1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/hwmon.h>
21 #include <linux/init.h>
22 #include <linux/err.h>
23 #include <linux/delay.h>
24 #include <linux/input.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/gpio.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/ads7846.h>
30 #include <asm/irq.h>
31 
32 
33 /*
34  * This code has been heavily tested on a Nokia 770, and lightly
35  * tested on other ads7846 devices (OSK/Mistral, Lubbock).
36  * TSC2046 is just newer ads7846 silicon.
37  * Support for ads7843 tested on Atmel at91sam926x-EK.
38  * Support for ads7845 has only been stubbed in.
39  *
40  * IRQ handling needs a workaround because of a shortcoming in handling
41  * edge triggered IRQs on some platforms like the OMAP1/2. These
42  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
43  * have to maintain our own SW IRQ disabled status. This should be
44  * removed as soon as the affected platform's IRQ handling is fixed.
45  *
46  * app note sbaa036 talks in more detail about accurate sampling...
47  * that ought to help in situations like LCDs inducing noise (which
48  * can also be helped by using synch signals) and more generally.
49  * This driver tries to utilize the measures described in the app
50  * note. The strength of filtering can be set in the board-* specific
51  * files.
52  */
53 
54 #define TS_POLL_DELAY	(1 * 1000000)	/* ns delay before the first sample */
55 #define TS_POLL_PERIOD	(5 * 1000000)	/* ns delay between samples */
56 
57 /* this driver doesn't aim at the peak continuous sample rate */
58 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
59 
60 struct ts_event {
61 	/* For portability, we can't read 12 bit values using SPI (which
62 	 * would make the controller deliver them as native byteorder u16
63 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
64 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
65 	 */
66 	u16	x;
67 	u16	y;
68 	u16	z1, z2;
69 	int	ignore;
70 };
71 
72 /*
73  * We allocate this separately to avoid cache line sharing issues when
74  * driver is used with DMA-based SPI controllers (like atmel_spi) on
75  * systems where main memory is not DMA-coherent (most non-x86 boards).
76  */
77 struct ads7846_packet {
78 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
79 	u16			dummy;		/* for the pwrdown read */
80 	struct ts_event		tc;
81 };
82 
83 struct ads7846 {
84 	struct input_dev	*input;
85 	char			phys[32];
86 
87 	struct spi_device	*spi;
88 
89 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
90 	struct attribute_group	*attr_group;
91 	struct device		*hwmon;
92 #endif
93 
94 	u16			model;
95 	u16			vref_mv;
96 	u16			vref_delay_usecs;
97 	u16			x_plate_ohms;
98 	u16			pressure_max;
99 
100 	struct ads7846_packet	*packet;
101 
102 	struct spi_transfer	xfer[18];
103 	struct spi_message	msg[5];
104 	struct spi_message	*last_msg;
105 	int			msg_idx;
106 	int			read_cnt;
107 	int			read_rep;
108 	int			last_read;
109 
110 	u16			debounce_max;
111 	u16			debounce_tol;
112 	u16			debounce_rep;
113 
114 	u16			penirq_recheck_delay_usecs;
115 
116 	spinlock_t		lock;
117 	struct hrtimer		timer;
118 	unsigned		pendown:1;	/* P: lock */
119 	unsigned		pending:1;	/* P: lock */
120 // FIXME remove "irq_disabled"
121 	unsigned		irq_disabled:1;	/* P: lock */
122 	unsigned		disabled:1;
123 	unsigned		is_suspended:1;
124 
125 	int			(*filter)(void *data, int data_idx, int *val);
126 	void			*filter_data;
127 	void			(*filter_cleanup)(void *data);
128 	int			(*get_pendown_state)(void);
129 	int			gpio_pendown;
130 
131 	void			(*wait_for_sync)(void);
132 };
133 
134 /* leave chip selected when we're done, for quicker re-select? */
135 #if	0
136 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
137 #else
138 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
139 #endif
140 
141 /*--------------------------------------------------------------------------*/
142 
143 /* The ADS7846 has touchscreen and other sensors.
144  * Earlier ads784x chips are somewhat compatible.
145  */
146 #define	ADS_START		(1 << 7)
147 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
148 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
149 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
150 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
151 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
152 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
153 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
154 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
155 #define	ADS_8_BIT		(1 << 3)
156 #define	ADS_12_BIT		(0 << 3)
157 #define	ADS_SER			(1 << 2)	/* non-differential */
158 #define	ADS_DFR			(0 << 2)	/* differential */
159 #define	ADS_PD10_PDOWN		(0 << 0)	/* lowpower mode + penirq */
160 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
161 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
162 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
163 
164 #define	MAX_12BIT	((1<<12)-1)
165 
166 /* leave ADC powered up (disables penirq) between differential samples */
167 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
168 	| ADS_12_BIT | ADS_DFR | \
169 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
170 
171 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
172 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
173 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
174 
175 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
176 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
177 
178 /* single-ended samples need to first power up reference voltage;
179  * we leave both ADC and VREF powered
180  */
181 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
182 	| ADS_12_BIT | ADS_SER)
183 
184 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
185 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
186 
187 /*--------------------------------------------------------------------------*/
188 
189 /*
190  * Non-touchscreen sensors only use single-ended conversions.
