1 /*
2  * ADS7846 based touchscreen and sensor driver
3  *
4  * Copyright (c) 2005 David Brownell
5  * Copyright (c) 2006 Nokia Corporation
6  * Various changes: Imre Deak <imre.deak@nokia.com>
7  *
8  * Using code from:
9  *  - corgi_ts.c
10  *	Copyright (C) 2004-2005 Richard Purdie
11  *  - omap_ts.[hc], ads7846.h, ts_osk.c
12  *	Copyright (C) 2002 MontaVista Software
13  *	Copyright (C) 2004 Texas Instruments
14  *	Copyright (C) 2005 Dirk Behme
15  *
16  *  This program is free software; you can redistribute it and/or modify
17  *  it under the terms of the GNU General Public License version 2 as
18  *  published by the Free Software Foundation.
19  */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35 
36 /*
37  * This code has been heavily tested on a Nokia 770, and lightly
38  * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39  * TSC2046 is just newer ads7846 silicon.
40  * Support for ads7843 tested on Atmel at91sam926x-EK.
41  * Support for ads7845 has only been stubbed in.
42  * Support for Analog Devices AD7873 and AD7843 tested.
43  *
44  * IRQ handling needs a workaround because of a shortcoming in handling
45  * edge triggered IRQs on some platforms like the OMAP1/2. These
46  * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47  * have to maintain our own SW IRQ disabled status. This should be
48  * removed as soon as the affected platform's IRQ handling is fixed.
49  *
50  * App note sbaa036 talks in more detail about accurate sampling...
51  * that ought to help in situations like LCDs inducing noise (which
52  * can also be helped by using synch signals) and more generally.
53  * This driver tries to utilize the measures described in the app
54  * note. The strength of filtering can be set in the board-* specific
55  * files.
56  */
57 
58 #define TS_POLL_DELAY	1	/* ms delay before the first sample */
59 #define TS_POLL_PERIOD	5	/* ms delay between samples */
60 
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define	SAMPLE_BITS	(8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63 
64 struct ts_event {
65 	/*
66 	 * For portability, we can't read 12 bit values using SPI (which
67 	 * would make the controller deliver them as native byte order u16
68 	 * with msbs zeroed).  Instead, we read them as two 8-bit values,
69 	 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 	 */
71 	u16	x;
72 	u16	y;
73 	u16	z1, z2;
74 	bool	ignore;
75 	u8	x_buf[3];
76 	u8	y_buf[3];
77 };
78 
79 /*
80  * We allocate this separately to avoid cache line sharing issues when
81  * driver is used with DMA-based SPI controllers (like atmel_spi) on
82  * systems where main memory is not DMA-coherent (most non-x86 boards).
83  */
84 struct ads7846_packet {
85 	u8			read_x, read_y, read_z1, read_z2, pwrdown;
86 	u16			dummy;		/* for the pwrdown read */
87 	struct ts_event		tc;
88 	/* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 	u8			read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91 
92 struct ads7846 {
93 	struct input_dev	*input;
94 	char			phys[32];
95 	char			name[32];
96 
97 	struct spi_device	*spi;
98 	struct regulator	*reg;
99 
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 	struct attribute_group	*attr_group;
102 	struct device		*hwmon;
103 #endif
104 
105 	u16			model;
106 	u16			vref_mv;
107 	u16			vref_delay_usecs;
108 	u16			x_plate_ohms;
109 	u16			pressure_max;
110 
111 	bool			swap_xy;
112 
113 	struct ads7846_packet	*packet;
114 
115 	struct spi_transfer	xfer[18];
116 	struct spi_message	msg[5];
117 	int			msg_count;
118 	wait_queue_head_t	wait;
119 
120 	bool			pendown;
121 
122 	int			read_cnt;
123 	int			read_rep;
124 	int			last_read;
125 
126 	u16			debounce_max;
127 	u16			debounce_tol;
128 	u16			debounce_rep;
129 
130 	u16			penirq_recheck_delay_usecs;
131 
132 	struct mutex		lock;
133 	bool			stopped;	/* P: lock */
134 	bool			disabled;	/* P: lock */
135 	bool			suspended;	/* P: lock */
136 
137 	int			(*filter)(void *data, int data_idx, int *val);
138 	void			*filter_data;
139 	void			(*filter_cleanup)(void *data);
140 	int			(*get_pendown_state)(void);
141 	int			gpio_pendown;
142 
143 	void			(*wait_for_sync)(void);
144 };
145 
146 /* leave chip selected when we're done, for quicker re-select? */
147 #if	0
148 #define	CS_CHANGE(xfer)	((xfer).cs_change = 1)
149 #else
150 #define	CS_CHANGE(xfer)	((xfer).cs_change = 0)
151 #endif
152 
153 /*--------------------------------------------------------------------------*/
154 
155 /* The ADS7846 has touchscreen and other sensors.
