1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/module.h>
35 #include <asm/irq.h>
36 
37 /*
38  * This code has been heavily tested on a Nokia 770, and lightly
39  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
40  * TSC2046 is just newer ads7846 silicon.
41  * Support for ads7843 tested on Atmel at91sam926x-EK.
42  * Support for ads7845 has only been stubbed in.
43  * Support for Analog Devices AD7873 and AD7843 tested.
44  *
45  * IRQ handling needs a workaround because of a shortcoming in handling
46  * edge triggered IRQs on some platforms like the OMAP1/2. These
47  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
48  * have to maintain our own SW IRQ disabled status. This should be
49  * removed as soon as the affected platform's IRQ handling is fixed.
50  *
51  * App note sbaa036 talks in more detail about accurate sampling...
52  * that ought to help in situations like LCDs inducing noise (which
53  * can also be helped by using synch signals) and more generally.
54  * This driver tries to utilize the measures described in the app
55  * note. The strength of filtering can be set in the board-* specific
56  * files.
57  */
58 
59 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
60 #define TS_POLL_PERIOD	5	/* ms delay between samples */
61 
62 /* this driver doesn't aim at the peak continuous sample rate */
63 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
64 
65 struct ts_event {
66 	/*
67 	 * For portability, we can't read 12 bit values using SPI (which
68 	 * would make the controller deliver them as native byte order u16
69 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
70 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
71 	 */
72 	u16	x;
73 	u16	y;
74 	u16	z1, z2;
75 	bool	ignore;
76 	u8	x_buf[3];
77 	u8	y_buf[3];
78 };
79 
80 /*
81  * We allocate this separately to avoid cache line sharing issues when
82  * driver is used with DMA-based SPI controllers (like atmel_spi) on
83  * systems where main memory is not DMA-coherent (most non-x86 boards).
84  */
85 struct ads7846_packet {
86 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
87 	u16			dummy;		/* for the pwrdown read */
88 	struct ts_event		tc;
89 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
90 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
91 };
92 
93 struct ads7846 {
94 	struct input_dev	*input;
95 	char			phys[32];
96 	char			name[32];
97 
98 	struct spi_device	*spi;
99 	struct regulator	*reg;
100 
101 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
102 	struct attribute_group	*attr_group;
103 	struct device		*hwmon;
104 #endif
105 
106 	u16			model;
107 	u16			vref_mv;
108 	u16			vref_delay_usecs;
109 	u16			x_plate_ohms;
110 	u16			pressure_max;
111 
112 	bool			swap_xy;
113 	bool			use_internal;
114 
115 	struct ads7846_packet	*packet;
116 
117 	struct spi_transfer	xfer[18];
118 	struct spi_message	msg[5];
119 	int			msg_count;
120 	wait_queue_head_t	wait;
121 
122 	bool			pendown;
123 
124 	int			read_cnt;
125 	int			read_rep;
126 	int			last_read;
127 
128 	u16			debounce_max;
129 	u16			debounce_tol;
130 	u16			debounce_rep;
131 
132 	u16			penirq_recheck_delay_usecs;
133 
134 	struct mutex		lock;
135 	bool			stopped;	/* P: lock */
136 	bool			disabled;	/* P: lock */
137 	bool			suspended;	/* P: lock */
138 
139 	int			(*filter)(void *data, int data_idx, int *val);
140 	void			*filter_data;
141 	void			(*filter_cleanup)(void *data);
142 	int			(*get_pendown_state)(void);
143 	int			gpio_pendown;
144 
145 	void			(*wait_for_sync)(void);
146 };
147 
148 /* leave chip selected when we're done, for quicker re-select? */
149 #if	0
150 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
151 #else
152 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
153 #endif
154 
155 /*--------------------------------------------------------------------------*/
156 
157 /* The ADS7846 has touchscreen and other sensors.
158  * Earlier ads784x chips are somewhat compatible.
159  */
160 #define	ADS_START		(1 << 7)
161 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
162 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
163 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
164 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
165 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
166 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
167 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
168 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
169 #define	ADS_8_BIT		(1 << 3)
170 #define	ADS_12_BIT		(0 << 3)
171 #define	ADS_SER			(1 << 2)	/* non-differential */
172 #define	ADS_DFR			(0 << 2)	/* differential */
173 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
174 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
175 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
176 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
177 
178 #define	MAX_12BIT	((1<<12)-1)
179 
180 /* leave ADC powered up (disables penirq) between differential samples */
181 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
182 	| ADS_12_BIT | ADS_DFR | \
183 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
184 
185 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
186 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
187 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
188 
189 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
190 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
191 
192 /* single-ended samples need to first power up reference voltage;
193  * we leave both ADC and VREF powered
194  */
195 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
196 	| ADS_12_BIT | ADS_SER)
197 
198 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
199 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
200 
201 /* Must be called with ts->lock held */
202 static void ads7846_stop(struct ads7846 *ts)
203 {
204 	if (!ts->disabled && !ts->suspended) {
205 		/* Signal IRQ thread to stop polling and disable the handler. */
206 		ts->stopped = true;
207 		mb();
208 		wake_up(&ts->wait);
209 		disable_irq(ts->spi->irq);
210 	}
211 }
212 
213 /* Must be called with ts->lock held */
214 static void ads7846_restart(struct ads7846 *ts)
215 {
216 	if (!ts->disabled && !ts->suspended) {
217 		/* Tell IRQ thread that it may poll the device. */
218 		ts->stopped = false;
219 		mb();
220 		enable_irq(ts->spi->irq);
221 	}
222 }
223 
224 /* Must be called with ts->lock held */
225 static void __ads7846_disable(struct ads7846 *ts)
226 {
227 	ads7846_stop(ts);
228 	regulator_disable(ts->reg);
229 
230 	/*
231 	 * We know the chip's in low power mode since we always
232 	 * leave it that way after every request
233 	 */
234 }
235 
236 /* Must be called with ts->lock held */
237 static void __ads7846_enable(struct ads7846 *ts)
238 {
239 	regulator_enable(ts->reg);
240 	ads7846_restart(ts);
241 }
242 
243 static void ads7846_disable(struct ads7846 *ts)
244 {
245 	mutex_lock(&ts->lock);
246 
247 	if (!ts->disabled) {
248 
249 		if  (!ts->suspended)
250 			__ads7846_disable(ts);
251 
252 		ts->disabled = true;
253 	}
254 
255 	mutex_unlock(&ts->lock);
256 }
257 
258 static void ads7846_enable(struct ads7846 *ts)
259 {
260 	mutex_lock(&ts->lock);
261 
262 	if (ts->disabled) {
263 
264 		ts->disabled = false;
265 
266 		if (!ts->suspended)
267 			__ads7846_enable(ts);
268 	}
269 
270 	mutex_unlock(&ts->lock);
271 }
272 
273 /*--------------------------------------------------------------------------*/
274 
275 /*
276  * Non-touchscreen sensors only use single-ended conversions.