191  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
192  * ads7846 lets that pin be unconnected, to use internal vREF.
193  */
194 
195 struct ser_req {
196 	u8			ref_on;
197 	u8			command;
198 	u8			ref_off;
199 	u16			scratch;
200 	__be16			sample;
201 	struct spi_message	msg;
202 	struct spi_transfer	xfer[6];
203 };
204 
205 static void ads7846_enable(struct ads7846 *ts);
206 static void ads7846_disable(struct ads7846 *ts);
207 
208 static int device_suspended(struct device *dev)
209 {
210 	struct ads7846 *ts = dev_get_drvdata(dev);
211 	return ts->is_suspended || ts->disabled;
212 }
213 
214 static int ads7846_read12_ser(struct device *dev, unsigned command)
215 {
216 	struct spi_device	*spi = to_spi_device(dev);
217 	struct ads7846		*ts = dev_get_drvdata(dev);
218 	struct ser_req		*req = kzalloc(sizeof *req, GFP_KERNEL);
219 	int			status;
220 	int			use_internal;
221 
222 	if (!req)
223 		return -ENOMEM;
224 
225 	spi_message_init(&req->msg);
226 
227 	/* FIXME boards with ads7846 might use external vref instead ... */
228 	use_internal = (ts->model == 7846);
229 
230 	/* maybe turn on internal vREF, and let it settle */
231 	if (use_internal) {
232 		req->ref_on = REF_ON;
233 		req->xfer[0].tx_buf = &req->ref_on;
234 		req->xfer[0].len = 1;
235 		spi_message_add_tail(&req->xfer[0], &req->msg);
236 
237 		req->xfer[1].rx_buf = &req->scratch;
238 		req->xfer[1].len = 2;
239 
240 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
241 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
242 		spi_message_add_tail(&req->xfer[1], &req->msg);
243 	}
244 
245 	/* take sample */
246 	req->command = (u8) command;
247 	req->xfer[2].tx_buf = &req->command;
248 	req->xfer[2].len = 1;
249 	spi_message_add_tail(&req->xfer[2], &req->msg);
250 
251 	req->xfer[3].rx_buf = &req->sample;
252 	req->xfer[3].len = 2;
253 	spi_message_add_tail(&req->xfer[3], &req->msg);
254 
255 	/* REVISIT:  take a few more samples, and compare ... */
256 
257 	/* converter in low power mode & enable PENIRQ */
258 	req->ref_off = PWRDOWN;
259 	req->xfer[4].tx_buf = &req->ref_off;
260 	req->xfer[4].len = 1;
261 	spi_message_add_tail(&req->xfer[4], &req->msg);
262 
263 	req->xfer[5].rx_buf = &req->scratch;
264 	req->xfer[5].len = 2;
265 	CS_CHANGE(req->xfer[5]);
266 	spi_message_add_tail(&req->xfer[5], &req->msg);
267 
268 	ts->irq_disabled = 1;
269 	disable_irq(spi->irq);
270 	status = spi_sync(spi, &req->msg);
271 	ts->irq_disabled = 0;
272 	enable_irq(spi->irq);
273 
274 	if (status == 0) {
275 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
276 		status = be16_to_cpu(req->sample);
277 		status = status >> 3;
278 		status &= 0x0fff;
279 	}
280 
281 	kfree(req);
282 	return status;
283 }
284 
285 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
286 
287 #define SHOW(name, var, adjust) static ssize_t \
288 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
289 { \
290 	struct ads7846 *ts = dev_get_drvdata(dev); \
291 	ssize_t v = ads7846_read12_ser(dev, \
292 			READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
293 	if (v < 0) \
294 		return v; \
295 	return sprintf(buf, "%u\n", adjust(ts, v)); \
296 } \
297 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
298 
299 
300 /* Sysfs conventions report temperatures in millidegrees Celsius.
301  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
302  * accuracy scheme without calibration data.  For now we won't try either;
303  * userspace sees raw sensor values, and must scale/calibrate appropriately.
304  */
305 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
306 {
307 	return v;
308 }
309 
310 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
311 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
312 
313 
314 /* sysfs conventions report voltages in millivolts.  We can convert voltages
315  * if we know vREF.  userspace may need to scale vAUX to match the board's
316  * external resistors; we assume that vBATT only uses the internal ones.