156  * Earlier ads784x chips are somewhat compatible.
157  */
158 #define	ADS_START		(1 << 7)
159 #define	ADS_A2A1A0_d_y		(1 << 4)	/* differential */
160 #define	ADS_A2A1A0_d_z1		(3 << 4)	/* differential */
161 #define	ADS_A2A1A0_d_z2		(4 << 4)	/* differential */
162 #define	ADS_A2A1A0_d_x		(5 << 4)	/* differential */
163 #define	ADS_A2A1A0_temp0	(0 << 4)	/* non-differential */
164 #define	ADS_A2A1A0_vbatt	(2 << 4)	/* non-differential */
165 #define	ADS_A2A1A0_vaux		(6 << 4)	/* non-differential */
166 #define	ADS_A2A1A0_temp1	(7 << 4)	/* non-differential */
167 #define	ADS_8_BIT		(1 << 3)
168 #define	ADS_12_BIT		(0 << 3)
169 #define	ADS_SER			(1 << 2)	/* non-differential */
170 #define	ADS_DFR			(0 << 2)	/* differential */
171 #define	ADS_PD10_PDOWN		(0 << 0)	/* low power mode + penirq */
172 #define	ADS_PD10_ADC_ON		(1 << 0)	/* ADC on */
173 #define	ADS_PD10_REF_ON		(2 << 0)	/* vREF on + penirq */
174 #define	ADS_PD10_ALL_ON		(3 << 0)	/* ADC + vREF on */
175 
176 #define	MAX_12BIT	((1<<12)-1)
177 
178 /* leave ADC powered up (disables penirq) between differential samples */
179 #define	READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
180 	| ADS_12_BIT | ADS_DFR | \
181 	(adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
182 
183 #define	READ_Y(vref)	(READ_12BIT_DFR(y,  1, vref))
184 #define	READ_Z1(vref)	(READ_12BIT_DFR(z1, 1, vref))
185 #define	READ_Z2(vref)	(READ_12BIT_DFR(z2, 1, vref))
186 
187 #define	READ_X(vref)	(READ_12BIT_DFR(x,  1, vref))
188 #define	PWRDOWN		(READ_12BIT_DFR(y,  0, 0))	/* LAST */
189 
190 /* single-ended samples need to first power up reference voltage;
191  * we leave both ADC and VREF powered
192  */
193 #define	READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
194 	| ADS_12_BIT | ADS_SER)
195 
196 #define	REF_ON	(READ_12BIT_DFR(x, 1, 1))
197 #define	REF_OFF	(READ_12BIT_DFR(y, 0, 0))
198 
199 /* Must be called with ts->lock held */
200 static void ads7846_stop(struct ads7846 *ts)
201 {
202 	if (!ts->disabled && !ts->suspended) {
203 		/* Signal IRQ thread to stop polling and disable the handler. */
204 		ts->stopped = true;
205 		mb();
206 		wake_up(&ts->wait);
207 		disable_irq(ts->spi->irq);
208 	}
209 }
210 
211 /* Must be called with ts->lock held */
212 static void ads7846_restart(struct ads7846 *ts)
213 {
214 	if (!ts->disabled && !ts->suspended) {
215 		/* Tell IRQ thread that it may poll the device. */
216 		ts->stopped = false;
217 		mb();
218 		enable_irq(ts->spi->irq);
219 	}
220 }
221 
222 /* Must be called with ts->lock held */
223 static void __ads7846_disable(struct ads7846 *ts)
224 {
225 	ads7846_stop(ts);
226 	regulator_disable(ts->reg);
227 
228 	/*
229 	 * We know the chip's in low power mode since we always
230 	 * leave it that way after every request
231 	 */
232 }
233 
234 /* Must be called with ts->lock held */
235 static void __ads7846_enable(struct ads7846 *ts)
236 {
237 	regulator_enable(ts->reg);
238 	ads7846_restart(ts);
239 }
240 
241 static void ads7846_disable(struct ads7846 *ts)
242 {
243 	mutex_lock(&ts->lock);
244 
245 	if (!ts->disabled) {
246 
247 		if  (!ts->suspended)
248 			__ads7846_disable(ts);
249 
250 		ts->disabled = true;
251 	}
252 
253 	mutex_unlock(&ts->lock);
254 }
255 
256 static void ads7846_enable(struct ads7846 *ts)
257 {
258 	mutex_lock(&ts->lock);
259 
260 	if (ts->disabled) {
261 
262 		ts->disabled = false;
263 
264 		if (!ts->suspended)
265 			__ads7846_enable(ts);
266 	}
267 
268 	mutex_unlock(&ts->lock);
269 }
270 
271 /*--------------------------------------------------------------------------*/
272 
273 /*
274  * Non-touchscreen sensors only use single-ended conversions.
