xref: /openbmc/linux/drivers/input/touchscreen/ads7846.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/gpio.h>
30 #include <linux/spi/spi.h>
31 #include <linux/spi/ads7846.h>
32 #include <linux/regulator/consumer.h>
33 #include <asm/irq.h>
34 
35 /*
36  * This code has been heavily tested on a Nokia 770, and lightly
37  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
38  * TSC2046 is just newer ads7846 silicon.
39  * Support for ads7843 tested on Atmel at91sam926x-EK.
40  * Support for ads7845 has only been stubbed in.
41  * Support for Analog Devices AD7873 and AD7843 tested.
42  *
43  * IRQ handling needs a workaround because of a shortcoming in handling
44  * edge triggered IRQs on some platforms like the OMAP1/2. These
45  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
46  * have to maintain our own SW IRQ disabled status. This should be
47  * removed as soon as the affected platform's IRQ handling is fixed.
48  *
49  * App note sbaa036 talks in more detail about accurate sampling...
50  * that ought to help in situations like LCDs inducing noise (which
51  * can also be helped by using synch signals) and more generally.
52  * This driver tries to utilize the measures described in the app
53  * note. The strength of filtering can be set in the board-* specific
54  * files.
55  */
56 
57 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
58 #define TS_POLL_PERIOD	5	/* ms delay between samples */
59 
60 /* this driver doesn't aim at the peak continuous sample rate */
61 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
62 
63 struct ts_event {
64 	/*
65 	 * For portability, we can't read 12 bit values using SPI (which
66 	 * would make the controller deliver them as native byte order u16
67 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
68 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
69 	 */
70 	u16	x;
71 	u16	y;
72 	u16	z1, z2;
73 	bool	ignore;
74 	u8	x_buf[3];
75 	u8	y_buf[3];
76 };
77 
78 /*
79  * We allocate this separately to avoid cache line sharing issues when
80  * driver is used with DMA-based SPI controllers (like atmel_spi) on
81  * systems where main memory is not DMA-coherent (most non-x86 boards).
82  */
83 struct ads7846_packet {
84 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
85 	u16			dummy;		/* for the pwrdown read */
86 	struct ts_event		tc;
87 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
88 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
89 };
90 
91 struct ads7846 {
92 	struct input_dev	*input;
93 	char			phys[32];
94 	char			name[32];
95 
96 	struct spi_device	*spi;
97 	struct regulator	*reg;
98 
99 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
100 	struct attribute_group	*attr_group;
101 	struct device		*hwmon;
102 #endif
103 
104 	u16			model;
105 	u16			vref_mv;
106 	u16			vref_delay_usecs;
107 	u16			x_plate_ohms;
108 	u16			pressure_max;
109 
110 	bool			swap_xy;
111 
112 	struct ads7846_packet	*packet;
113 
114 	struct spi_transfer	xfer[18];
115 	struct spi_message	msg[5];
116 	int			msg_count;
117 	wait_queue_head_t	wait;
118 
119 	bool			pendown;
120 
121 	int			read_cnt;
122 	int			read_rep;
123 	int			last_read;
124 
125 	u16			debounce_max;
126 	u16			debounce_tol;
127 	u16			debounce_rep;
128 
129 	u16			penirq_recheck_delay_usecs;
130 
131 	struct mutex		lock;
132 	bool			stopped;	/* P: lock */
133 	bool			disabled;	/* P: lock */
134 	bool			suspended;	/* P: lock */
135 
136 	int			(*filter)(void *data, int data_idx, int *val);
137 	void			*filter_data;
138 	void			(*filter_cleanup)(void *data);
139 	int			(*get_pendown_state)(void);
140 	int			gpio_pendown;
141 
142 	void			(*wait_for_sync)(void);
143 };
144 
145 /* leave chip selected when we're done, for quicker re-select? */
146 #if	0
147 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
148 #else
149 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
150 #endif
151 
152 /*--------------------------------------------------------------------------*/
153 
154 /* The ADS7846 has touchscreen and other sensors.
155  * Earlier ads784x chips are somewhat compatible.