317  */
318 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
319 {
320 	unsigned retval = v;
321 
322 	/* external resistors may scale vAUX into 0..vREF */
323 	retval *= ts->vref_mv;
324 	retval = retval >> 12;
325 	return retval;
326 }
327 
328 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
329 {
330 	unsigned retval = vaux_adjust(ts, v);
331 
332 	/* ads7846 has a resistor ladder to scale this signal down */
333 	if (ts->model == 7846)
334 		retval *= 4;
335 	return retval;
336 }
337 
338 SHOW(in0_input, vaux, vaux_adjust)
339 SHOW(in1_input, vbatt, vbatt_adjust)
340 
341 
342 static struct attribute *ads7846_attributes[] = {
343 	&dev_attr_temp0.attr,
344 	&dev_attr_temp1.attr,
345 	&dev_attr_in0_input.attr,
346 	&dev_attr_in1_input.attr,
347 	NULL,
348 };
349 
350 static struct attribute_group ads7846_attr_group = {
351 	.attrs = ads7846_attributes,
352 };
353 
354 static struct attribute *ads7843_attributes[] = {
355 	&dev_attr_in0_input.attr,
356 	&dev_attr_in1_input.attr,
357 	NULL,
358 };
359 
360 static struct attribute_group ads7843_attr_group = {
361 	.attrs = ads7843_attributes,
362 };
363 
364 static struct attribute *ads7845_attributes[] = {
365 	&dev_attr_in0_input.attr,
366 	NULL,
367 };
368 
369 static struct attribute_group ads7845_attr_group = {
370 	.attrs = ads7845_attributes,
371 };
372 
373 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
374 {
375 	struct device *hwmon;
376 	int err;
377 
378 	/* hwmon sensors need a reference voltage */
379 	switch (ts->model) {
380 	case 7846:
381 		if (!ts->vref_mv) {
382 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
383 			ts->vref_mv = 2500;
384 		}
385 		break;
386 	case 7845:
387 	case 7843:
388 		if (!ts->vref_mv) {
389 			dev_warn(&spi->dev,
390 				"external vREF for ADS%d not specified\n",
391 				ts->model);
392 			return 0;
393 		}
394 		break;
395 	}
396 
397 	/* different chips have different sensor groups */
398 	switch (ts->model) {
399 	case 7846:
400 		ts->attr_group = &ads7846_attr_group;
401 		break;
402 	case 7845:
403 		ts->attr_group = &ads7845_attr_group;
404 		break;
405 	case 7843:
406 		ts->attr_group = &ads7843_attr_group;
407 		break;
408 	default:
409 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
410 		return 0;
411 	}
412 
413 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
414 	if (err)
415 		return err;
416 
417 	hwmon = hwmon_device_register(&spi->dev);
418 	if (IS_ERR(hwmon)) {
419 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
420 		return PTR_ERR(hwmon);
421 	}
422 
423 	ts->hwmon = hwmon;
424 	return 0;
425 }
426 
427 static void ads784x_hwmon_unregister(struct spi_device *spi,
428 				     struct ads7846 *ts)
429 {
430 	if (ts->hwmon) {
431 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
432 		hwmon_device_unregister(ts->hwmon);
433 	}
434 }
435 
436 #else
437 static inline int ads784x_hwmon_register(struct spi_device *spi,
438 					 struct ads7846 *ts)
439 {
440 	return 0;
441 }
442 
443 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
444 					    struct ads7846 *ts)
445 {
446 }
447 #endif
448 
449 static int is_pen_down(struct device *dev)
450 {
451 	struct ads7846	*ts = dev_get_drvdata(dev);
452 
453 	return ts->pendown;
454 }
455 
456 static ssize_t ads7846_pen_down_show(struct device *dev,
457 				     struct device_attribute *attr, char *buf)
458 {
459 	return sprintf(buf, "%u\n", is_pen_down(dev));
460 }
461 
462 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
463 
464 static ssize_t ads7846_disable_show(struct device *dev,
465 				     struct device_attribute *attr, char *buf)
466 {
467 	struct ads7846	*ts = dev_get_drvdata(dev);
468 
469 	return sprintf(buf, "%u\n", ts->disabled);
470 }
471 
472 static ssize_t ads7846_disable_store(struct device *dev,
473 				     struct device_attribute *attr,
474 				     const char *buf, size_t count)
475 {
476 	struct ads7846 *ts = dev_get_drvdata(dev);
477 	unsigned long i;
478 
479 	if (strict_strtoul(buf, 10, &i))
480 		return -EINVAL;
481 
482 	spin_lock_irq(&ts->lock);
483 
484 	if (i)
485 		ads7846_disable(ts);
486 	else
487 		ads7846_enable(ts);
488 
489 	spin_unlock_irq(&ts->lock);
490 
491 	return count;
492 }
493 
494 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
495 
496 static struct attribute *ads784x_attributes[] = {
497 	&dev_attr_pen_down.attr,
498 	&dev_attr_disable.attr,
499 	NULL,
500 };
501 
502 static struct attribute_group ads784x_attr_group = {
503 	.attrs = ads784x_attributes,
504 };
505 
506 /*--------------------------------------------------------------------------*/
507 
508 static int get_pendown_state(struct ads7846 *ts)
509 {
510 	if (ts->get_pendown_state)
511 		return ts->get_pendown_state();
512 
513 	return !gpio_get_value(ts->gpio_pendown);
514 }
515 
516 static void null_wait_for_sync(void)
517 {
518 }
519 
520 /*
521  * PENIRQ only kicks the timer.  The timer only reissues the SPI transfer,
522  * to retrieve touchscreen status.