275  * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
276  * ads7846 lets that pin be unconnected, to use internal vREF.
277  */
278 
279 struct ser_req {
280 	u8			ref_on;
281 	u8			command;
282 	u8			ref_off;
283 	u16			scratch;
284 	__be16			sample;
285 	struct spi_message	msg;
286 	struct spi_transfer	xfer[6];
287 };
288 
289 struct ads7845_ser_req {
290 	u8			command[3];
291 	u8			pwrdown[3];
292 	u8			sample[3];
293 	struct spi_message	msg;
294 	struct spi_transfer	xfer[2];
295 };
296 
297 static int ads7846_read12_ser(struct device *dev, unsigned command)
298 {
299 	struct spi_device *spi = to_spi_device(dev);
300 	struct ads7846 *ts = dev_get_drvdata(dev);
301 	struct ser_req *req;
302 	int status;
303 	int use_internal;
304 
305 	req = kzalloc(sizeof *req, GFP_KERNEL);
306 	if (!req)
307 		return -ENOMEM;
308 
309 	spi_message_init(&req->msg);
310 
311 	/* FIXME boards with ads7846 might use external vref instead ... */
312 	use_internal = (ts->model == 7846);
313 
314 	/* maybe turn on internal vREF, and let it settle */
315 	if (use_internal) {
316 		req->ref_on = REF_ON;
317 		req->xfer[0].tx_buf = &req->ref_on;
318 		req->xfer[0].len = 1;
319 		spi_message_add_tail(&req->xfer[0], &req->msg);
320 
321 		req->xfer[1].rx_buf = &req->scratch;
322 		req->xfer[1].len = 2;
323 
324 		/* for 1uF, settle for 800 usec; no cap, 100 usec.  */
325 		req->xfer[1].delay_usecs = ts->vref_delay_usecs;
326 		spi_message_add_tail(&req->xfer[1], &req->msg);
327 	}
328 
329 	/* take sample */
330 	req->command = (u8) command;
331 	req->xfer[2].tx_buf = &req->command;
332 	req->xfer[2].len = 1;
333 	spi_message_add_tail(&req->xfer[2], &req->msg);
334 
335 	req->xfer[3].rx_buf = &req->sample;
336 	req->xfer[3].len = 2;
337 	spi_message_add_tail(&req->xfer[3], &req->msg);
338 
339 	/* REVISIT:  take a few more samples, and compare ... */
340 
341 	/* converter in low power mode & enable PENIRQ */
342 	req->ref_off = PWRDOWN;
343 	req->xfer[4].tx_buf = &req->ref_off;
344 	req->xfer[4].len = 1;
345 	spi_message_add_tail(&req->xfer[4], &req->msg);
346 
347 	req->xfer[5].rx_buf = &req->scratch;
348 	req->xfer[5].len = 2;
349 	CS_CHANGE(req->xfer[5]);
350 	spi_message_add_tail(&req->xfer[5], &req->msg);
351 
352 	mutex_lock(&ts->lock);
353 	ads7846_stop(ts);
354 	status = spi_sync(spi, &req->msg);
355 	ads7846_restart(ts);
356 	mutex_unlock(&ts->lock);
357 
358 	if (status == 0) {
359 		/* on-wire is a must-ignore bit, a BE12 value, then padding */
360 		status = be16_to_cpu(req->sample);
361 		status = status >> 3;
362 		status &= 0x0fff;
363 	}
364 
365 	kfree(req);
366 	return status;
367 }
368 
369 static int ads7845_read12_ser(struct device *dev, unsigned command)
370 {
371 	struct spi_device *spi = to_spi_device(dev);
372 	struct ads7846 *ts = dev_get_drvdata(dev);
373 	struct ads7845_ser_req *req;
374 	int status;
375 
376 	req = kzalloc(sizeof *req, GFP_KERNEL);
377 	if (!req)
378 		return -ENOMEM;
379 
380 	spi_message_init(&req->msg);
381 
382 	req->command[0] = (u8) command;
383 	req->xfer[0].tx_buf = req->command;
384 	req->xfer[0].rx_buf = req->sample;
385 	req->xfer[0].len = 3;
386 	spi_message_add_tail(&req->xfer[0], &req->msg);
387 
388 	mutex_lock(&ts->lock);
389 	ads7846_stop(ts);
390 	status = spi_sync(spi, &req->msg);
391 	ads7846_restart(ts);
392 	mutex_unlock(&ts->lock);
393 
394 	if (status == 0) {
395 		/* BE12 value, then padding */
396 		status = be16_to_cpu(*((u16 *)&req->sample[1]));
397 		status = status >> 3;
398 		status &= 0x0fff;
399 	}
400 
401 	kfree(req);
402 	return status;
403 }
404 
405 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
406 
407 #define SHOW(name, var, adjust) static ssize_t \
408 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
409 { \
410 	struct ads7846 *ts = dev_get_drvdata(dev); \
411 	ssize_t v = ads7846_read12_ser(dev, \
412 			READ_12BIT_SER(var) | ADS_PD10_ALL_ON); \
413 	if (v < 0) \
414 		return v; \
415 	return sprintf(buf, "%u\n", adjust(ts, v)); \
416 } \
417 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
418 
419 
420 /* Sysfs conventions report temperatures in millidegrees Celsius.