156  */
157 #define	ADS_START		(1 << 7)
158 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
159 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
160 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
161 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
162 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
163 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
164 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
165 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
166 #define	ADS_8_BIT		(1 << 3)
167 #define	ADS_12_BIT		(0 << 3)
168 #define	ADS_SER			(1 << 2)	/* non-differential */
169 #define	ADS_DFR			(0 << 2)	/* differential */
170 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
171 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
172 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
173 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
174 
175 #define	MAX_12BIT	((1<<12)-1)
176 
177 /* leave ADC powered up (disables penirq) between differential samples */
178 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
179 	| ADS_12_BIT | ADS_DFR | \
180 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
181 
182 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
183 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
184 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
185 
186 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
187 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
188 
189 /* single-ended samples need to first power up reference voltage;
190  * we leave both ADC and VREF powered
191  */
192 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
193 	| ADS_12_BIT | ADS_SER)
194 
195 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
196 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
197 
198 /* Must be called with ts->lock held */
199 static void ads7846_stop(struct ads7846 *ts)
200 {
201 	if (!ts->disabled && !ts->suspended) {
202 		/* Signal IRQ thread to stop polling and disable the handler. */
203 		ts->stopped = true;
204 		mb();
205 		wake_up(&ts->wait);
206 		disable_irq(ts->spi->irq);
207 	}
208 }
209 
210 /* Must be called with ts->lock held */
211 static void ads7846_restart(struct ads7846 *ts)
212 {
213 	if (!ts->disabled && !ts->suspended) {
214 		/* Tell IRQ thread that it may poll the device. */
215 		ts->stopped = false;
216 		mb();
217 		enable_irq(ts->spi->irq);
218 	}
219 }
220 
221 /* Must be called with ts->lock held */
222 static void __ads7846_disable(struct ads7846 *ts)
223 {
224 	ads7846_stop(ts);
225 	regulator_disable(ts->reg);
226 
227 	/*
228 	 * We know the chip's in low power mode since we always
229 	 * leave it that way after every request
230 	 */
231 }
232 
233 /* Must be called with ts->lock held */
234 static void __ads7846_enable(struct ads7846 *ts)
235 {
236 	regulator_enable(ts->reg);
237 	ads7846_restart(ts);
238 }
239 
240 static void ads7846_disable(struct ads7846 *ts)
241 {
242 	mutex_lock(&ts->lock);
243 
244 	if (!ts->disabled) {
245 
246 		if  (!ts->suspended)
247 			__ads7846_disable(ts);
248 
249 		ts->disabled = true;
250 	}
251 
252 	mutex_unlock(&ts->lock);
253 }
254 
255 static void ads7846_enable(struct ads7846 *ts)
256 {
257 	mutex_lock(&ts->lock);
258 
259 	if (ts->disabled) {
260 
261 		ts->disabled = false;
262 
263 		if (!ts->suspended)
264 			__ads7846_enable(ts);
265 	}
266 
267 	mutex_unlock(&ts->lock);
268 }
269 
270 /*--------------------------------------------------------------------------*/
271 
272 /*
273  * Non-touchscreen sensors only use single-ended conversions.
274  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
275  * ads7846 lets that pin be unconnected, to use internal vREF.
276  */
277 
278 struct ser_req {
279 	u8			ref_on;
280 	u8			command;
281 	u8			ref_off;
282 	u16			scratch;
283 	__be16			sample;
284 	struct spi_message	msg;
285 	struct spi_transfer	xfer[6];
286 };
287 
288 struct ads7845_ser_req {
289 	u8			command[3];
290 	u8			pwrdown[3];
291 	u8			sample[3];
292 	struct spi_message	msg;
293 	struct spi_transfer	xfer[2];
294 };
295 
296 static int ads7846_read12_ser(struct device *dev, unsigned command)
297 {
298 	struct spi_device *spi = to_spi_device(dev);
299 	struct ads7846 *ts = dev_get_drvdata(dev);
300 	struct ser_req *req;
301 	int status;
302 	int use_internal;
303 
304 	req = kzalloc(sizeof *req, GFP_KERNEL);
305 	if (!req)
306 		return -ENOMEM;
307 
308 	spi_message_init(&req->msg);
309 
310 	/* FIXME boards with ads7846 might use external vref instead ... */
311 	use_internal = (ts->model == 7846);
312 
313 	/* maybe turn on internal vREF, and let it settle */
314 	if (use_internal) {
315 		req->ref_on = REF_ON;
316 		req->xfer[0].tx_buf = &req->ref_on;
317 		req->xfer[0].len = 1;
318 		spi_message_add_tail(&req->xfer[0], &req->msg);
319 
320 		req->xfer[1].rx_buf = &req->scratch;
321 		req->xfer[1].len = 2;
322 
323 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
324 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
325 		spi_message_add_tail(&req->xfer[1], &req->msg);
326 	}
327 
328 	/* take sample */
329 	req->command = (u8) command;
330 	req->xfer[2].tx_buf = &req->command;
331 	req->xfer[2].len = 1;
332 	spi_message_add_tail(&req->xfer[2], &req->msg);
333 
334 	req->xfer[3].rx_buf = &req->sample;
335 	req->xfer[3].len = 2;
336 	spi_message_add_tail(&req->xfer[3], &req->msg);
337 
338 	/* REVISIT:  take a few more samples, and compare ... */
339 
340 	/* converter in low power mode & enable PENIRQ */
341 	req->ref_off = PWRDOWN;
342 	req->xfer[4].tx_buf = &req->ref_off;
343 	req->xfer[4].len = 1;
344 	spi_message_add_tail(&req->xfer[4], &req->msg);
345 
346 	req->xfer[5].rx_buf = &req->scratch;
347 	req->xfer[5].len = 2;
348 	CS_CHANGE(req->xfer[5]);
349 	spi_message_add_tail(&req->xfer[5], &req->msg);
350 
351 	mutex_lock(&ts->lock);
352 	ads7846_stop(ts);
353 	status = spi_sync(spi, &req->msg);
354 	ads7846_restart(ts);
355 	mutex_unlock(&ts->lock);
356 
357 	if (status == 0) {
358 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
359 		status = be16_to_cpu(req->sample);
360 		status = status >> 3;
361 		status &= 0x0fff;
362 	}
363 
364 	kfree(req);
365 	return status;
366 }
367 
368 static int ads7845_read12_ser(struct device *dev, unsigned command)
369 {
370 	struct spi_device *spi = to_spi_device(dev);
371 	struct ads7846 *ts = dev_get_drvdata(dev);
372 	struct ads7845_ser_req *req;
373 	int status;
374 
375 	req = kzalloc(sizeof *req, GFP_KERNEL);
376 	if (!req)
377 		return -ENOMEM;
378 
379 	spi_message_init(&req->msg);
380 
381 	req->command[0] = (u8) command;
382 	req->xfer[0].tx_buf = req->command;
383 	req->xfer[0].rx_buf = req->sample;
384 	req->xfer[0].len = 3;
385 	spi_message_add_tail(&req->xfer[0], &req->msg);
386 
387 	mutex_lock(&ts->lock);
388 	ads7846_stop(ts);
389 	status = spi_sync(spi, &req->msg);
390 	ads7846_restart(ts);
391 	mutex_unlock(&ts->lock);
392 
393 	if (status == 0) {
394 		/* BE12 value, then padding */
395 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
396 		status = status >> 3;
397 		status &= 0x0fff;
398 	}
399 
400 	kfree(req);
401 	return status;
402 }
403 
404 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
405 
406 #define SHOW(name, var, adjust) static ssize_t \
407 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
408 { \
409 	struct ads7846 *ts = dev_get_drvdata(dev); \
410 	ssize_t v = ads7846_read12_ser(dev, \
411 			READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
412 	if (v < 0) \
413 		return v; \
414 	return sprintf(buf, "%u\n", adjust(ts, v)); \
415 } \
416 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
417 
418 
419 /* Sysfs conventions report temperatures in millidegrees Celsius.