523  *
524  * The SPI transfer completion callback does the real work.  It reports
525  * touchscreen events and reactivates the timer (or IRQ) as appropriate.
526  */
527 
528 static void ads7846_rx(void *ads)
529 {
530 	struct ads7846		*ts = ads;
531 	struct ads7846_packet	*packet = ts->packet;
532 	unsigned		Rt;
533 	u16			x, y, z1, z2;
534 
535 	/* ads7846_rx_val() did in-place conversion (including byteswap) from
536 	 * on-the-wire format as part of debouncing to get stable readings.
537 	 */
538 	x = packet->tc.x;
539 	y = packet->tc.y;
540 	z1 = packet->tc.z1;
541 	z2 = packet->tc.z2;
542 
543 	/* range filtering */
544 	if (x == MAX_12BIT)
545 		x = 0;
546 
547 	if (ts->model == 7843) {
548 		Rt = ts->pressure_max / 2;
549 	} else if (likely(x && z1)) {
550 		/* compute touch pressure resistance using equation #2 */
551 		Rt = z2;
552 		Rt -= z1;
553 		Rt *= x;
554 		Rt *= ts->x_plate_ohms;
555 		Rt /= z1;
556 		Rt = (Rt + 2047) >> 12;
557 	} else {
558 		Rt = 0;
559 	}
560 
561 	/* Sample found inconsistent by debouncing or pressure is beyond
562 	 * the maximum. Don't report it to user space, repeat at least
563 	 * once more the measurement
564 	 */
565 	if (packet->tc.ignore || Rt > ts->pressure_max) {
566 #ifdef VERBOSE
567 		pr_debug("%s: ignored %d pressure %d\n",
568 			dev_name(&ts->spi->dev), packet->tc.ignore, Rt);
569 #endif
570 		hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_PERIOD),
571 			      HRTIMER_MODE_REL);
572 		return;
573 	}
574 
575 	/* Maybe check the pendown state before reporting. This discards
576 	 * false readings when the pen is lifted.
577 	 */
578 	if (ts->penirq_recheck_delay_usecs) {
579 		udelay(ts->penirq_recheck_delay_usecs);
580 		if (!get_pendown_state(ts))
581 			Rt = 0;
582 	}
583 
584 	/* NOTE: We can't rely on the pressure to determine the pen down
585 	 * state, even this controller has a pressure sensor.  The pressure
586 	 * value can fluctuate for quite a while after lifting the pen and
587 	 * in some cases may not even settle at the expected value.
588 	 *
589 	 * The only safe way to check for the pen up condition is in the
590 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
591 	 */
592 	if (Rt) {
593 		struct input_dev *input = ts->input;
594 
595 		if (!ts->pendown) {
596 			input_report_key(input, BTN_TOUCH, 1);
597 			ts->pendown = 1;
598 #ifdef VERBOSE
599 			dev_dbg(&ts->spi->dev, "DOWN\n");
600 #endif
601 		}
602 		input_report_abs(input, ABS_X, x);
603 		input_report_abs(input, ABS_Y, y);
604 		input_report_abs(input, ABS_PRESSURE, Rt);
605 
606 		input_sync(input);
607 #ifdef VERBOSE
608 		dev_dbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
609 #endif
610 	}
611 
612 	hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_PERIOD),
613 			HRTIMER_MODE_REL);
614 }
615 
616 static int ads7846_debounce(void *ads, int data_idx, int *val)
617 {
618 	struct ads7846		*ts = ads;
619 
620 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
621 		/* Start over collecting consistent readings. */
622 		ts->read_rep = 0;
623 		/* Repeat it, if this was the first read or the read
624 		 * wasn't consistent enough. */
625 		if (ts->read_cnt < ts->debounce_max) {
626 			ts->last_read = *val;
627 			ts->read_cnt++;
628 			return ADS7846_FILTER_REPEAT;
629 		} else {
630 			/* Maximum number of debouncing reached and still
631 			 * not enough number of consistent readings. Abort
632 			 * the whole sample, repeat it in the next sampling
633 			 * period.
