx_buf = &packet->read_y;
1018 		x->len = 1;
1019 		spi_message_add_tail(x, m);
1020 
1021 		x++;
1022 		x->rx_buf = &packet->tc.y;
1023 		x->len = 2;
1024 		spi_message_add_tail(x, m);
1025 	}
1026 
1027 	/*
1028 	 * The first sample after switching drivers can be low quality;
1029 	 * optionally discard it, using a second one after the signals
1030 	 * have had enough time to stabilize.
1031 	 */
1032 	if (pdata->settle_delay_usecs) {
1033 		x->delay_usecs = pdata->settle_delay_usecs;
1034 
1035 		x++;
1036 		x->tx_buf = &packet->read_y;
1037 		x->len = 1;
1038 		spi_message_add_tail(x, m);
1039 
1040 		x++;
1041 		x->rx_buf = &packet->tc.y;
1042 		x->len = 2;
1043 		spi_message_add_tail(x, m);
1044 	}
1045 
1046 	ts->msg_count++;
1047 	m++;
1048 	spi_message_init(m);
1049 	m->context = ts;
1050 
1051 	if (ts->model == 7845) {
1052 		x++;
1053 		packet->read_x_cmd[0] = READ_X(vref);
1054 		packet->read_x_cmd[1] = 0;
1055 		packet->read_x_cmd[2] = 0;
1056 		x->tx_buf = &packet->read_x_cmd[0];
1057 		x->rx_buf = &packet->tc.x_buf[0];
1058 		x->len = 3;
1059 		spi_message_add_tail(x, m);
1060 	} else {
1061 		/* turn y- off, x+ on, then leave in lowpower */
1062 		x++;
1063 		packet->read_x = READ_X(vref);
1064 		x->tx_buf = &packet->read_x;
1065 		x->len = 1;
1066 		spi_message_add_tail(x, m);
1067 
1068 		x++;
1069 		x->rx_buf = &packet->tc.x;
1070 		x->len = 2;
1071 		spi_message_add_tail(x, m);
1072 	}
1073 
1074 	/* ... maybe discard first sample ... */
1075 	if (pdata->settle_delay_usecs) {
1076 		x->delay_usecs = pdata->settle_delay_usecs;
1077 
1078 		x++;
1079 		x->tx_buf = &packet->read_x;
1080 		x->len = 1;
1081 		spi_message_add_tail(x, m);
1082 
1083 		x++;
1084 		x->rx_buf = &packet->tc.x;
1085 		x->len = 2;
1086 		spi_message_add_tail(x, m);
1087 	}
1088 
1089 	/* turn y+ off, x- on; we'll use formula #2 */
1090 	if (ts->model == 7846) {
1091 		ts->msg_count++;
1092 		m++;
1093 		spi_message_init(m);
1094 		m->context = ts;
1095 
1096 		x++;
1097 		packet->read_z1 = READ_Z1(vref);
1098 		x->tx_buf = &packet->read_z1;
1099 		x->len = 1;
1100 		spi_message_add_tail(x, m);
1101 
1102 		x++;
1103 		x->rx_buf = &packet->tc.z1;
1104 		x->len = 2;
1105 		spi_message_add_tail(x, m);
1106 
1107 		/* ... maybe discard first sample ... */
1108 		if (pdata->settle_delay_usecs) {
1109 			x->delay_usecs = pdata->settle_delay_usecs;
1110 
1111 			x++;
1112 			x->tx_buf = &packet->read_z1;
1113 			x->len = 1;
1114 			spi_message_add_tail(x, m);
1115 
1116 			x++;
1117 			x->rx_buf = &packet->tc.z1;
1118 			x->len = 2;
1119 			spi_message_add_tail(x, m);
1120 		}
1121 
1122 		ts->msg_count++;
1123 		m++;
1124 		spi_message_init(m);
1125 		m->context = ts;
1126 
1127 		x++;
1128 		packet->read_z2 = READ_Z2(vref);
1129 		x->tx_buf = &packet->read_z2;
1130 		x->len = 1;
1131 		spi_message_add_tail(x, m);
1132 
1133 		x++;
1134 		x->rx_buf = &packet->tc.z2;
1135 		x->len = 2;
1136 		spi_message_add_tail(x, m);
1137 
1138 		/* ... maybe discard first sample ... */
1139 		if (pdata->settle_delay_usecs) {
1140 			x->delay_usecs = pdata->settle_delay_usecs;
1141 
1142 			x++;
1143 			x->tx_buf = &packet->read_z2;
1144 			x->len = 1;
1145 			spi_message_add_tail(x, m);
1146 
1147 			x++;
1148 			x->rx_buf = &packet->tc.z2;
1149 			x->len = 2;
1150 			spi_message_add_tail(x, m);
1151 		}
1152 	}
1153 
1154 	/* power down */
1155 	ts->msg_count++;
1156 	m++;
1157 	spi_message_init(m);
1158 	m->context = ts;
1159 
1160 	if (ts->model == 7845) {
1161 		x++;
1162 		packet->pwrdown_cmd[0] = PWRDOWN;
1163 		packet->pwrdown_cmd[1] = 0;
1164 		packet->pwrdown_cmd[2] = 0;
1165 		x->tx_buf = &packet->pwrdown_cmd[0];
1166 		x->len = 3;
1167 	} else {
1168 		x++;
1169 		packet->pwrdown = PWRDOWN;
1170 		x->tx_buf = &packet->pwrdown;
1171 		x->len = 1;
1172 		spi_message_add_tail(x, m);
1173 
1174 		x++;