420  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
421  * accuracy scheme without calibration data.  For now we won't try either;
422  * userspace sees raw sensor values, and must scale/calibrate appropriately.
423  */
424 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
425 {
426 	return v;
427 }
428 
429 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
430 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
431 
432 
433 /* sysfs conventions report voltages in millivolts.  We can convert voltages
434  * if we know vREF.  userspace may need to scale vAUX to match the board's
435  * external resistors; we assume that vBATT only uses the internal ones.
436  */
437 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
438 {
439 	unsigned retval = v;
440 
441 	/* external resistors may scale vAUX into 0..vREF */
442 	retval *= ts->vref_mv;
443 	retval = retval >> 12;
444 
445 	return retval;
446 }
447 
448 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
449 {
450 	unsigned retval = vaux_adjust(ts, v);
451 
452 	/* ads7846 has a resistor ladder to scale this signal down */
453 	if (ts->model == 7846)
454 		retval *= 4;
455 
456 	return retval;
457 }
458 
459 SHOW(in0_input, vaux, vaux_adjust)
460 SHOW(in1_input, vbatt, vbatt_adjust)
461 
462 static struct attribute *ads7846_attributes[] = {
463 	&dev_attr_temp0.attr,
464 	&dev_attr_temp1.attr,
465 	&dev_attr_in0_input.attr,
466 	&dev_attr_in1_input.attr,
467 	NULL,
468 };
469 
470 static struct attribute_group ads7846_attr_group = {
471 	.attrs = ads7846_attributes,
472 };
473 
474 static struct attribute *ads7843_attributes[] = {
475 	&dev_attr_in0_input.attr,
476 	&dev_attr_in1_input.attr,
477 	NULL,
478 };
479 
480 static struct attribute_group ads7843_attr_group = {
481 	.attrs = ads7843_attributes,
482 };
483 
484 static struct attribute *ads7845_attributes[] = {
485 	&dev_attr_in0_input.attr,
486 	NULL,
487 };
488 
489 static struct attribute_group ads7845_attr_group = {
490 	.attrs = ads7845_attributes,
491 };
492 
493 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
494 {
495 	struct device *hwmon;
496 	int err;
497 
498 	/* hwmon sensors need a reference voltage */
499 	switch (ts->model) {
500 	case 7846:
501 		if (!ts->vref_mv) {
502 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
503 			ts->vref_mv = 2500;
504 		}
505 		break;
506 	case 7845:
507 	case 7843:
508 		if (!ts->vref_mv) {
509 			dev_warn(&spi->dev,
510 				"external vREF for ADS%d not specified\n",
511 				ts->model);
512 			return 0;
513 		}
514 		break;
515 	}
516 
517 	/* different chips have different sensor groups */
518 	switch (ts->model) {
519 	case 7846:
520 		ts->attr_group = &ads7846_attr_group;
521 		break;
522 	case 7845:
523 		ts->attr_group = &ads7845_attr_group;
524 		break;
525 	case 7843:
526 		ts->attr_group = &ads7843_attr_group;
527 		break;
528 	default:
529 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
530 		return 0;
531 	}
532 
533 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
534 	if (err)
535 		return err;
536 
537 	hwmon = hwmon_device_register(&spi->dev);
538 	if (IS_ERR(hwmon)) {
539 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
540 		return PTR_ERR(hwmon);
541 	}
542 
543 	ts->hwmon = hwmon;
544 	return 0;
545 }
546 
547 static void ads784x_hwmon_unregister(struct spi_device *spi,
548 				     struct ads7846 *ts)
549 {
550 	if (ts->hwmon) {
551 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
552 		hwmon_device_unregister(ts->hwmon);
553 	}
554 }
555 
556 #else
557 static inline int ads784x_hwmon_register(struct spi_device *spi,
558 					 struct ads7846 *ts)
559 {
560 	return 0;
561 }
562 
563 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
564 					    struct ads7846 *ts)
565 {
566 }
567 #endif
568 
569 static ssize_t ads7846_pen_down_show(struct device *dev,
570 				     struct device_attribute *attr, char *buf)
571 {
572 	struct ads7846 *ts = dev_get_drvdata(dev);
573 
574 	return sprintf(buf, "%u\n", ts->pendown);
575 }
576 
577 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
578 
579 static ssize_t ads7846_disable_show(struct device *dev,
580 				     struct device_attribute *attr, char *buf)
581 {
582 	struct ads7846 *ts = dev_get_drvdata(dev);
583 
584 	return sprintf(buf, "%u\n", ts->disabled);
585 }
586 
587 static ssize_t ads7846_disable_store(struct device *dev,
588 				     struct device_attribute *attr,