634 			 */
635 			ts->read_cnt = 0;
636 			return ADS7846_FILTER_IGNORE;
637 		}
638 	} else {
639 		if (++ts->read_rep > ts->debounce_rep) {
640 			/* Got a good reading for this coordinate,
641 			 * go for the next one. */
642 			ts->read_cnt = 0;
643 			ts->read_rep = 0;
644 			return ADS7846_FILTER_OK;
645 		} else {
646 			/* Read more values that are consistent. */
647 			ts->read_cnt++;
648 			return ADS7846_FILTER_REPEAT;
649 		}
650 	}
651 }
652 
653 static int ads7846_no_filter(void *ads, int data_idx, int *val)
654 {
655 	return ADS7846_FILTER_OK;
656 }
657 
658 static void ads7846_rx_val(void *ads)
659 {
660 	struct ads7846 *ts = ads;
661 	struct ads7846_packet *packet = ts->packet;
662 	struct spi_message *m;
663 	struct spi_transfer *t;
664 	int val;
665 	int action;
666 	int status;
667 
668 	m = &ts->msg[ts->msg_idx];
669 	t = list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
670 
671 	/* adjust:  on-wire is a must-ignore bit, a BE12 value, then padding;
672 	 * built from two 8 bit values written msb-first.
673 	 */
674 	val = be16_to_cpup((__be16 *)t->rx_buf) >> 3;
675 
676 	action = ts->filter(ts->filter_data, ts->msg_idx, &val);
677 	switch (action) {
678 	case ADS7846_FILTER_REPEAT:
679 		break;
680 	case ADS7846_FILTER_IGNORE:
681 		packet->tc.ignore = 1;
682 		/* Last message will contain ads7846_rx() as the
683 		 * completion function.
684 		 */
685 		m = ts->last_msg;
686 		break;
687 	case ADS7846_FILTER_OK:
688 		*(u16 *)t->rx_buf = val;
689 		packet->tc.ignore = 0;
690 		m = &ts->msg[++ts->msg_idx];
691 		break;
692 	default:
693 		BUG();
694 	}
695 	ts->wait_for_sync();
696 	status = spi_async(ts->spi, m);
697 	if (status)
698 		dev_err(&ts->spi->dev, "spi_async --> %d\n",
699 				status);
700 }
701 
702 static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
703 {
704 	struct ads7846	*ts = container_of(handle, struct ads7846, timer);
705 	int		status = 0;
706 
707 	spin_lock(&ts->lock);
708 
709 	if (unlikely(!get_pendown_state(ts) ||
710 		     device_suspended(&ts->spi->dev))) {
711 		if (ts->pendown) {
712 			struct input_dev *input = ts->input;
713 
714 			input_report_key(input, BTN_TOUCH, 0);
715 			input_report_abs(input, ABS_PRESSURE, 0);
716 			input_sync(input);
717 
718 			ts->pendown = 0;
719 #ifdef VERBOSE
720 			dev_dbg(&ts->spi->dev, "UP\n");
721 #endif
722 		}
723 
724 		/* measurement cycle ended */
725 		if (!device_suspended(&ts->spi->dev)) {
726 			ts->irq_disabled = 0;
727 			enable_irq(ts->spi->irq);
728 		}
729 		ts->pending = 0;
730 	} else {
731 		/* pen is still down, continue with the measurement */
732 		ts->msg_idx = 0;
733 		ts->wait_for_sync();
734 		status = spi_async(ts->spi, &ts->msg[0]);
735 		if (status)
736 			dev_err(&ts->spi->dev, "spi_async --> %d\n", status);
737 	}
738 
739 	spin_unlock(&ts->lock);
740 	return HRTIMER_NORESTART;
741 }
742 
743 static irqreturn_t ads7846_irq(int irq, void *handle)
744 {
745 	struct ads7846 *ts = handle;
746 	unsigned long flags;
747 
748 	spin_lock_irqsave(&ts->lock, flags);
749 	if (likely(get_pendown_state(ts))) {
750 		if (!ts->irq_disabled) {
751 			/* The ARM do_simple_IRQ() dispatcher doesn't act
752 			 * like the other dispatchers:  it will report IRQs
753 			 * even after they've been disabled.  We work around
754 			 * that here.  (The "generic irq" framework may help...)