277  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
278  * ads7846 lets that pin be unconnected, to use internal vREF.
279  */
280 
281 struct ser_req {
282 	u8			ref_on;
283 	u8			command;
284 	u8			ref_off;
285 	u16			scratch;
286 	struct spi_message	msg;
287 	struct spi_transfer	xfer[6];
288 	/*
289 	 * DMA (thus cache coherency maintenance) requires the
290 	 * transfer buffers to live in their own cache lines.
291 	 */
292 	__be16 sample ____cacheline_aligned;
293 };
294 
295 struct ads7845_ser_req {
296 	u8			command[3];
297 	struct spi_message	msg;
298 	struct spi_transfer	xfer[2];
299 	/*
300 	 * DMA (thus cache coherency maintenance) requires the
301 	 * transfer buffers to live in their own cache lines.
302 	 */
303 	u8 sample[3] ____cacheline_aligned;
304 };
305 
306 static int ads7846_read12_ser(struct device *dev, unsigned command)
307 {
308 	struct spi_device *spi = to_spi_device(dev);
309 	struct ads7846 *ts = dev_get_drvdata(dev);
310 	struct ser_req *req;
311 	int status;
312 
313 	req = kzalloc(sizeof *req, GFP_KERNEL);
314 	if (!req)
315 		return -ENOMEM;
316 
317 	spi_message_init(&req->msg);
318 
319 	/* maybe turn on internal vREF, and let it settle */
320 	if (ts->use_internal) {
321 		req->ref_on = REF_ON;
322 		req->xfer[0].tx_buf = &req->ref_on;
323 		req->xfer[0].len = 1;
324 		spi_message_add_tail(&req->xfer[0], &req->msg);
325 
326 		req->xfer[1].rx_buf = &req->scratch;
327 		req->xfer[1].len = 2;
328 
329 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
330 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
331 		spi_message_add_tail(&req->xfer[1], &req->msg);
332 
333 		/* Enable reference voltage */
334 		command |= ADS_PD10_REF_ON;
335 	}
336 
337 	/* Enable ADC in every case */
338 	command |= ADS_PD10_ADC_ON;
339 
340 	/* take sample */
341 	req->command = (u8) command;
342 	req->xfer[2].tx_buf = &req->command;
343 	req->xfer[2].len = 1;
344 	spi_message_add_tail(&req->xfer[2], &req->msg);
345 
346 	req->xfer[3].rx_buf = &req->sample;
347 	req->xfer[3].len = 2;
348 	spi_message_add_tail(&req->xfer[3], &req->msg);
349 
350 	/* REVISIT:  take a few more samples, and compare ... */
351 
352 	/* converter in low power mode & enable PENIRQ */
353 	req->ref_off = PWRDOWN;
354 	req->xfer[4].tx_buf = &req->ref_off;
355 	req->xfer[4].len = 1;
356 	spi_message_add_tail(&req->xfer[4], &req->msg);
357 
358 	req->xfer[5].rx_buf = &req->scratch;
359 	req->xfer[5].len = 2;
360 	CS_CHANGE(req->xfer[5]);
361 	spi_message_add_tail(&req->xfer[5], &req->msg);
362 
363 	mutex_lock(&ts->lock);
364 	ads7846_stop(ts);
365 	status = spi_sync(spi, &req->msg);
366 	ads7846_restart(ts);
367 	mutex_unlock(&ts->lock);
368 
369 	if (status == 0) {
370 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
371 		status = be16_to_cpu(req->sample);
372 		status = status >> 3;
373 		status &= 0x0fff;
374 	}
375 
376 	kfree(req);
377 	return status;
378 }
379 
380 static int ads7845_read12_ser(struct device *dev, unsigned command)
381 {
382 	struct spi_device *spi = to_spi_device(dev);
383 	struct ads7846 *ts = dev_get_drvdata(dev);
384 	struct ads7845_ser_req *req;
385 	int status;
386 
387 	req = kzalloc(sizeof *req, GFP_KERNEL);
388 	if (!req)
389 		return -ENOMEM;
390 
391 	spi_message_init(&req->msg);
392 
393 	req->command[0] = (u8) command;
394 	req->xfer[0].tx_buf = req->command;
395 	req->xfer[0].rx_buf = req->sample;
396 	req->xfer[0].len = 3;
397 	spi_message_add_tail(&req->xfer[0], &req->msg);
398 
399 	mutex_lock(&ts->lock);
400 	ads7846_stop(ts);
401 	status = spi_sync(spi, &req->msg);
402 	ads7846_restart(ts);
403 	mutex_unlock(&ts->lock);
404 
405 	if (status == 0) {
406 		/* BE12 value, then padding */
407 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
408 		status = status >> 3;
409 		status &= 0x0fff;
410 	}
411 
412 	kfree(req);
413 	return status;
414 }
415 
416 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
417 
418 #define SHOW(name, var, adjust) static ssize_t \
419 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
420 { \
421 	struct ads7846 *ts = dev_get_drvdata(dev); \
422 	ssize_t v = ads7846_read12_ser(dev, \
423 			READ_12BIT_SER(var)); \
424 	if (v < 0) \
425 		return v; \
426 	return sprintf(buf, "%u\n", adjust(ts, v)); \
427 } \
428 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
429 
430 
431 /* Sysfs conventions report temperatures in millidegrees Celsius.