589 				     const char *buf, size_t count)
590 {
591 	struct ads7846 *ts = dev_get_drvdata(dev);
592 	unsigned long i;
593 
594 	if (strict_strtoul(buf, 10, &i))
595 		return -EINVAL;
596 
597 	if (i)
598 		ads7846_disable(ts);
599 	else
600 		ads7846_enable(ts);
601 
602 	return count;
603 }
604 
605 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
606 
607 static struct attribute *ads784x_attributes[] = {
608 	&dev_attr_pen_down.attr,
609 	&dev_attr_disable.attr,
610 	NULL,
611 };
612 
613 static struct attribute_group ads784x_attr_group = {
614 	.attrs = ads784x_attributes,
615 };
616 
617 /*--------------------------------------------------------------------------*/
618 
619 static int get_pendown_state(struct ads7846 *ts)
620 {
621 	if (ts->get_pendown_state)
622 		return ts->get_pendown_state();
623 
624 	return !gpio_get_value(ts->gpio_pendown);
625 }
626 
627 static void null_wait_for_sync(void)
628 {
629 }
630 
631 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
632 {
633 	struct ads7846 *ts = ads;
634 
635 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
636 		/* Start over collecting consistent readings. */
637 		ts->read_rep = 0;
638 		/*
639 		 * Repeat it, if this was the first read or the read
640 		 * wasn't consistent enough.
641 		 */
642 		if (ts->read_cnt < ts->debounce_max) {
643 			ts->last_read = *val;
644 			ts->read_cnt++;
645 			return ADS7846_FILTER_REPEAT;
646 		} else {
647 			/*
648 			 * Maximum number of debouncing reached and still
649 			 * not enough number of consistent readings. Abort
650 			 * the whole sample, repeat it in the next sampling
651 			 * period.
652 			 */
653 			ts->read_cnt = 0;
654 			return ADS7846_FILTER_IGNORE;
655 		}
656 	} else {
657 		if (++ts->read_rep > ts->debounce_rep) {
658 			/*
659 			 * Got a good reading for this coordinate,
660 			 * go for the next one.
661 			 */
662 			ts->read_cnt = 0;
663 			ts->read_rep = 0;
664 			return ADS7846_FILTER_OK;
665 		} else {
666 			/* Read more values that are consistent. */
667 			ts->read_cnt++;
668 			return ADS7846_FILTER_REPEAT;
669 		}
670 	}
671 }
672 
673 static int ads7846_no_filter(void *ads, int data_idx, int *val)
674 {
675 	return ADS7846_FILTER_OK;
676 }
677 
678 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
679 {
680 	struct spi_transfer *t =
681 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
682 
683 	if (ts->model == 7845) {
684 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
685 	} else {
686 		/*
687 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
688 		 * padding; built from two 8 bit values written msb-first.
689 		 */
690 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
691 	}
692 }
693 
694 static void ads7846_update_value(struct spi_message *m, int val)
695 {
696 	struct spi_transfer *t =
697 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
698 
699 	*(u16 *)t->rx_buf = val;
700 }
701 
702 static void ads7846_read_state(struct ads7846 *ts)
703 {
704 	struct ads7846_packet *packet = ts->packet;
705 	struct spi_message *m;
706 	int msg_idx = 0;
707 	int val;
708 	int action;
709 	int error;
710 
711 	while (msg_idx < ts->msg_count) {
712 
713 		ts->wait_for_sync();
714 
715 		m = &ts->msg[msg_idx];
716 		error = spi_sync(ts->spi, m);
717 		if (error) {
718 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
719 			packet->tc.ignore = true;
720 			return;
721 		}
722 
723 		/*
724 		 * Last message is power down request, no need to convert
725 		 * or filter the value.
726 		 */
727 		if (msg_idx < ts->msg_count - 1) {
728 
729 			val = ads7846_get_value(ts, m);
730 
731 			action = ts->filter(ts->filter_data, msg_idx, &val);
732 			switch (action) {
733 			case ADS7846_FILTER_REPEAT:
734 				continue;
735 
736 			case ADS7846_FILTER_IGNORE:
737 				packet->tc.ignore = true;
738 				msg_idx = ts->msg_count - 1;
739 				continue;
740 
741 			case ADS7846_FILTER_OK:
742 				ads7846_update_value(m, val);
743 				packet->tc.ignore = false;
744 				msg_idx++;
745 				break;
746 
747 			default:
748 				BUG();
749 			}
750 		} else {
751 			msg_idx++;
752 		}
753 	}
754 }
755 
756 static void ads7846_report_state(struct ads7846 *ts)
757 {
758 	struct ads7846_packet *packet = ts->packet;
759 	unsigned int Rt;
760 	u16 x, y, z1, z2;
761 
762 	/*
763 	 * ads7846_get_value() does in-place conversion (including byte swap)
764 	 * from on-the-wire format as part of debouncing to get stable
765 	 * readings.