421  * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
422  * accuracy scheme without calibration data.  For now we won't try either;
423  * userspace sees raw sensor values, and must scale/calibrate appropriately.
424  */
425 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
426 {
427 	return v;
428 }
429 
430 SHOW(temp0, temp0, null_adjust)		/* temp1_input */
431 SHOW(temp1, temp1, null_adjust)		/* temp2_input */
432 
433 
434 /* sysfs conventions report voltages in millivolts.  We can convert voltages
435  * if we know vREF.  userspace may need to scale vAUX to match the board's
436  * external resistors; we assume that vBATT only uses the internal ones.
437  */
438 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
439 {
440 	unsigned retval = v;
441 
442 	/* external resistors may scale vAUX into 0..vREF */
443 	retval *= ts->vref_mv;
444 	retval = retval >> 12;
445 
446 	return retval;
447 }
448 
449 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
450 {
451 	unsigned retval = vaux_adjust(ts, v);
452 
453 	/* ads7846 has a resistor ladder to scale this signal down */
454 	if (ts->model == 7846)
455 		retval *= 4;
456 
457 	return retval;
458 }
459 
460 SHOW(in0_input, vaux, vaux_adjust)
461 SHOW(in1_input, vbatt, vbatt_adjust)
462 
463 static struct attribute *ads7846_attributes[] = {
464 	&dev_attr_temp0.attr,
465 	&dev_attr_temp1.attr,
466 	&dev_attr_in0_input.attr,
467 	&dev_attr_in1_input.attr,
468 	NULL,
469 };
470 
471 static struct attribute_group ads7846_attr_group = {
472 	.attrs = ads7846_attributes,
473 };
474 
475 static struct attribute *ads7843_attributes[] = {
476 	&dev_attr_in0_input.attr,
477 	&dev_attr_in1_input.attr,
478 	NULL,
479 };
480 
481 static struct attribute_group ads7843_attr_group = {
482 	.attrs = ads7843_attributes,
483 };
484 
485 static struct attribute *ads7845_attributes[] = {
486 	&dev_attr_in0_input.attr,
487 	NULL,
488 };
489 
490 static struct attribute_group ads7845_attr_group = {
491 	.attrs = ads7845_attributes,
492 };
493 
494 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
495 {
496 	struct device *hwmon;
497 	int err;
498 
499 	/* hwmon sensors need a reference voltage */
500 	switch (ts->model) {
501 	case 7846:
502 		if (!ts->vref_mv) {
503 			dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
504 			ts->vref_mv = 2500;
505 		}
506 		break;
507 	case 7845:
508 	case 7843:
509 		if (!ts->vref_mv) {
510 			dev_warn(&spi->dev,
511 				"external vREF for ADS%d not specified\n",
512 				ts->model);
513 			return 0;
514 		}
515 		break;
516 	}
517 
518 	/* different chips have different sensor groups */
519 	switch (ts->model) {
520 	case 7846:
521 		ts->attr_group = &ads7846_attr_group;
522 		break;
523 	case 7845:
524 		ts->attr_group = &ads7845_attr_group;
525 		break;
526 	case 7843:
527 		ts->attr_group = &ads7843_attr_group;
528 		break;
529 	default:
530 		dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
531 		return 0;
532 	}
533 
534 	err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
535 	if (err)
536 		return err;
537 
538 	hwmon = hwmon_device_register(&spi->dev);
539 	if (IS_ERR(hwmon)) {
540 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
541 		return PTR_ERR(hwmon);
542 	}
543 
544 	ts->hwmon = hwmon;
545 	return 0;
546 }
547 
548 static void ads784x_hwmon_unregister(struct spi_device *spi,
549 				     struct ads7846 *ts)
550 {
551 	if (ts->hwmon) {
552 		sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
553 		hwmon_device_unregister(ts->hwmon);
554 	}
555 }
556 
557 #else
558 static inline int ads784x_hwmon_register(struct spi_device *spi,
559 					 struct ads7846 *ts)
560 {
561 	return 0;
562 }
563 
564 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
565 					    struct ads7846 *ts)
566 {
567 }
568 #endif
569 
570 static ssize_t ads7846_pen_down_show(struct device *dev,
571 				     struct device_attribute *attr, char *buf)
572 {
573 	struct ads7846 *ts = dev_get_drvdata(dev);
574 