755 			 */
756 			ts->irq_disabled = 1;
757 			disable_irq_nosync(ts->spi->irq);
758 			ts->pending = 1;
759 			hrtimer_start(&ts->timer, ktime_set(0, TS_POLL_DELAY),
760 					HRTIMER_MODE_REL);
761 		}
762 	}
763 	spin_unlock_irqrestore(&ts->lock, flags);
764 
765 	return IRQ_HANDLED;
766 }
767 
768 /*--------------------------------------------------------------------------*/
769 
770 /* Must be called with ts->lock held */
771 static void ads7846_disable(struct ads7846 *ts)
772 {
773 	if (ts->disabled)
774 		return;
775 
776 	ts->disabled = 1;
777 
778 	/* are we waiting for IRQ, or polling? */
779 	if (!ts->pending) {
780 		ts->irq_disabled = 1;
781 		disable_irq(ts->spi->irq);
782 	} else {
783 		/* the timer will run at least once more, and
784 		 * leave everything in a clean state, IRQ disabled
785 		 */
786 		while (ts->pending) {
787 			spin_unlock_irq(&ts->lock);
788 			msleep(1);
789 			spin_lock_irq(&ts->lock);
790 		}
791 	}
792 
793 	/* we know the chip's in lowpower mode since we always
794 	 * leave it that way after every request
795 	 */
796 }
797 
798 /* Must be called with ts->lock held */
799 static void ads7846_enable(struct ads7846 *ts)
800 {
801 	if (!ts->disabled)
802 		return;
803 
804 	ts->disabled = 0;
805 	ts->irq_disabled = 0;
806 	enable_irq(ts->spi->irq);
807 }
808 
809 static int ads7846_suspend(struct spi_device *spi, pm_message_t message)
810 {
811 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
812 
813 	spin_lock_irq(&ts->lock);
814 
815 	ts->is_suspended = 1;
816 	ads7846_disable(ts);
817 
818 	spin_unlock_irq(&ts->lock);
819 
820 	return 0;
821 
822 }
823 
824 static int ads7846_resume(struct spi_device *spi)
825 {
826 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
827 
828 	spin_lock_irq(&ts->lock);
829 
830 	ts->is_suspended = 0;
831 	ads7846_enable(ts);
832 
833 	spin_unlock_irq(&ts->lock);
834 
835 	return 0;
836 }
837 
838 static int __devinit setup_pendown(struct spi_device *spi, struct ads7846 *ts)
839 {
840 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
841 	int err;
842 
843 	/* REVISIT when the irq can be triggered active-low, or if for some
844 	 * reason the touchscreen isn't hooked up, we don't need to access
845 	 * the pendown state.
846 	 */
847 	if (!pdata->get_pendown_state && !gpio_is_valid(pdata->gpio_pendown)) {
848 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
849 		return -EINVAL;
850 	}
851 
852 	if (pdata->get_pendown_state) {
853 		ts->get_pendown_state = pdata->get_pendown_state;
854 		return 0;
855 	}
856 
857 	err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
858 	if (err) {
859 		dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
860 				pdata->gpio_pendown);
861 		return err;
862 	}
863 
864 	ts->gpio_pendown = pdata->gpio_pendown;
865 	return 0;
866 }
867 
868 static int __devinit ads7846_probe(struct spi_device *spi)
869 {
870 	struct ads7846			*ts;
871 	struct ads7846_packet		*packet;
872 	struct input_dev		*input_dev;
873 	struct ads7846_platform_data	*pdata = spi->dev.platform_data;
874 	struct spi_message		*m;
875 	struct spi_transfer		*x;
876 	int				vref;
877 	int				err;
878 
879 	if (!spi->irq) {
880 		dev_dbg(&spi->dev, "no IRQ?\n");
881 		return -ENODEV;
882 	}
883 
884 	if (!pdata) {
885 		dev_dbg(&spi->dev, "no platform data?\n");
886 		return -ENODEV;
887 	}
888 
889 	/* don't exceed max specified sample rate */
890 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
891 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
892 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
893 		return -EINVAL;
894 	}
895 
896 	/* We'd set TX wordsize 8 bits and RX wordsize to 13 bits ... except
897 	 * that even if the hardware can do that, the SPI controller driver
898 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
899 	 */
900 	spi->bits_per_word = 8;
901 	spi->mode = SPI_MODE_0;
902 	err = spi_setup(spi);
903 	if (err < 0)
904 		return err;
905 
906 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
907 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
908 	input_dev = input_allocate_device();
909 	if (!ts || !packet || !input_dev) {
910 		err = -ENOMEM;
911 		goto err_free_mem;
912 	}
913 
914 	dev_set_drvdata(&spi->dev, ts);
915 
916 	ts->packet = packet;
917 	ts->spi = spi;
918 	ts->input = input_dev;
919 	ts->vref_mv = pdata->vref_mv;
920 
921 	hrtimer_init(&ts->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
922 	ts->timer.function = ads7846_timer;
923 
924 	spin_lock_init(&ts->lock);
925 
926 	ts->model = pdata->model ? : 7846;
927 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
928 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
929 	ts->pressure_max = pdata->pressure_max ? : ~0;
930 
931 	if (pdata->filter != NULL) {
932 		if (pdata->filter_init != NULL) {
933 			err = pdata->filter_init(pdata, &ts->filter_data);
934 			if (err < 0)
935 				goto err_free_mem;
936 		}
937 		ts->filter = pdata->filter;
938 		ts->filter_cleanup = pdata->filter_cleanup;
939 	} else if (pdata->debounce_max) {
940 		ts->debounce_max = pdata->debounce_max;
941 		if (ts->debounce_max < 2)
942 			ts->debounce_max = 2;
943 		ts->debounce_tol = pdata->debounce_tol;
944 		ts->debounce_rep = pdata->debounce_rep;
945 		ts->filter = ads7846_debounce;
946 		ts->filter_data = ts;
947 	} else
948 		ts->filter = ads7846_no_filter;
949 
950 	err = setup_pendown(spi, ts);
951 	if (err)
952 		goto err_cleanup_filter;
953 
954 	if (pdata->penirq_recheck_delay_usecs)
955 		ts->penirq_recheck_delay_usecs =
956 				pdata->penirq_recheck_delay_usecs;
957 
958 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
959 
960 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
961 
962 	input_dev->name = "ADS784x Touchscreen";
963 	input_dev->phys = ts->phys;
964 	input_dev->dev.parent = &spi->dev;
965 
966 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
967 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
968 	input_set_abs_params(input_dev, ABS_X,
969 			pdata->x_min ? : 0,
970 			pdata->x_max ? : MAX_12BIT,
971 			0, 0);
972 	input_set_abs_params(input_dev, ABS_Y,
973 			pdata->y_min ? : 0,
974 			pdata->y_max ? : MAX_12BIT,
975 			0, 0);
976 	input_set_abs_params(input_dev, ABS_PRESSURE,
977 			pdata->pressure_min, pdata->pressure_max, 0, 0);
978 
979 	vref = pdata->keep_vref_on;
980 
981 	/* set up the transfers to read touchscreen state; this assumes we
982 	 * use formula #2 for pressure, not #3.