432  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
433  * accuracy scheme without calibration data.  For now we won't try either;
434  * userspace sees raw sensor values, and must scale/calibrate appropriately.
435  */
436 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
437 {
438 	return v;
439 }
440 
441 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
442 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
443 
444 
445 /* sysfs conventions report voltages in millivolts.  We can convert voltages
446  * if we know vREF.  userspace may need to scale vAUX to match the board's
447  * external resistors; we assume that vBATT only uses the internal ones.
448  */
449 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
450 {
451 	unsigned retval = v;
452 
453 	/* external resistors may scale vAUX into 0..vREF */
454 	retval *= ts->vref_mv;
455 	retval = retval >> 12;
456 
457 	return retval;
458 }
459 
460 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
461 {
462 	unsigned retval = vaux_adjust(ts, v);
463 
464 	/* ads7846 has a resistor ladder to scale this signal down */
465 	if (ts->model == 7846)
466 		retval *= 4;
467 
468 	return retval;
469 }
470 
471 SHOW(in0_input, vaux, vaux_adjust)
472 SHOW(in1_input, vbatt, vbatt_adjust)
473 
474 static struct attribute *ads7846_attributes[] = {
475 	&dev_attr_temp0.attr,
476 	&dev_attr_temp1.attr,
477 	&dev_attr_in0_input.attr,
478 	&dev_attr_in1_input.attr,
479 	NULL,
480 };
481 
482 static struct attribute_group ads7846_attr_group = {
483 	.attrs = ads7846_attributes,
484 };
485 
486 static struct attribute *ads7843_attributes[] = {
487 	&dev_attr_in0_input.attr,
488 	&dev_attr_in1_input.attr,
489 	NULL,
490 };
491 
492 static struct attribute_group ads7843_attr_group = {
493 	.attrs = ads7843_attributes,
494 };
495 
496 static struct attribute *ads7845_attributes[] = {
497 	&dev_attr_in0_input.attr,
498 	NULL,
499 };
500 
501 static struct attribute_group ads7845_attr_group = {
502 	.attrs = ads7845_attributes,
503 };
504 
505 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
506 {
507 	struct device *hwmon;
508 	int err;
509 
510 	/* hwmon sensors need a reference voltage */
511 	switch (ts->model) {
512 	case 7846:
513 		if (!ts->vref_mv) {
514 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
515 			ts->vref_mv = 2500;
516 			ts->use_internal = true;
517 		}
518 		break;
519 	case 7845:
520 	case 7843:
521 		if (!ts->vref_mv) {
522 			dev_warn(&spi->dev,
523 				"external vREF for ADS%d not specified\n",
524 				ts->model);
525 			return 0;
526 		}
527 		break;
528 	}
529 
530 	/* different chips have different sensor groups */
531 	switch (ts->model) {
532 	case 7846:
533 		ts->attr_group = &ads7846_attr_group;
534 		break;
535 	case 7845:
536 		ts->attr_group = &ads7845_attr_group;
537 		break;
538 	case 7843:
539 		ts->attr_group = &ads7843_attr_group;
540 		break;
541 	default:
542 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
543 		return 0;
544 	}
545 
546 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
547 	if (err)
548 		return err;
549 
550 	hwmon = hwmon_device_register(&spi->dev);
551 	if (IS_ERR(hwmon)) {
552 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
553 		return PTR_ERR(hwmon);
554 	}
555 
556 	ts->hwmon = hwmon;
557 	return 0;
558 }
559 
560 static void ads784x_hwmon_unregister(struct spi_device *spi,
561 				     struct ads7846 *ts)
562 {
563 	if (ts->hwmon) {
564 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
565 		hwmon_device_unregister(ts->hwmon);
566 	}
567 }
568 
569 #else
570 static inline int ads784x_hwmon_register(struct spi_device *spi,
571 					 struct ads7846 *ts)
572 {
573 	return 0;
574 }
575 
576 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
577 					    struct ads7846 *ts)
578 {
579 }
580 #endif
581 
582 static ssize_t ads7846_pen_down_show(struct device *dev,
583 				     struct device_attribute *attr, char *buf)
584 {
585 	struct ads7846 *ts = dev_get_drvdata(dev);
586 
587 	return sprintf(buf, "%u\n", ts->pendown);
588 }
589 
590 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
591 
592 static ssize_t ads7846_disable_show(struct device *dev,
593 				     struct device_attribute *attr, char *buf)
594 {
595 	struct ads7846 *ts = dev_get_drvdata(dev);
596 
597 	return sprintf(buf, "%u\n", ts->disabled);
598 }
599 
600 static ssize_t ads7846_disable_store(struct device *dev,
601 				     struct device_attribute *attr,