575 	return sprintf(buf, "%u\n", ts->pendown);
576 }
577 
578 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
579 
580 static ssize_t ads7846_disable_show(struct device *dev,
581 				     struct device_attribute *attr, char *buf)
582 {
583 	struct ads7846 *ts = dev_get_drvdata(dev);
584 
585 	return sprintf(buf, "%u\n", ts->disabled);
586 }
587 
588 static ssize_t ads7846_disable_store(struct device *dev,
589 				     struct device_attribute *attr,
590 				     const char *buf, size_t count)
591 {
592 	struct ads7846 *ts = dev_get_drvdata(dev);
593 	unsigned long i;
594 
595 	if (strict_strtoul(buf, 10, &i))
596 		return -EINVAL;
597 
598 	if (i)
599 		ads7846_disable(ts);
600 	else
601 		ads7846_enable(ts);
602 
603 	return count;
604 }
605 
606 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
607 
608 static struct attribute *ads784x_attributes[] = {
609 	&dev_attr_pen_down.attr,
610 	&dev_attr_disable.attr,
611 	NULL,
612 };
613 
614 static struct attribute_group ads784x_attr_group = {
615 	.attrs = ads784x_attributes,
616 };
617 
618 /*--------------------------------------------------------------------------*/
619 
620 static int get_pendown_state(struct ads7846 *ts)
621 {
622 	if (ts->get_pendown_state)
623 		return ts->get_pendown_state();
624 
625 	return !gpio_get_value(ts->gpio_pendown);
626 }
627 
628 static void null_wait_for_sync(void)
629 {
630 }
631 
632 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
633 {
634 	struct ads7846 *ts = ads;
635 
636 	if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
637 		/* Start over collecting consistent readings. */
638 		ts->read_rep = 0;
639 		/*
640 		 * Repeat it, if this was the first read or the read
641 		 * wasn't consistent enough.
642 		 */
643 		if (ts->read_cnt < ts->debounce_max) {
644 			ts->last_read = *val;
645 			ts->read_cnt++;
646 			return ADS7846_FILTER_REPEAT;
647 		} else {
648 			/*
649 			 * Maximum number of debouncing reached and still
650 			 * not enough number of consistent readings. Abort
651 			 * the whole sample, repeat it in the next sampling
652 			 * period.
653 			 */
654 			ts->read_cnt = 0;
655 			return ADS7846_FILTER_IGNORE;
656 		}
657 	} else {
658 		if (++ts->read_rep > ts->debounce_rep) {
659 			/*
660 			 * Got a good reading for this coordinate,
661 			 * go for the next one.
662 			 */
663 			ts->read_cnt = 0;
664 			ts->read_rep = 0;
665 			return ADS7846_FILTER_OK;
666 		} else {
667 			/* Read more values that are consistent. */
668 			ts->read_cnt++;
669 			return ADS7846_FILTER_REPEAT;
670 		}
671 	}
672 }
673 
674 static int ads7846_no_filter(void *ads, int data_idx, int *val)
675 {
676 	return ADS7846_FILTER_OK;
677 }
678 
679 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
680 {
681 	struct spi_transfer *t =
682 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
683 
684 	if (ts->model == 7845) {
685 		return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
686 	} else {
687 		/*
688 		 * adjust:  on-wire is a must-ignore bit, a BE12 value, then
689 		 * padding; built from two 8 bit values written msb-first.
690 		 */
691 		return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
692 	}
693 }
694 
695 static void ads7846_update_value(struct spi_message *m, int val)
696 {
697 	struct spi_transfer *t =
698 		list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
699 
700 	*(u16 *)t->rx_buf = val;
701 }
702 
703 static void ads7846_read_state(struct ads7846 *ts)
704 {
705 	struct ads7846_packet *packet = ts->packet;
706 	struct spi_message *m;
707 	int msg_idx = 0;
708 	int val;
709 	int action;
710 	int error;
711 
712 	while (msg_idx < ts->msg_count) {
713 
714 		ts->wait_for_sync();
715 
716 		m = &ts->msg[msg_idx];
717 		error = spi_sync(ts->spi, m);
718 		if (error) {
719 			dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
720 			packet->tc.ignore = true;
721 			return;
722 		}
723 
724 		/*
725 		 * Last message is power down request, no need to convert
726 		 * or filter the value.