766 	 */
767 	if (ts->model == 7845) {
768 		x = *(u16 *)packet->tc.x_buf;
769 		y = *(u16 *)packet->tc.y_buf;
770 		z1 = 0;
771 		z2 = 0;
772 	} else {
773 		x = packet->tc.x;
774 		y = packet->tc.y;
775 		z1 = packet->tc.z1;
776 		z2 = packet->tc.z2;
777 	}
778 
779 	/* range filtering */
780 	if (x == MAX_12BIT)
781 		x = 0;
782 
783 	if (ts->model == 7843) {
784 		Rt = ts->pressure_max / 2;
785 	} else if (ts->model == 7845) {
786 		if (get_pendown_state(ts))
787 			Rt = ts->pressure_max / 2;
788 		else
789 			Rt = 0;
790 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
791 	} else if (likely(x && z1)) {
792 		/* compute touch pressure resistance using equation #2 */
793 		Rt = z2;
794 		Rt -= z1;
795 		Rt *= x;
796 		Rt *= ts->x_plate_ohms;
797 		Rt /= z1;
798 		Rt = (Rt + 2047) >> 12;
799 	} else {
800 		Rt = 0;
801 	}
802 
803 	/*
804 	 * Sample found inconsistent by debouncing or pressure is beyond
805 	 * the maximum. Don't report it to user space, repeat at least
806 	 * once more the measurement
807 	 */
808 	if (packet->tc.ignore || Rt > ts->pressure_max) {
809 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
810 			 packet->tc.ignore, Rt);
811 		return;
812 	}
813 
814 	/*
815 	 * Maybe check the pendown state before reporting. This discards
816 	 * false readings when the pen is lifted.
817 	 */
818 	if (ts->penirq_recheck_delay_usecs) {
819 		udelay(ts->penirq_recheck_delay_usecs);
820 		if (!get_pendown_state(ts))
821 			Rt = 0;
822 	}
823 
824 	/*
825 	 * NOTE: We can't rely on the pressure to determine the pen down
826 	 * state, even this controller has a pressure sensor. The pressure
827 	 * value can fluctuate for quite a while after lifting the pen and
828 	 * in some cases may not even settle at the expected value.
829 	 *
830 	 * The only safe way to check for the pen up condition is in the
831 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
832 	 */
833 	if (Rt) {
834 		struct input_dev *input = ts->input;
835 
836 		if (ts->swap_xy)
837 			swap(x, y);
838 
839 		if (!ts->pendown) {
840 			input_report_key(input, BTN_TOUCH, 1);
841 			ts->pendown = true;
842 			dev_vdbg(&ts->spi->dev, "DOWN\n");
843 		}
844 
845 		input_report_abs(input, ABS_X, x);
846 		input_report_abs(input, ABS_Y, y);
847 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
848 
849 		input_sync(input);
850 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
851 	}
852 }
853 
854 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
855 {
856 	struct ads7846 *ts = handle;
857 
858 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
859 }
860 
861 
862 static irqreturn_t ads7846_irq(int irq, void *handle)
863 {
864 	struct ads7846 *ts = handle;
865 
866 	/* Start with a small delay before checking pendown state */
867 	msleep(TS_POLL_DELAY);
868 
869 	while (!ts->stopped && get_pendown_state(ts)) {
870 
871 		/* pen is down, continue with the measurement */
872 		ads7846_read_state(ts);
873 
874 		if (!ts->stopped)
875 			ads7846_report_state(ts);
876 
877 		wait_event_timeout(ts->wait, ts->stopped,
878 				   msecs_to_jiffies(TS_POLL_PERIOD));
879 	}
880 
881 	if (ts->pendown) {
882 		struct input_dev *input = ts->input;
883 
884 		input_report_key(input, BTN_TOUCH, 0);
885 		input_report_abs(input, ABS_PRESSURE, 0);
886 		input_sync(input);
887 
888 		ts->pendown = false;
889 		dev_vdbg(&ts->spi->dev, "UP\n");
890 	}
891 
892 	return IRQ_HANDLED;
893 }
894 
895 static int ads7846_suspend(struct spi_device *spi, pm_message_t message)
896 {
897 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
898 
899 	mutex_lock(&ts->lock);
900 
901 	if (!ts->suspended) {
902 
903 		if (!ts->disabled)
904 			__ads7846_disable(ts);
905 
906 		if (device_may_wakeup(&ts->spi->dev))
907 			enable_irq_wake(ts->spi->irq);
908 
909 		ts->suspended = true;
910 	}
911 
912 	mutex_unlock(&ts->lock);
913 
914 	return 0;
915 }
916 
917 static int ads7846_resume(struct spi_device *spi)
918 {
919 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
920 
921 	mutex_lock(&ts->lock);
922 
923 	if (ts->suspended) {
924 
925 		ts->suspended = false;
926 
927 		if (device_may_wakeup(&ts->spi->dev))
928 			disable_irq_wake(ts->spi->irq);
929 
930 		if (!ts->disabled)
931 			__ads7846_enable(ts);
932 	}
933 
934 	mutex_unlock(&ts->lock);
935 
936 	return 0;
937 }
938 
939 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
940 {
941 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
942 	int err;
943 
944 	/*
945 	 * REVISIT when the irq can be triggered active-low, or if for some
946 	 * reason the touchscreen isn't hooked up, we don't need to access
947 	 * the pendown state.