602 				     const char *buf, size_t count)
603 {
604 	struct ads7846 *ts = dev_get_drvdata(dev);
605 	unsigned int i;
606 	int err;
607 
608 	err = kstrtouint(buf, 10, &i);
609 	if (err)
610 		return err;
611 
612 	if (i)
613 		ads7846_disable(ts);
614 	else
615 		ads7846_enable(ts);
616 
617 	return count;
618 }
619 
620 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
621 
622 static struct attribute *ads784x_attributes[] = {
623 	&dev_attr_pen_down.attr,
624 	&dev_attr_disable.attr,
625 	NULL,
626 };
627 
628 static struct attribute_group ads784x_attr_group = {
629 	.attrs = ads784x_attributes,
630 };
631 
632 /*--------------------------------------------------------------------------*/
633 
634 static int get_pendown_state(struct ads7846 *ts)
635 {
636 	if (ts->get_pendown_state)
637 		return ts->get_pendown_state();
638 
639 	return !gpio_get_value(ts->gpio_pendown);
640 }
641 
642 static void null_wait_for_sync(void)
643 {
644 }
645 
646 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
647 {
648 	struct ads7846 *ts = ads;
649 
650 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
651 		/* Start over collecting consistent readings. */
652 		ts->read_rep = 0;
653 		/*
654 		 * Repeat it, if this was the first read or the read
655 		 * wasn't consistent enough.
656 		 */
657 		if (ts->read_cnt < ts->debounce_max) {
658 			ts->last_read = *val;
659 			ts->read_cnt++;
660 			return ADS7846_FILTER_REPEAT;
661 		} else {
662 			/*
663 			 * Maximum number of debouncing reached and still
664 			 * not enough number of consistent readings. Abort
665 			 * the whole sample, repeat it in the next sampling
666 			 * period.
667 			 */
668 			ts->read_cnt = 0;
669 			return ADS7846_FILTER_IGNORE;
670 		}
671 	} else {
672 		if (++ts->read_rep > ts->debounce_rep) {
673 			/*
674 			 * Got a good reading for this coordinate,
675 			 * go for the next one.
676 			 */
677 			ts->read_cnt = 0;
678 			ts->read_rep = 0;
679 			return ADS7846_FILTER_OK;
680 		} else {
681 			/* Read more values that are consistent. */
682 			ts->read_cnt++;
683 			return ADS7846_FILTER_REPEAT;
684 		}
685 	}
686 }
687 
688 static int ads7846_no_filter(void *ads, int data_idx, int *val)
689 {
690 	return ADS7846_FILTER_OK;
691 }
692 
693 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
694 {
695 	struct spi_transfer *t =
696 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
697 
698 	if (ts->model == 7845) {
699 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
700 	} else {
701 		/*
702 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
703 		 * padding; built from two 8 bit values written msb-first.
704 		 */
705 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
706 	}
707 }
708 
709 static void ads7846_update_value(struct spi_message *m, int val)
710 {
711 	struct spi_transfer *t =
712 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
713 
714 	*(u16 *)t->rx_buf = val;
715 }
716 
717 static void ads7846_read_state(struct ads7846 *ts)
718 {
719 	struct ads7846_packet *packet = ts->packet;
720 	struct spi_message *m;
721 	int msg_idx = 0;
722 	int val;
723 	int action;
724 	int error;
725 
726 	while (msg_idx < ts->msg_count) {
727 
728 		ts->wait_for_sync();
729 
730 		m = &ts->msg[msg_idx];
731 		error = spi_sync(ts->spi, m);
732 		if (error) {
733 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
734 			packet->tc.ignore = true;
735 			return;
736 		}
737 
738 		/*
739 		 * Last message is power down request, no need to convert
740 		 * or filter the value.
741 		 */
742 		if (msg_idx < ts->msg_count - 1) {
743 
744 			val = ads7846_get_value(ts, m);
745 
746 			action = ts->filter(ts->filter_data, msg_idx, &val);
747 			switch (action) {
748 			case ADS7846_FILTER_REPEAT:
749 				continue;
750 
751 			case ADS7846_FILTER_IGNORE:
752 				packet->tc.ignore = true;
753 				msg_idx = ts->msg_count - 1;
754 				continue;
755 
756 			case ADS7846_FILTER_OK:
757 				ads7846_update_value(m, val);
758 				packet->tc.ignore = false;
759 				msg_idx++;
760 				break;
761 
762 			default:
763 				BUG();
764 			}
765 		} else {
766 			msg_idx++;
767 		}
768 	}
769 }
770 
771 static void ads7846_report_state(struct ads7846 *ts)
772 {
773 	struct ads7846_packet *packet = ts->packet;
774 	unsigned int Rt;
775 	u16 x, y, z1, z2;
776 
777 	/*
778 	 * ads7846_get_value() does in-place conversion (including byte swap)
779 	 * from on-the-wire format as part of debouncing to get stable
780 	 * readings.