727 		 */
728 		if (msg_idx < ts->msg_count - 1) {
729 
730 			val = ads7846_get_value(ts, m);
731 
732 			action = ts->filter(ts->filter_data, msg_idx, &val);
733 			switch (action) {
734 			case ADS7846_FILTER_REPEAT:
735 				continue;
736 
737 			case ADS7846_FILTER_IGNORE:
738 				packet->tc.ignore = true;
739 				msg_idx = ts->msg_count - 1;
740 				continue;
741 
742 			case ADS7846_FILTER_OK:
743 				ads7846_update_value(m, val);
744 				packet->tc.ignore = false;
745 				msg_idx++;
746 				break;
747 
748 			default:
749 				BUG();
750 			}
751 		} else {
752 			msg_idx++;
753 		}
754 	}
755 }
756 
757 static void ads7846_report_state(struct ads7846 *ts)
758 {
759 	struct ads7846_packet *packet = ts->packet;
760 	unsigned int Rt;
761 	u16 x, y, z1, z2;
762 
763 	/*
764 	 * ads7846_get_value() does in-place conversion (including byte swap)
765 	 * from on-the-wire format as part of debouncing to get stable
766 	 * readings.
767 	 */
768 	if (ts->model == 7845) {
769 		x = *(u16 *)packet->tc.x_buf;
770 		y = *(u16 *)packet->tc.y_buf;
771 		z1 = 0;
772 		z2 = 0;
773 	} else {
774 		x = packet->tc.x;
775 		y = packet->tc.y;
776 		z1 = packet->tc.z1;
777 		z2 = packet->tc.z2;
778 	}
779 
780 	/* range filtering */
781 	if (x == MAX_12BIT)
782 		x = 0;
783 
784 	if (ts->model == 7843) {
785 		Rt = ts->pressure_max / 2;
786 	} else if (ts->model == 7845) {
787 		if (get_pendown_state(ts))
788 			Rt = ts->pressure_max / 2;
789 		else
790 			Rt = 0;
791 		dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
792 	} else if (likely(x && z1)) {
793 		/* compute touch pressure resistance using equation #2 */
794 		Rt = z2;
795 		Rt -= z1;
796 		Rt *= x;
797 		Rt *= ts->x_plate_ohms;
798 		Rt /= z1;
799 		Rt = (Rt + 2047) >> 12;
800 	} else {
801 		Rt = 0;
802 	}
803 
804 	/*
805 	 * Sample found inconsistent by debouncing or pressure is beyond
806 	 * the maximum. Don't report it to user space, repeat at least
807 	 * once more the measurement
808 	 */
809 	if (packet->tc.ignore || Rt > ts->pressure_max) {
810 		dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
811 			 packet->tc.ignore, Rt);
812 		return;
813 	}
814 
815 	/*
816 	 * Maybe check the pendown state before reporting. This discards
817 	 * false readings when the pen is lifted.
818 	 */
819 	if (ts->penirq_recheck_delay_usecs) {
820 		udelay(ts->penirq_recheck_delay_usecs);
821 		if (!get_pendown_state(ts))
822 			Rt = 0;
823 	}
824 
825 	/*
826 	 * NOTE: We can't rely on the pressure to determine the pen down
827 	 * state, even this controller has a pressure sensor. The pressure
828 	 * value can fluctuate for quite a while after lifting the pen and
829 	 * in some cases may not even settle at the expected value.
830 	 *
831 	 * The only safe way to check for the pen up condition is in the
832 	 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
833 	 */
834 	if (Rt) {
835 		struct input_dev *input = ts->input;
836 
837 		if (ts->swap_xy)
838 			swap(x, y);
839 
840 		if (!ts->pendown) {
841 			input_report_key(input, BTN_TOUCH, 1);
842 			ts->pendown = true;
843 			dev_vdbg(&ts->spi->dev, "DOWN\n");
844 		}
845 
846 		input_report_abs(input, ABS_X, x);
847 		input_report_abs(input, ABS_Y, y);
848 		input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
849 
850 		input_sync(input);
851 		dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
852 	}
853 }
854 
855 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
856 {
857 	struct ads7846 *ts = handle;
858 
859 	return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
860 }
861 
862 
863 static irqreturn_t ads7846_irq(int irq, void *handle)
864 {
865 	struct ads7846 *ts = handle;
866 
867 	/* Start with a small delay before checking pendown state */
868 	msleep(TS_POLL_DELAY);
869 
870 	while (!ts->stopped && get_pendown_state(ts)) {
871 
872 		/* pen is down, continue with the measurement */