948 	 */
949 
950 	if (pdata->get_pendown_state) {
951 		ts->get_pendown_state = pdata->get_pendown_state;
952 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
953 
954 		err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
955 		if (err) {
956 			dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
957 				pdata->gpio_pendown);
958 			return err;
959 		}
960 
961 		ts->gpio_pendown = pdata->gpio_pendown;
962 
963 	} else {
964 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
965 		return -EINVAL;
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Set up the transfers to read touchscreen state; this assumes we
973  * use formula #2 for pressure, not #3.
974  */
975 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
976 				const struct ads7846_platform_data *pdata)
977 {
978 	struct spi_message *m = &ts->msg[0];
979 	struct spi_transfer *x = ts->xfer;
980 	struct ads7846_packet *packet = ts->packet;
981 	int vref = pdata->keep_vref_on;
982 
983 	if (ts->model == 7873) {
984 		/*
985 		 * The AD7873 is almost identical to the ADS7846
986 		 * keep VREF off during differential/ratiometric
987 		 * conversion modes.
988 		 */
989 		ts->model = 7846;
990 		vref = 0;
991 	}
992 
993 	ts->msg_count = 1;
994 	spi_message_init(m);
995 	m->context = ts;
996 
997 	if (ts->model == 7845) {
998 		packet->read_y_cmd[0] = READ_Y(vref);
999 		packet->read_y_cmd[1] = 0;
1000 		packet->read_y_cmd[2] = 0;
1001 		x->tx_buf = &packet->read_y_cmd[0];
1002 		x->rx_buf = &packet->tc.y_buf[0];
1003 		x->len = 3;
1004 		spi_message_add_tail(x, m);
1005 	} else {
1006 		/* y- still on; turn on only y+ (and ADC) */
1007 		packet->read_y = READ_Y(vref);
1008 		x->tx_buf = &packet->read_y;
1009 		x->len = 1;
1010 		spi_message_add_tail(x, m);
1011 
1012 		x++;
1013 		x->rx_buf = &packet->tc.y;
1014 		x->len = 2;
1015 		spi_message_add_tail(x, m);
1016 	}
1017 
1018 	/*
1019 	 * The first sample after switching drivers can be low quality;
1020 	 * optionally discard it, using a second one after the signals
1021 	 * have had enough time to stabilize.
1022 	 */
1023 	if (pdata->settle_delay_usecs) {
1024 		x->delay_usecs = pdata->settle_delay_usecs;
1025 
1026 		x++;
1027 		x->tx_buf = &packet->read_y;
1028 		x->len = 1;
1029 		spi_message_add_tail(x, m);
1030 
1031 		x++;
1032 		x->rx_buf = &packet->tc.y;
1033 		x->len = 2;
1034 		spi_message_add_tail(x, m);
1035 	}
1036 
1037 	ts->msg_count++;
1038 	m++;
1039 	spi_message_init(m);
1040 	m->context = ts;
1041 
1042 	if (ts->model == 7845) {
1043 		x++;
1044 		packet->read_x_cmd[0] = READ_X(vref);
1045 		packet->read_x_cmd[1] = 0;
1046 		packet->read_x_cmd[2] = 0;
1047 		x->tx_buf = &packet->read_x_cmd[0];
1048 		x->rx_buf = &packet->tc.x_buf[0];
1049 		x->len = 3;
1050 		spi_message_add_tail(x, m);
1051 	} else {
1052 		/* turn y- off, x+ on, then leave in lowpower */
1053 		x++;
1054 		packet->read_x = READ_X(vref);
1055 		x->tx_buf = &packet->read_x;
1056 		x->len = 1;
1057 		spi_message_add_tail(x, m);
1058 
1059 		x++;
1060 		x->rx_buf = &packet->tc.x;
1061 		x->len = 2;
1062 		spi_message_add_tail(x, m);
1063 	}
1064 
1065 	/* ... maybe discard first sample ... */
1066 	if (pdata->settle_delay_usecs) {
1067 		x->delay_usecs = pdata->settle_delay_usecs;
1068 
1069 		x++;
1070 		x->tx_buf = &packet->read_x;
1071 		x->len = 1;
1072 		spi_message_add_tail(x, m);
1073 
1074 		x++;
1075 		x->rx_buf = &packet->tc.x;
1076 		x->len = 2;
1077 		spi_message_add_tail(x, m);
1078 	}
1079 
1080 	/* turn y+ off, x- on; we'll use formula #2 */
1081 	if (ts->model == 7846) {
1082 		ts->msg_count++;
1083 		m++;
1084 		spi_message_init(m);
1085 		m->context = ts;
1086 
1087 		x++;
1088 		packet->read_z1 = READ_Z1(vref);
1089 		x->tx_buf = &packet->read_z1;
1090 		x->len = 1;
1091 		spi_message_add_tail(x, m);
1092 
1093 		x++;
1094 		x->rx_buf = &packet->tc.z1;
1095 		x->len = 2;
1096 		spi_message_add_tail(x, m);
1097 
1098 		/* ... maybe discard first sample ... */
1099 		if (pdata->settle_delay_usecs) {
1100 			x->delay_usecs = pdata->settle_delay_usecs;
1101 
1102 			x++;
1103 			x->tx_buf = &packet->read_z1;
1104 			x->len = 1;
1105 			spi_message_add_tail(x, m);
1106 
1107 			x++;
1108 			x->rx_buf = &packet->tc.z1;
1109 			x->len = 2;
1110 			spi_message_add_tail(x, m);
1111 		}
1112 
1113 		ts->msg_count++;
1114 		m++;
1115 		spi_message_init(m);
1116 		m->context = ts;
1117 
1118 		x++;
1119 		packet->read_z2 = READ_Z2(vref);