1175 		x->rx_buf = &packet->dummy;
1176 		x->len = 2;
1177 	}
1178 
1179 	CS_CHANGE(*x);
1180 	spi_message_add_tail(x, m);
1181 }
1182 
1183 static int __devinit ads7846_probe(struct spi_device *spi)
1184 {
1185 	struct ads7846 *ts;
1186 	struct ads7846_packet *packet;
1187 	struct input_dev *input_dev;
1188 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1189 	unsigned long irq_flags;
1190 	int err;
1191 
1192 	if (!spi->irq) {
1193 		dev_dbg(&spi->dev, "no IRQ?\n");
1194 		return -ENODEV;
1195 	}
1196 
1197 	if (!pdata) {
1198 		dev_dbg(&spi->dev, "no platform data?\n");
1199 		return -ENODEV;
1200 	}
1201 
1202 	/* don't exceed max specified sample rate */
1203 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1204 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1205 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1206 		return -EINVAL;
1207 	}
1208 
1209 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1210 	 * that even if the hardware can do that, the SPI controller driver
1211 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1212 	 */
1213 	spi->bits_per_word = 8;
1214 	spi->mode = SPI_MODE_0;
1215 	err = spi_setup(spi);
1216 	if (err < 0)
1217 		return err;
1218 
1219 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1220 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1221 	input_dev = input_allocate_device();
1222 	if (!ts || !packet || !input_dev) {
1223 		err = -ENOMEM;
1224 		goto err_free_mem;
1225 	}
1226 
1227 	dev_set_drvdata(&spi->dev, ts);
1228 
1229 	ts->packet = packet;
1230 	ts->spi = spi;
1231 	ts->input = input_dev;
1232 	ts->vref_mv = pdata->vref_mv;
1233 	ts->swap_xy = pdata->swap_xy;
1234 
1235 	mutex_init(&ts->lock);
1236 	init_waitqueue_head(&ts->wait);
1237 
1238 	ts->model = pdata->model ? : 7846;
1239 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1240 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1241 	ts->pressure_max = pdata->pressure_max ? : ~0;
1242 
1243 	if (pdata->filter != NULL) {
1244 		if (pdata->filter_init != NULL) {
1245 			err = pdata->filter_init(pdata, &ts->filter_data);
1246 			if (err < 0)
1247 				goto err_free_mem;
1248 		}
1249 		ts->filter = pdata->filter;
1250 		ts->filter_cleanup = pdata->filter_cleanup;
1251 	} else if (pdata->debounce_max) {
1252 		ts->debounce_max = pdata->debounce_max;
1253 		if (ts->debounce_max < 2)
1254 			ts->debounce_max = 2;
1255 		ts->debounce_tol = pdata->debounce_tol;
1256 		ts->debounce_rep = pdata->debounce_rep;
1257 		ts->filter = ads7846_debounce_filter;
1258 		ts->filter_data = ts;
1259 	} else {
1260 		ts->filter = ads7846_no_filter;
1261 	}
1262 
1263 	err = ads7846_setup_pendown(spi, ts);
1264 	if (err)
1265 		goto err_cleanup_filter;
1266 
1267 	if (pdata->penirq_recheck_delay_usecs)
1268 		ts->penirq_recheck_delay_usecs =
1269 				pdata->penirq_recheck_delay_usecs;
1270 
1271 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1272 
1273 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1274 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1275 
1276 	input_dev->name = ts->name;
1277 	input_dev->phys = ts->phys;
1278 	input_dev->dev.parent = &spi->dev;
1279 
1280 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1281 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1282 	input_set_abs_params(input_dev, ABS_X,
1283 			pdata->x_min ? : 0,
1284 			pdata->x_max ? : MAX_12BIT,
1285 			0, 0);
1286 	input_set_abs_params(input_dev, ABS_Y,
1287 			pdata->y_min ? : 0,
1288 			pdata->y_max ? : MAX_12BIT,
1289 			0, 0);
1290 	input_set_abs_params(input_dev, ABS_PRESSURE,
1291 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1292 
1293 	ads7846_setup_spi_msg(ts, pdata);
1294 
1295 	ts->reg = regulator_get(&spi->dev, "vcc");
1296 	if (IS_ERR(ts->reg)) {
1297 		err = PTR_ERR(ts->reg);
1298 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1299 		goto err_free_gpio;