873 		ads7846_read_state(ts);
874 
875 		if (!ts->stopped)
876 			ads7846_report_state(ts);
877 
878 		wait_event_timeout(ts->wait, ts->stopped,
879 				   msecs_to_jiffies(TS_POLL_PERIOD));
880 	}
881 
882 	if (ts->pendown) {
883 		struct input_dev *input = ts->input;
884 
885 		input_report_key(input, BTN_TOUCH, 0);
886 		input_report_abs(input, ABS_PRESSURE, 0);
887 		input_sync(input);
888 
889 		ts->pendown = false;
890 		dev_vdbg(&ts->spi->dev, "UP\n");
891 	}
892 
893 	return IRQ_HANDLED;
894 }
895 
896 #ifdef CONFIG_PM_SLEEP
897 static int ads7846_suspend(struct device *dev)
898 {
899 	struct ads7846 *ts = dev_get_drvdata(dev);
900 
901 	mutex_lock(&ts->lock);
902 
903 	if (!ts->suspended) {
904 
905 		if (!ts->disabled)
906 			__ads7846_disable(ts);
907 
908 		if (device_may_wakeup(&ts->spi->dev))
909 			enable_irq_wake(ts->spi->irq);
910 
911 		ts->suspended = true;
912 	}
913 
914 	mutex_unlock(&ts->lock);
915 
916 	return 0;
917 }
918 
919 static int ads7846_resume(struct device *dev)
920 {
921 	struct ads7846 *ts = dev_get_drvdata(dev);
922 
923 	mutex_lock(&ts->lock);
924 
925 	if (ts->suspended) {
926 
927 		ts->suspended = false;
928 
929 		if (device_may_wakeup(&ts->spi->dev))
930 			disable_irq_wake(ts->spi->irq);
931 
932 		if (!ts->disabled)
933 			__ads7846_enable(ts);
934 	}
935 
936 	mutex_unlock(&ts->lock);
937 
938 	return 0;
939 }
940 #endif
941 
942 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
943 
944 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
945 {
946 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
947 	int err;
948 
949 	/*
950 	 * REVISIT when the irq can be triggered active-low, or if for some
951 	 * reason the touchscreen isn't hooked up, we don't need to access
952 	 * the pendown state.
953 	 */
954 
955 	if (pdata->get_pendown_state) {
956 		ts->get_pendown_state = pdata->get_pendown_state;
957 	} else if (gpio_is_valid(pdata->gpio_pendown)) {
958 
959 		err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
960 		if (err) {
961 			dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
962 				pdata->gpio_pendown);
963 			return err;
964 		}
965 
966 		ts->gpio_pendown = pdata->gpio_pendown;
967 
968 	} else {
969 		dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
970 		return -EINVAL;
971 	}
972 
973 	return 0;
974 }
975 
976 /*
977  * Set up the transfers to read touchscreen state; this assumes we
978  * use formula #2 for pressure, not #3.
979  */
980 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
981 				const struct ads7846_platform_data *pdata)
982 {
983 	struct spi_message *m = &ts->msg[0];
984 	struct spi_transfer *x = ts->xfer;
985 	struct ads7846_packet *packet = ts->packet;
986 	int vref = pdata->keep_vref_on;
987 
988 	if (ts->model == 7873) {
989 		/*
990 		 * The AD7873 is almost identical to the ADS7846
991 		 * keep VREF off during differential/ratiometric
992 		 * conversion modes.
993 		 */
994 		ts->model = 7846;
995 		vref = 0;
996 	}
997 
998 	ts->msg_count = 1;
999 	spi_message_init(m);
1000 	m->context = ts;
1001 
1002 	if (ts->model == 7845) {
1003 		packet->read_y_cmd[0] = READ_Y(vref);
1004 		packet->read_y_cmd[1] = 0;
1005 		packet->read_y_cmd[2] = 0;
1006 		x->tx_buf = &packet->read_y_cmd[0];
1007 		x->rx_buf = &packet->tc.y_buf[0];
1008 		x->len = 3;
1009 		spi_message_add_tail(x, m);
1010 	} else {
1011 		/* y- still on; turn on only y+ (and ADC) */
1012 		packet->read_y = READ_Y(vref);
1013 		x->tx_buf = &packet->read_y;
1014 		x->len = 1;
1015 		spi_message_add_tail(x, m);
1016 
1017 		x++;
1018 		x->rx_buf = &packet->tc.y;
1019 		x->len = 2;
1020 		spi_message_add_tail(x, m);
1021 	}
1022 
1023 	/*
1024 	 * The first sample after switching drivers can be low quality;
1025 	 * optionally discard it, using a second one after the signals
1026 	 * have had enough time to stabilize.