1120 		x->tx_buf = &packet->read_z2;
1121 		x->len = 1;
1122 		spi_message_add_tail(x, m);
1123 
1124 		x++;
1125 		x->rx_buf = &packet->tc.z2;
1126 		x->len = 2;
1127 		spi_message_add_tail(x, m);
1128 
1129 		/* ... maybe discard first sample ... */
1130 		if (pdata->settle_delay_usecs) {
1131 			x->delay_usecs = pdata->settle_delay_usecs;
1132 
1133 			x++;
1134 			x->tx_buf = &packet->read_z2;
1135 			x->len = 1;
1136 			spi_message_add_tail(x, m);
1137 
1138 			x++;
1139 			x->rx_buf = &packet->tc.z2;
1140 			x->len = 2;
1141 			spi_message_add_tail(x, m);
1142 		}
1143 	}
1144 
1145 	/* power down */
1146 	ts->msg_count++;
1147 	m++;
1148 	spi_message_init(m);
1149 	m->context = ts;
1150 
1151 	if (ts->model == 7845) {
1152 		x++;
1153 		packet->pwrdown_cmd[0] = PWRDOWN;
1154 		packet->pwrdown_cmd[1] = 0;
1155 		packet->pwrdown_cmd[2] = 0;
1156 		x->tx_buf = &packet->pwrdown_cmd[0];
1157 		x->len = 3;
1158 	} else {
1159 		x++;
1160 		packet->pwrdown = PWRDOWN;
1161 		x->tx_buf = &packet->pwrdown;
1162 		x->len = 1;
1163 		spi_message_add_tail(x, m);
1164 
1165 		x++;
1166 		x->rx_buf = &packet->dummy;
1167 		x->len = 2;
1168 	}
1169 
1170 	CS_CHANGE(*x);
1171 	spi_message_add_tail(x, m);
1172 }
1173 
1174 static int __devinit ads7846_probe(struct spi_device *spi)
1175 {
1176 	struct ads7846 *ts;
1177 	struct ads7846_packet *packet;
1178 	struct input_dev *input_dev;
1179 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1180 	unsigned long irq_flags;
1181 	int err;
1182 
1183 	if (!spi->irq) {
1184 		dev_dbg(&spi->dev, "no IRQ?\n");
1185 		return -ENODEV;
1186 	}
1187 
1188 	if (!pdata) {
1189 		dev_dbg(&spi->dev, "no platform data?\n");
1190 		return -ENODEV;
1191 	}
1192 
1193 	/* don't exceed max specified sample rate */
1194 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1195 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1196 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1197 		return -EINVAL;
1198 	}
1199 
1200 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1201 	 * that even if the hardware can do that, the SPI controller driver
1202 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1203 	 */
1204 	spi->bits_per_word = 8;
1205 	spi->mode = SPI_MODE_0;
1206 	err = spi_setup(spi);
1207 	if (err < 0)
1208 		return err;
1209 
1210 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1211 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1212 	input_dev = input_allocate_device();
1213 	if (!ts || !packet || !input_dev) {
1214 		err = -ENOMEM;
1215 		goto err_free_mem;
1216 	}
1217 
1218 	dev_set_drvdata(&spi->dev, ts);
1219 
1220 	ts->packet = packet;
1221 	ts->spi = spi;
1222 	ts->input = input_dev;
1223 	ts->vref_mv = pdata->vref_mv;
1224 	ts->swap_xy = pdata->swap_xy;
1225 
1226 	mutex_init(&ts->lock);
1227 	init_waitqueue_head(&ts->wait);
1228 
1229 	ts->model = pdata->model ? : 7846;
1230 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1231 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1232 	ts->pressure_max = pdata->pressure_max ? : ~0;
1233 
1234 	if (pdata->filter != NULL) {
1235 		if (pdata->filter_init != NULL) {
1236 			err = pdata->filter_init(pdata, &ts->filter_data);
1237 			if (err < 0)
1238 				goto err_free_mem;
1239 		}
1240 		ts->filter = pdata->filter;
1241 		ts->filter_cleanup = pdata->filter_cleanup;
1242 	} else if (pdata->debounce_max) {
1243 		ts->debounce_max = pdata->debounce_max;
1244 		if (ts->debounce_max < 2)
1245 			ts->debounce_max = 2;
1246 		ts->debounce_tol = pdata->debounce_tol;
1247 		ts->debounce_rep = pdata->debounce_rep;
1248 		ts->filter = ads7846_debounce_filter;
1249 		ts->filter_data = ts;
1250 	} else {
1251 		ts->filter = ads7846_no_filter;
1252 	}
1253 
1254 	err = ads7846_setup_pendown(spi, ts);
1255 	if (err)
1256 		goto err_cleanup_filter;
1257 
1258 	if (pdata->penirq_recheck_delay_usecs)
1259 		ts->penirq_recheck_delay_usecs =
1260 				pdata->penirq_recheck_delay_usecs;
1261 
1262 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1263 
1264 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1265 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1266 
1267 	input_dev->name = ts->name;
1268 	input_dev->phys = ts->phys;
1269 	input_dev->dev.parent = &spi->dev;
1270 
1271 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1272 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1273 	input_set_abs_params(input_dev, ABS_X,
1274 			pdata->x_min ? : 0,