1300 	}
1301 
1302 	err = regulator_enable(ts->reg);
1303 	if (err) {
1304 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1305 		goto err_put_regulator;
1306 	}
1307 
1308 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1309 	irq_flags |= IRQF_ONESHOT;
1310 
1311 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1312 				   irq_flags, spi->dev.driver->name, ts);
1313 	if (err && !pdata->irq_flags) {
1314 		dev_info(&spi->dev,
1315 			"trying pin change workaround on irq %d\n", spi->irq);
1316 		irq_flags |= IRQF_TRIGGER_RISING;
1317 		err = request_threaded_irq(spi->irq,
1318 				  ads7846_hard_irq, ads7846_irq,
1319 				  irq_flags, spi->dev.driver->name, ts);
1320 	}
1321 
1322 	if (err) {
1323 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1324 		goto err_disable_regulator;
1325 	}
1326 
1327 	err = ads784x_hwmon_register(spi, ts);
1328 	if (err)
1329 		goto err_free_irq;
1330 
1331 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1332 
1333 	/*
1334 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1335 	 * the touchscreen, in case it's not connected.
1336 	 */
1337 	if (ts->model == 7845)
1338 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1339 	else
1340 		(void) ads7846_read12_ser(&spi->dev, READ_12BIT_SER(vaux));
1341 
1342 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1343 	if (err)
1344 		goto err_remove_hwmon;
1345 
1346 	err = input_register_device(input_dev);
1347 	if (err)
1348 		goto err_remove_attr_group;
1349 
1350 	device_init_wakeup(&spi->dev, pdata->wakeup);
1351 
1352 	return 0;
1353 
1354  err_remove_attr_group:
1355 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1356  err_remove_hwmon:
1357 	ads784x_hwmon_unregister(spi, ts);
1358  err_free_irq:
1359 	free_irq(spi->irq, ts);
1360  err_disable_regulator:
1361 	regulator_disable(ts->reg);
1362  err_put_regulator:
1363 	regulator_put(ts->reg);
1364  err_free_gpio:
1365 	if (!ts->get_pendown_state)
1366 		gpio_free(ts->gpio_pendown);
1367  err_cleanup_filter:
1368 	if (ts->filter_cleanup)
1369 		ts->filter_cleanup(ts->filter_data);
1370  err_free_mem:
1371 	input_free_device(input_dev);
1372 	kfree(packet);
1373 	kfree(ts);
1374 	return err;
1375 }
1376 
1377 static int __devexit ads7846_remove(struct spi_device *spi)
1378 {
1379 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1380 
1381 	device_init_wakeup(&spi->dev, false);
1382 
1383 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1384 
1385 	ads7846_disable(ts);
1386 	free_irq(ts->spi->irq, ts);
1387 
1388 	input_unregister_device(ts->input);
1389 
1390 	ads784x_hwmon_unregister(spi, ts);
1391 
1392 	regulator_disable(ts->reg);
1393 	regulator_put(ts->reg);
1394 
1395 	if (!ts->get_pendown_state) {
1396 		/*
1397 		 * If we are not using specialized pendown method we must
1398 		 * have been relying on gpio we set up ourselves.
1399 		 */
1400 		gpio_free(ts->gpio_pendown);
1401 	}
1402 
1403 	if (ts->filter_cleanup)
1404 		ts->filter_cleanup(ts->filter_data);
1405 
1406 	kfree(ts->packet);
1407 	kfree(ts);
1408 
1409 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1410 
1411 	return 0;
1412 }
1413 
1414 static struct spi_driver ads7846_driver = {
1415 	.driver = {
1416 		.name	= "ads7846",
1417 		.bus	= &spi_bus_type,
1418 		.owner	= THIS_MODULE,
1419 		.pm	= &ads7846_pm,
1420 	},
1421 	.probe		= ads7846_probe,
1422 	.remove		= __devexit_p(ads7846_remove),
1423 };
1424 
1425 static int __init ads7846_init(void)
1426 {
1427 	return spi_register_driver(&ads7846_driver);
1428 }
1429 module_init(ads7846_init);
1430 
1431 static void __exit ads7846_exit(void)
1432 {
1433 	spi_unregister_driver(&ads7846_driver);
1434 }
1435 module_exit(ads7846_exit);
1436 
1437 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1438 MODULE_LICENSE("GPL");
1439 MODULE_ALIAS("spi:ads7846");
1440