781 	 */
782 	if (ts->model == 7845) {
783 		x = *(u16 *)packet->tc.x_buf;
784 		y = *(u16 *)packet->tc.y_buf;
785 		z1 = 0;
786 		z2 = 0;
787 	} else {
788 		x = packet->tc.x;
789 		y = packet->tc.y;
790 		z1 = packet->tc.z1;
791 		z2 = packet->tc.z2;
792 	}
793 
794 	/* range filtering */
795 	if (x == MAX_12BIT)
796 		x = 0;
797 
798 	if (ts->model == 7843) {
799 		Rt = ts->pressure_max / 2;
800 	} else if (ts->model == 7845) {
801 		if (get_pendown_state(ts))
802 			Rt = ts->pressure_max / 2;
803 		else
804 			Rt = 0;
805 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
806 	} else if (likely(x && z1)) {
807 		/* compute touch pressure resistance using equation #2 */
808 		Rt = z2;
809 		Rt -= z1;
810 		Rt *= x;
811 		Rt *= ts->x_plate_ohms;
812 		Rt /= z1;
813 		Rt = (Rt + 2047) >> 12;
814 	} else {
815 		Rt = 0;
816 	}
817 
818 	/*
819 	 * Sample found inconsistent by debouncing or pressure is beyond
820 	 * the maximum. Don't report it to user space, repeat at least
821 	 * once more the measurement
822 	 */
823 	if (packet->tc.ignore || Rt > ts->pressure_max) {
824 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
825 			 packet->tc.ignore, Rt);
826 		return;
827 	}
828 
829 	/*
830 	 * Maybe check the pendown state before reporting. This discards
831 	 * false readings when the pen is lifted.
832 	 */
833 	if (ts->penirq_recheck_delay_usecs) {
834 		udelay(ts->penirq_recheck_delay_usecs);
835 		if (!get_pendown_state(ts))
836 			Rt = 0;
837 	}
838 
839 	/*
840 	 * NOTE: We can't rely on the pressure to determine the pen down
841 	 * state, even this controller has a pressure sensor. The pressure
842 	 * value can fluctuate for quite a while after lifting the pen and
843 	 * in some cases may not even settle at the expected value.
844 	 *
845 	 * The only safe way to check for the pen up condition is in the
846 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
847 	 */
848 	if (Rt) {
849 		struct input_dev *input = ts->input;
850 
851 		if (ts->swap_xy)
852 			swap(x, y);
853 
854 		if (!ts->pendown) {
855 			input_report_key(input, BTN_TOUCH, 1);
856 			ts->pendown = true;
857 			dev_vdbg(&ts->spi->dev, "DOWN\n");
858 		}
859 
860 		input_report_abs(input, ABS_X, x);
861 		input_report_abs(input, ABS_Y, y);
862 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
863 
864 		input_sync(input);
865 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
866 	}
867 }
868 
869 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
870 {
871 	struct ads7846 *ts = handle;
872 
873 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
874 }
875 
876 
877 static irqreturn_t ads7846_irq(int irq, void *handle)
878 {
879 	struct ads7846 *ts = handle;
880 
881 	/* Start with a small delay before checking pendown state */
882 	msleep(TS_POLL_DELAY);
883 
884 	while (!ts->stopped && get_pendown_state(ts)) {
885 
886 		/* pen is down, continue with the measurement */
887 		ads7846_read_state(ts);
888 
889 		if (!ts->stopped)
890 			ads7846_report_state(ts);
891 
892 		wait_event_timeout(ts->wait, ts->stopped,
893 				   msecs_to_jiffies(TS_POLL_PERIOD));
894 	}
895 
896 	if (ts->pendown) {
897 		struct input_dev *input = ts->input;
898 
899 		input_report_key(input, BTN_TOUCH, 0);
900 		input_report_abs(input, ABS_PRESSURE, 0);
901 		input_sync(input);
902 
903 		ts->pendown = false;
904 		dev_vdbg(&ts->spi->dev, "UP\n");
905 	}
906 
907 	return IRQ_HANDLED;
908 }
909 
910 #ifdef CONFIG_PM_SLEEP
911 static int ads7846_suspend(struct device *dev)
912 {
913 	struct ads7846 *ts = dev_get_drvdata(dev);
914 
915 	mutex_lock(&ts->lock);
916 
917 	if (!ts->suspended) {
918 
919 		if (!ts->disabled)
920 			__ads7846_disable(ts);
921 
922 		if (device_may_wakeup(&ts->spi->dev))
923 			enable_irq_wake(ts->spi->irq);
924 
925 		ts->suspended = true;
926 	}
927 
928 	mutex_unlock(&ts->lock);
929 
930 	return 0;
931 }
932 
933 static int ads7846_resume(struct device *dev)
934 {
935 	struct ads7846 *ts = dev_get_drvdata(dev);
936 
937 	mutex_lock(&ts->lock);
938 
939 	if (ts->suspended) {
940 
941 		ts->suspended = false;
942 
943 		if (device_may_wakeup(&ts->spi->dev))
944 			disable_irq_wake(ts->spi->irq);
945 
946 		if (!ts->disabled)
947 			__ads7846_enable(ts);
948 	}
949 
950 	mutex_unlock(&ts->lock);
951 
952 	return 0;
953 }
954 #endif
955 
956 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
957 
958 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
959 {
960 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
961 	int err;
962 
963 	/*
964 	 * REVISIT when the irq can be triggered active-low, or if for some
965 	 * reason the touchscreen isn't hooked up, we don't need to access
966 	 * the pendown state.