1275 			pdata->x_max ? : MAX_12BIT,
1276 			0, 0);
1277 	input_set_abs_params(input_dev, ABS_Y,
1278 			pdata->y_min ? : 0,
1279 			pdata->y_max ? : MAX_12BIT,
1280 			0, 0);
1281 	input_set_abs_params(input_dev, ABS_PRESSURE,
1282 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1283 
1284 	ads7846_setup_spi_msg(ts, pdata);
1285 
1286 	ts->reg = regulator_get(&spi->dev, "vcc");
1287 	if (IS_ERR(ts->reg)) {
1288 		err = PTR_ERR(ts->reg);
1289 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1290 		goto err_free_gpio;
1291 	}
1292 
1293 	err = regulator_enable(ts->reg);
1294 	if (err) {
1295 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1296 		goto err_put_regulator;
1297 	}
1298 
1299 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1300 	irq_flags |= IRQF_ONESHOT;
1301 
1302 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1303 				   irq_flags, spi->dev.driver->name, ts);
1304 	if (err && !pdata->irq_flags) {
1305 		dev_info(&spi->dev,
1306 			"trying pin change workaround on irq %d\n", spi->irq);
1307 		irq_flags |= IRQF_TRIGGER_RISING;
1308 		err = request_threaded_irq(spi->irq,
1309 				  ads7846_hard_irq, ads7846_irq,
1310 				  irq_flags, spi->dev.driver->name, ts);
1311 	}
1312 
1313 	if (err) {
1314 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1315 		goto err_disable_regulator;
1316 	}
1317 
1318 	err = ads784x_hwmon_register(spi, ts);
1319 	if (err)
1320 		goto err_free_irq;
1321 
1322 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1323 
1324 	/*
1325 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1326 	 * the touchscreen, in case it's not connected.
1327 	 */
1328 	if (ts->model == 7845)
1329 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1330 	else
1331 		(void) ads7846_read12_ser(&spi->dev,
1332 				READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1333 
1334 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1335 	if (err)
1336 		goto err_remove_hwmon;
1337 
1338 	err = input_register_device(input_dev);
1339 	if (err)
1340 		goto err_remove_attr_group;
1341 
1342 	device_init_wakeup(&spi->dev, pdata->wakeup);
1343 
1344 	return 0;
1345 
1346  err_remove_attr_group:
1347 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1348  err_remove_hwmon:
1349 	ads784x_hwmon_unregister(spi, ts);
1350  err_free_irq:
1351 	free_irq(spi->irq, ts);
1352  err_disable_regulator:
1353 	regulator_disable(ts->reg);
1354  err_put_regulator:
1355 	regulator_put(ts->reg);
1356  err_free_gpio:
1357 	if (!ts->get_pendown_state)
1358 		gpio_free(ts->gpio_pendown);
1359  err_cleanup_filter:
1360 	if (ts->filter_cleanup)
1361 		ts->filter_cleanup(ts->filter_data);
1362  err_free_mem:
1363 	input_free_device(input_dev);
1364 	kfree(packet);
1365 	kfree(ts);
1366 	return err;
1367 }
1368 
1369 static int __devexit ads7846_remove(struct spi_device *spi)
1370 {
1371 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1372 
1373 	device_init_wakeup(&spi->dev, false);
1374 
1375 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1376 
1377 	ads7846_disable(ts);
1378 	free_irq(ts->spi->irq, ts);
1379 
1380 	input_unregister_device(ts->input);
1381 
1382 	ads784x_hwmon_unregister(spi, ts);
1383 
1384 	regulator_disable(ts->reg);
1385 	regulator_put(ts->reg);
1386 
1387 	if (!ts->get_pendown_state) {
1388 		/*
1389 		 * If we are not using specialized pendown method we must
1390 		 * have been relying on gpio we set up ourselves.
1391 		 */
1392 		gpio_free(ts->gpio_pendown);
1393 	}
1394 
1395 	if (ts->filter_cleanup)
1396 		ts->filter_cleanup(ts->filter_data);
1397 
1398 	kfree(ts->packet);
1399 	kfree(ts);
1400 
1401 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1402 
1403 	return 0;
1404 }
1405 
1406 static struct spi_driver ads7846_driver = {
1407 	.driver = {
1408 		.name	= "ads7846",
1409 		.bus	= &spi_bus_type,
1410 		.owner	= THIS_MODULE,
1411 	},
1412 	.probe		= ads7846_probe,
1413 	.remove		= __devexit_p(ads7846_remove),
1414 	.suspend	= ads7846_suspend,
1415 	.resume		= ads7846_resume,
1416 };
1417 
1418 static int __init ads7846_init(void)
1419 {
1420 	return spi_register_driver(&ads7846_driver);
1421 }
1422 module_init(ads7846_init);
1423 
1424 static void __exit ads7846_exit(void)
1425 {
1426 	spi_unregister_driver(&ads7846_driver);
1427 }
1428 module_exit(ads7846_exit);
1429 
1430 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1431 MODULE_LICENSE("GPL");
1432 MODULE_ALIAS("spi:ads7846");
1433