983 	 */
984 	m = &ts->msg[0];
985 	x = ts->xfer;
986 
987 	spi_message_init(m);
988 
989 	/* y- still on; turn on only y+ (and ADC) */
990 	packet->read_y = READ_Y(vref);
991 	x->tx_buf = &packet->read_y;
992 	x->len = 1;
993 	spi_message_add_tail(x, m);
994 
995 	x++;
996 	x->rx_buf = &packet->tc.y;
997 	x->len = 2;
998 	spi_message_add_tail(x, m);
999 
1000 	/* the first sample after switching drivers can be low quality;
1001 	 * optionally discard it, using a second one after the signals
1002 	 * have had enough time to stabilize.
1003 	 */
1004 	if (pdata->settle_delay_usecs) {
1005 		x->delay_usecs = pdata->settle_delay_usecs;
1006 
1007 		x++;
1008 		x->tx_buf = &packet->read_y;
1009 		x->len = 1;
1010 		spi_message_add_tail(x, m);
1011 
1012 		x++;
1013 		x->rx_buf = &packet->tc.y;
1014 		x->len = 2;
1015 		spi_message_add_tail(x, m);
1016 	}
1017 
1018 	m->complete = ads7846_rx_val;
1019 	m->context = ts;
1020 
1021 	m++;
1022 	spi_message_init(m);
1023 
1024 	/* turn y- off, x+ on, then leave in lowpower */
1025 	x++;
1026 	packet->read_x = READ_X(vref);
1027 	x->tx_buf = &packet->read_x;
1028 	x->len = 1;
1029 	spi_message_add_tail(x, m);
1030 
1031 	x++;
1032 	x->rx_buf = &packet->tc.x;
1033 	x->len = 2;
1034 	spi_message_add_tail(x, m);
1035 
1036 	/* ... maybe discard first sample ... */
1037 	if (pdata->settle_delay_usecs) {
1038 		x->delay_usecs = pdata->settle_delay_usecs;
1039 
1040 		x++;
1041 		x->tx_buf = &packet->read_x;
1042 		x->len = 1;
1043 		spi_message_add_tail(x, m);
1044 
1045 		x++;
1046 		x->rx_buf = &packet->tc.x;
1047 		x->len = 2;
1048 		spi_message_add_tail(x, m);
1049 	}
1050 
1051 	m->complete = ads7846_rx_val;
1052 	m->context = ts;
1053 
1054 	/* turn y+ off, x- on; we'll use formula #2 */
1055 	if (ts->model == 7846) {
1056 		m++;
1057 		spi_message_init(m);
1058 
1059 		x++;
1060 		packet->read_z1 = READ_Z1(vref);
1061 		x->tx_buf = &packet->read_z1;
1062 		x->len = 1;
1063 		spi_message_add_tail(x, m);
1064 
1065 		x++;
1066 		x->rx_buf = &packet->tc.z1;
1067 		x->len = 2;
1068 		spi_message_add_tail(x, m);
1069 
1070 		/* ... maybe discard first sample ... */
1071 		if (pdata->settle_delay_usecs) {
1072 			x->delay_usecs = pdata->settle_delay_usecs;
1073 
1074 			x++;
1075 			x->tx_buf = &packet->read_z1;
1076 			x->len = 1;
1077 			spi_message_add_tail(x, m);
1078 
1079 			x++;
1080 			x->rx_buf = &packet->tc.z1;
1081 			x->len = 2;
1082 			spi_message_add_tail(x, m);
1083 		}
1084 
1085 		m->complete = ads7846_rx_val;
1086 		m->context = ts;
1087 
1088 		m++;
1089 		spi_message_init(m);
1090 
1091 		x++;
1092 		packet->read_z2 = READ_Z2(vref);
1093 		x->tx_buf = &packet->read_z2;
1094 		x->len = 1;
1095 		spi_message_add_tail(x, m);
1096 
1097 		x++;
1098 		x->rx_buf = &packet->tc.z2;
1099 		x->len = 2;
1100 		spi_message_add_tail(x, m);
1101 
1102 		/* ... maybe discard first sample ... */
1103 		if (pdata->settle_delay_usecs) {
1104 			x->delay_usecs = pdata->settle_delay_usecs;
1105 
1106 			x++;
1107 			x->tx_buf = &packet->read_z2;
1108 			x->len = 1;
1109 			spi_message_add_tail(x, m);
1110 
1111 			x++;
1112 			x->rx_buf = &packet->tc.z2;
1113 			x->len = 2;
1114 			spi_message_add_tail(x, m);
1115 		}
1116 
1117 		m->complete = ads7846_rx_val;