967 	 */
968 
969 	if (pdata->get_pendown_state) {
970 		ts->get_pendown_state = pdata->get_pendown_state;
971 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
972 
973 		err = gpio_request_one(pdata->gpio_pendown, GPIOF_IN,
974 				       "ads7846_pendown");
975 		if (err) {
976 			dev_err(&spi->dev,
977 				"failed to request/setup pendown GPIO%d: %d\n",
978 				pdata->gpio_pendown, err);
979 			return err;
980 		}
981 
982 		ts->gpio_pendown = pdata->gpio_pendown;
983 
984 	} else {
985 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
986 		return -EINVAL;
987 	}
988 
989 	return 0;
990 }
991 
992 /*
993  * Set up the transfers to read touchscreen state; this assumes we
994  * use formula #2 for pressure, not #3.
995  */
996 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
997 				const struct ads7846_platform_data *pdata)
998 {
999 	struct spi_message *m = &ts->msg[0];
1000 	struct spi_transfer *x = ts->xfer;
1001 	struct ads7846_packet *packet = ts->packet;
1002 	int vref = pdata->keep_vref_on;
1003 
1004 	if (ts->model == 7873) {
1005 		/*
1006 		 * The AD7873 is almost identical to the ADS7846
1007 		 * keep VREF off during differential/ratiometric
1008 		 * conversion modes.
1009 		 */
1010 		ts->model = 7846;
1011 		vref = 0;
1012 	}
1013 
1014 	ts->msg_count = 1;
1015 	spi_message_init(m);
1016 	m->context = ts;
1017 
1018 	if (ts->model == 7845) {
1019 		packet->read_y_cmd[0] = READ_Y(vref);
1020 		packet->read_y_cmd[1] = 0;
1021 		packet->read_y_cmd[2] = 0;
1022 		x->tx_buf = &packet->read_y_cmd[0];
1023 		x->rx_buf = &packet->tc.y_buf[0];
1024 		x->len = 3;
1025 		spi_message_add_tail(x, m);
1026 	} else {
1027 		/* y- still on; turn on only y+ (and ADC) */
1028 		packet->read_y = READ_Y(vref);
1029 		x->tx_buf = &packet->read_y;
1030 		x->len = 1;
1031 		spi_message_add_tail(x, m);
1032 
1033 		x++;
1034 		x->rx_buf = &packet->tc.y;
1035 		x->len = 2;
1036 		spi_message_add_tail(x, m);
1037 	}
1038 
1039 	/*
1040 	 * The first sample after switching drivers can be low quality;
1041 	 * optionally discard it, using a second one after the signals
1042 	 * have had enough time to stabilize.
1043 	 */
1044 	if (pdata->settle_delay_usecs) {
1045 		x->delay_usecs = pdata->settle_delay_usecs;
1046 
1047 		x++;
1048 		x->tx_buf = &packet->read_y;
1049 		x->len = 1;
1050 		spi_message_add_tail(x, m);
1051 
1052 		x++;
1053 		x->rx_buf = &packet->tc.y;
1054 		x->len = 2;
1055 		spi_message_add_tail(x, m);
1056 	}
1057 
1058 	ts->msg_count++;
1059 	m++;
1060 	spi_message_init(m);
1061 	m->context = ts;
1062 
1063 	if (ts->model == 7845) {
1064 		x++;
1065 		packet->read_x_cmd[0] = READ_X(vref);
1066 		packet->read_x_cmd[1] = 0;
1067 		packet->read_x_cmd[2] = 0;
1068 		x->tx_buf = &packet->read_x_cmd[0];
1069 		x->rx_buf = &packet->tc.x_buf[0];
1070 		x->len = 3;
1071 		spi_message_add_tail(x, m);
1072 	} else {
1073 		/* turn y- off, x+ on, then leave in lowpower */
1074 		x++;
1075 		packet->read_x = READ_X(vref);
1076 		x->tx_buf = &packet->read_x;
1077 		x->len = 1;
1078 		spi_message_add_tail(x, m);
1079 
1080 		x++;
1081 		x->rx_buf = &packet->tc.x;
1082 		x->len = 2;
1083 		spi_message_add_tail(x, m);
1084 	}
1085 
1086 	/* ... maybe discard first sample ... */
1087 	if (pdata->settle_delay_usecs) {
1088 		x->delay_usecs = pdata->settle_delay_usecs;
1089 
1090 		x++;
1091 		x->tx_buf = &packet->read_x;
1092 		x->len = 1;
1093 		spi_message_add_tail(x, m);
1094 
1095 		x++;
1096 		x->rx_buf = &packet->tc.x;
1097 		x->len = 2;
1098 		spi_message_add_tail(x, m);
1099 	}
1100 
1101 	/* turn y+ off, x- on; we'll use formula #2 */
1102 	if (ts->model == 7846) {
1103 		ts->msg_count++;
1104 		m++;
1105 		spi_message_init(m);
1106 		m->context = ts;
1107 
1108 		x++;
1109 		packet->read_z1 = READ_Z1(vref);
1110 		x->tx_buf = &packet->read_z1;
1111 		x->len = 1;
1112 		spi_message_add_tail(x, m);
1113 
1114 		x++;
1115 		x->rx_buf = &packet->tc.z1;
1116 		x->len = 2;
1117 		spi_message_add_tail(x, m);
1118 
1119 		/* ... maybe discard first sample ... */
1120 		if (pdata->settle_delay_usecs) {
1121 			x->delay_usecs = pdata->settle_delay_usecs;
1122 
1123 			x++;
1124 			x->tx_buf = &packet->read_z1;
1125 			x->len = 1;
1126 			spi_message_add_tail(x, m);
1127 
1128 			x++;
1129 			x->rx_buf = &packet->tc.z1;
1130 			x->len = 2;
1131 			spi_message_add_tail(x, m);
1132 		}
1133 
1134 		ts->msg_count++;
1135 		m++;
1136 		spi_message_init(m);
1137 		m->context = ts;
1138 
1139 		x++;
1140 		packet->read_z2 = READ_Z2(vref);
1141 		x->tx_buf = &packet->read_z2;
1142 		x->len = 1;
1143 		spi_message_add_tail(x, m);
1144 
1145 		x++;
1146 		x->rx_buf = &packet->tc.z2;
1147 		x->len = 2;
1148 		spi_message_add_tail(x, m);
1149 
1150 		/* ... maybe discard first sample ... */
1151 		if (pdata->settle_delay_usecs) {
1152 			x->delay_usecs = pdata->settle_delay_usecs;
1153 
1154 			x++;
1155 			x->tx_buf = &packet->read_z2;
1156 			x->len = 1;
1157 			spi_message_add_tail(x, m);
1158 
1159 			x++;
1160 			x->rx_buf = &packet->tc.z2;
1161 			x->len = 2;
1162 			spi_message_add_tail(x, m);
1163 		}
1164 	}
1165 
1166 	/* power down */
1167 	ts->msg_count++;
1168 	m++;
1169 	spi_message_init(m);
1170 	m->context = ts;
1171 
1172 	if (ts->model == 7845) {
1173 		x++;
1174 		packet->pwrdown_cmd[0] = PWRDOWN;
1175 		packet->pwrdown_cmd[1] = 0;
1176 		packet->pwrdown_cmd[2] = 0;
1177 		x->tx_buf = &packet->pwrdown_cmd[0];
1178 		x->len = 3;
1179 	} else {
1180 		x++;
1181 		packet->pwrdown = PWRDOWN;
1182 		x->tx_buf = &packet->pwrdown;
1183 		x->len = 1;
1184 		spi_message_add_tail(x, m);
1185 
1186 		x++;
1187 		x->rx_buf = &packet->dummy;
1188 		x->len = 2;
1189 	}
1190 
1191 	CS_CHANGE(*x);
1192 	spi_message_add_tail(x, m);
1193 }
1194 
1195 static int __devinit ads7846_probe(struct spi_device *spi)
1196 {
1197 	struct ads7846 *ts;
1198 	struct ads7846_packet *packet;
1199 	struct input_dev *input_dev;
1200 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1201 	unsigned long irq_flags;
1202 	int err;
1203 
1204 	if (!spi->irq) {
1205 		dev_dbg(&spi->dev, "no IRQ?\n");
1206 		return -ENODEV;
1207 	}
1208 
1209 	if (!pdata) {
1210 		dev_dbg(&spi->dev, "no platform data?\n");
1211 		return -ENODEV;
1212 	}
1213 
1214 	/* don't exceed max specified sample rate */
1215 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1216 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1217 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1218 		return -EINVAL;
1219 	}
1220 
1221 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1222 	 * that even if the hardware can do that, the SPI controller driver
1223 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1224 	 */
1225 	spi->bits_per_word = 8;
1226 	spi->mode = SPI_MODE_0;
1227 	err = spi_setup(spi);
1228 	if (err < 0)
1229 		return err;
1230 
1231 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1232 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1233 	input_dev = input_allocate_device();
1234 	if (!ts || !packet || !input_dev) {
1235 		err = -ENOMEM;
1236 		goto err_free_mem;
1237 	}
1238 
1239 	dev_set_drvdata(&spi->dev, ts);
1240 
1241 	ts->packet = packet;
1242 	ts->spi = spi;
1243 	ts->input = input_dev;
1244 	ts->vref_mv = pdata->vref_mv;
1245 	ts->swap_xy = pdata->swap_xy;
1246 
1247 	mutex_init(&ts->lock);
1248 	init_waitqueue_head(&ts->wait);
1249 
1250 	ts->model = pdata->model ? : 7846;
1251 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1252 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1253 	ts->pressure_max = pdata->pressure_max ? : ~0;
1254 
1255 	if (pdata->filter != NULL) {
1256 		if (pdata->filter_init != NULL) {
1257 			err = pdata->filter_init(pdata, &ts->filter_data);
1258 			if (err < 0)
1259 				goto err_free_mem;
1260 		}
1261 		ts->filter = pdata->filter;
1262 		ts->filter_cleanup = pdata->filter_cleanup;
1263 	} else if (pdata->debounce_max) {
1264 		ts->debounce_max = pdata->debounce_max;
1265 		if (ts->debounce_max < 2)
1266 			ts->debounce_max = 2;
1267 		ts->debounce_tol = pdata->debounce_tol;
1268 		ts->debounce_rep = pdata->debounce_rep;
1269 		ts->filter = ads7846_debounce_filter;
1270 		ts->filter_data = ts;
1271 	} else {
1272 		ts->filter = ads7846_no_filter;
1273 	}
1274 
1275 	err = ads7846_setup_pendown(spi, ts);
1276 	if (err)
1277 		goto err_cleanup_filter;
1278 
1279 	if (pdata->penirq_recheck_delay_usecs)
1280 		ts->penirq_recheck_delay_usecs =
1281 				pdata->penirq_recheck_delay_usecs;
1282 
1283 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1284 
1285 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1286 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1287 
1288 	input_dev->name = ts->name;
1289 	input_dev->phys = ts->phys;
1290 	input_dev->dev.parent = &spi->dev;
1291 
1292 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1293 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1294 	input_set_abs_params(input_dev, ABS_X,