1118 		m->context = ts;
1119 	}
1120 
1121 	/* power down */
1122 	m++;
1123 	spi_message_init(m);
1124 
1125 	x++;
1126 	packet->pwrdown = PWRDOWN;
1127 	x->tx_buf = &packet->pwrdown;
1128 	x->len = 1;
1129 	spi_message_add_tail(x, m);
1130 
1131 	x++;
1132 	x->rx_buf = &packet->dummy;
1133 	x->len = 2;
1134 	CS_CHANGE(*x);
1135 	spi_message_add_tail(x, m);
1136 
1137 	m->complete = ads7846_rx;
1138 	m->context = ts;
1139 
1140 	ts->last_msg = m;
1141 
1142 	if (request_irq(spi->irq, ads7846_irq, IRQF_TRIGGER_FALLING,
1143 			spi->dev.driver->name, ts)) {
1144 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1145 		err = -EBUSY;
1146 		goto err_free_gpio;
1147 	}
1148 
1149 	err = ads784x_hwmon_register(spi, ts);
1150 	if (err)
1151 		goto err_free_irq;
1152 
1153 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1154 
1155 	/* take a first sample, leaving nPENIRQ active and vREF off; avoid
1156 	 * the touchscreen, in case it's not connected.
1157 	 */
1158 	(void) ads7846_read12_ser(&spi->dev,
1159 			  READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1160 
1161 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1162 	if (err)
1163 		goto err_remove_hwmon;
1164 
1165 	err = input_register_device(input_dev);
1166 	if (err)
1167 		goto err_remove_attr_group;
1168 
1169 	return 0;
1170 
1171  err_remove_attr_group:
1172 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1173  err_remove_hwmon:
1174 	ads784x_hwmon_unregister(spi, ts);
1175  err_free_irq:
1176 	free_irq(spi->irq, ts);
1177  err_free_gpio:
1178 	if (ts->gpio_pendown != -1)
1179 		gpio_free(ts->gpio_pendown);
1180  err_cleanup_filter:
1181 	if (ts->filter_cleanup)
1182 		ts->filter_cleanup(ts->filter_data);
1183  err_free_mem:
1184 	input_free_device(input_dev);
1185 	kfree(packet);
1186 	kfree(ts);
1187 	return err;
1188 }
1189 
1190 static int __devexit ads7846_remove(struct spi_device *spi)
1191 {
1192 	struct ads7846		*ts = dev_get_drvdata(&spi->dev);
1193 
1194 	ads784x_hwmon_unregister(spi, ts);
1195 	input_unregister_device(ts->input);
1196 
1197 	ads7846_suspend(spi, PMSG_SUSPEND);
1198 
1199 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1200 
1201 	free_irq(ts->spi->irq, ts);
1202 	/* suspend left the IRQ disabled */
1203 	enable_irq(ts->spi->irq);
1204 
1205 	if (ts->gpio_pendown != -1)
1206 		gpio_free(ts->gpio_pendown);
1207 
1208 	if (ts->filter_cleanup)
1209 		ts->filter_cleanup(ts->filter_data);
1210 
1211 	kfree(ts->packet);
1212 	kfree(ts);
1213 
1214 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1215 	return 0;
1216 }
1217 
1218 static struct spi_driver ads7846_driver = {
1219 	.driver = {
1220 		.name	= "ads7846",
1221 		.bus	= &spi_bus_type,
1222 		.owner	= THIS_MODULE,
1223 	},
1224 	.probe		= ads7846_probe,
1225 	.remove		= __devexit_p(ads7846_remove),
1226 	.suspend	= ads7846_suspend,
1227 	.resume		= ads7846_resume,
1228 };
1229 
1230 static int __init ads7846_init(void)
1231 {
1232 	return spi_register_driver(&ads7846_driver);
1233 }
1234 module_init(ads7846_init);
1235 
1236 static void __exit ads7846_exit(void)
1237 {
1238 	spi_unregister_driver(&ads7846_driver);
1239 }
1240 module_exit(ads7846_exit);
1241 
1242 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1243 MODULE_LICENSE("GPL");
1244