1295 			pdata->x_min ? : 0,
1296 			pdata->x_max ? : MAX_12BIT,
1297 			0, 0);
1298 	input_set_abs_params(input_dev, ABS_Y,
1299 			pdata->y_min ? : 0,
1300 			pdata->y_max ? : MAX_12BIT,
1301 			0, 0);
1302 	input_set_abs_params(input_dev, ABS_PRESSURE,
1303 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1304 
1305 	ads7846_setup_spi_msg(ts, pdata);
1306 
1307 	ts->reg = regulator_get(&spi->dev, "vcc");
1308 	if (IS_ERR(ts->reg)) {
1309 		err = PTR_ERR(ts->reg);
1310 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1311 		goto err_free_gpio;
1312 	}
1313 
1314 	err = regulator_enable(ts->reg);
1315 	if (err) {
1316 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1317 		goto err_put_regulator;
1318 	}
1319 
1320 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1321 	irq_flags |= IRQF_ONESHOT;
1322 
1323 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1324 				   irq_flags, spi->dev.driver->name, ts);
1325 	if (err && !pdata->irq_flags) {
1326 		dev_info(&spi->dev,
1327 			"trying pin change workaround on irq %d\n", spi->irq);
1328 		irq_flags |= IRQF_TRIGGER_RISING;
1329 		err = request_threaded_irq(spi->irq,
1330 				  ads7846_hard_irq, ads7846_irq,
1331 				  irq_flags, spi->dev.driver->name, ts);
1332 	}
1333 
1334 	if (err) {
1335 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1336 		goto err_disable_regulator;
1337 	}
1338 
1339 	err = ads784x_hwmon_register(spi, ts);
1340 	if (err)
1341 		goto err_free_irq;
1342 
1343 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1344 
1345 	/*
1346 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1347 	 * the touchscreen, in case it's not connected.
1348 	 */
1349 	if (ts->model == 7845)
1350 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1351 	else
1352 		(void) ads7846_read12_ser(&spi->dev, READ_12BIT_SER(vaux));
1353 
1354 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1355 	if (err)
1356 		goto err_remove_hwmon;
1357 
1358 	err = input_register_device(input_dev);
1359 	if (err)
1360 		goto err_remove_attr_group;
1361 
1362 	device_init_wakeup(&spi->dev, pdata->wakeup);
1363 
1364 	return 0;
1365 
1366  err_remove_attr_group:
1367 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1368  err_remove_hwmon:
1369 	ads784x_hwmon_unregister(spi, ts);
1370  err_free_irq:
1371 	free_irq(spi->irq, ts);
1372  err_disable_regulator:
1373 	regulator_disable(ts->reg);
1374  err_put_regulator:
1375 	regulator_put(ts->reg);
1376  err_free_gpio:
1377 	if (!ts->get_pendown_state)
1378 		gpio_free(ts->gpio_pendown);
1379  err_cleanup_filter:
1380 	if (ts->filter_cleanup)
1381 		ts->filter_cleanup(ts->filter_data);
1382  err_free_mem:
1383 	input_free_device(input_dev);
1384 	kfree(packet);
1385 	kfree(ts);
1386 	return err;
1387 }
1388 
1389 static int __devexit ads7846_remove(struct spi_device *spi)
1390 {
1391 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1392 
1393 	device_init_wakeup(&spi->dev, false);
1394 
1395 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1396 
1397 	ads7846_disable(ts);
1398 	free_irq(ts->spi->irq, ts);
1399 
1400 	input_unregister_device(ts->input);
1401 
1402 	ads784x_hwmon_unregister(spi, ts);
1403 
1404 	regulator_disable(ts->reg);
1405 	regulator_put(ts->reg);
1406 
1407 	if (!ts->get_pendown_state) {
1408 		/*
1409 		 * If we are not using specialized pendown method we must
1410 		 * have been relying on gpio we set up ourselves.
1411 		 */
1412 		gpio_free(ts->gpio_pendown);
1413 	}
1414 
1415 	if (ts->filter_cleanup)
1416 		ts->filter_cleanup(ts->filter_data);
1417 
1418 	kfree(ts->packet);
1419 	kfree(ts);
1420 
1421 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1422 
1423 	return 0;
1424 }
1425 
1426 static struct spi_driver ads7846_driver = {
1427 	.driver = {
1428 		.name	= "ads7846",
1429 		.owner	= THIS_MODULE,
1430 		.pm	= &ads7846_pm,
1431 	},
1432 	.probe		= ads7846_probe,
1433 	.remove		= __devexit_p(ads7846_remove),
1434 };
1435 
1436 static int __init ads7846_init(void)
1437 {
1438 	return spi_register_driver(&ads7846_driver);
1439 }
1440 module_init(ads7846_init);
1441 
1442 static void __exit ads7846_exit(void)
1443 {
1444 	spi_unregister_driver(&ads7846_driver);
1445 }
1446 module_exit(ads7846_exit);
1447 
1448 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1449 MODULE_LICENSE("GPL");
1450 MODULE_ALIAS("spi:ads7846");
1451