1027 	 */
1028 	if (pdata->settle_delay_usecs) {
1029 		x->delay_usecs = pdata->settle_delay_usecs;
1030 
1031 		x++;
1032 		x->tx_buf = &packet->read_y;
1033 		x->len = 1;
1034 		spi_message_add_tail(x, m);
1035 
1036 		x++;
1037 		x->rx_buf = &packet->tc.y;
1038 		x->len = 2;
1039 		spi_message_add_tail(x, m);
1040 	}
1041 
1042 	ts->msg_count++;
1043 	m++;
1044 	spi_message_init(m);
1045 	m->context = ts;
1046 
1047 	if (ts->model == 7845) {
1048 		x++;
1049 		packet->read_x_cmd[0] = READ_X(vref);
1050 		packet->read_x_cmd[1] = 0;
1051 		packet->read_x_cmd[2] = 0;
1052 		x->tx_buf = &packet->read_x_cmd[0];
1053 		x->rx_buf = &packet->tc.x_buf[0];
1054 		x->len = 3;
1055 		spi_message_add_tail(x, m);
1056 	} else {
1057 		/* turn y- off, x+ on, then leave in lowpower */
1058 		x++;
1059 		packet->read_x = READ_X(vref);
1060 		x->tx_buf = &packet->read_x;
1061 		x->len = 1;
1062 		spi_message_add_tail(x, m);
1063 
1064 		x++;
1065 		x->rx_buf = &packet->tc.x;
1066 		x->len = 2;
1067 		spi_message_add_tail(x, m);
1068 	}
1069 
1070 	/* ... maybe discard first sample ... */
1071 	if (pdata->settle_delay_usecs) {
1072 		x->delay_usecs = pdata->settle_delay_usecs;
1073 
1074 		x++;
1075 		x->tx_buf = &packet->read_x;
1076 		x->len = 1;
1077 		spi_message_add_tail(x, m);
1078 
1079 		x++;
1080 		x->rx_buf = &packet->tc.x;
1081 		x->len = 2;
1082 		spi_message_add_tail(x, m);
1083 	}
1084 
1085 	/* turn y+ off, x- on; we'll use formula #2 */
1086 	if (ts->model == 7846) {
1087 		ts->msg_count++;
1088 		m++;
1089 		spi_message_init(m);
1090 		m->context = ts;
1091 
1092 		x++;
1093 		packet->read_z1 = READ_Z1(vref);
1094 		x->tx_buf = &packet->read_z1;
1095 		x->len = 1;
1096 		spi_message_add_tail(x, m);
1097 
1098 		x++;
1099 		x->rx_buf = &packet->tc.z1;
1100 		x->len = 2;
1101 		spi_message_add_tail(x, m);
1102 
1103 		/* ... maybe discard first sample ... */
1104 		if (pdata->settle_delay_usecs) {
1105 			x->delay_usecs = pdata->settle_delay_usecs;
1106 
1107 			x++;
1108 			x->tx_buf = &packet->read_z1;
1109 			x->len = 1;
1110 			spi_message_add_tail(x, m);
1111 
1112 			x++;
1113 			x->rx_buf = &packet->tc.z1;
1114 			x->len = 2;
1115 			spi_message_add_tail(x, m);
1116 		}
1117 
1118 		ts->msg_count++;
1119 		m++;
1120 		spi_message_init(m);
1121 		m->context = ts;
1122 
1123 		x++;
1124 		packet->read_z2 = READ_Z2(vref);
1125 		x->tx_buf = &packet->read_z2;
1126 		x->len = 1;
1127 		spi_message_add_tail(x, m);
1128 
1129 		x++;
1130 		x->rx_buf = &packet->tc.z2;
1131 		x->len = 2;
1132 		spi_message_add_tail(x, m);
1133 
1134 		/* ... maybe discard first sample ... */
1135 		if (pdata->settle_delay_usecs) {
1136 			x->delay_usecs = pdata->settle_delay_usecs;
1137 
1138 			x++;
1139 			x->tx_buf = &packet->read_z2;
1140 			x->len = 1;
1141 			spi_message_add_tail(x, m);
1142 
1143 			x++;
1144 			x->rx_buf = &packet->tc.z2;
1145 			x->len = 2;
1146 			spi_message_add_tail(x, m);
1147 		}
1148 	}
1149 
1150 	/* power down */
1151 	ts->msg_count++;
1152 	m++;
1153 	spi_message_init(m);
1154 	m->context = ts;
1155 
1156 	if (ts->model == 7845) {
1157 		x++;
1158 		packet->pwrdown_cmd[0] = PWRDOWN;
1159 		packet->pwrdown_cmd[1] = 0;
1160 		packet->pwrdown_cmd[2] = 0;
1161 		x->tx_buf = &packet->pwrdown_cmd[0];
1162 		x->len = 3;
1163 	} else {
1164 		x++;
1165 		packet->pwrdown = PWRDOWN;
1166 		x->tx_buf = &packet->pwrdown;
1167 		x->len = 1;
1168 		spi_message_add_tail(x, m);
1169 
1170 		x++;
1171 		x->rx_buf = &packet->dummy;
1172 		x->len = 2;
1173 	}
1174 
1175 	CS_CHANGE(*x);
1176 	spi_message_add_tail(x, m);
1177 }
1178 
1179 static int __devinit ads7846_probe(struct spi_device *spi)
1180 {
1181 	struct ads7846 *ts;
1182 	struct ads7846_packet *packet;
1183 	struct input_dev *input_dev;
1184 	struct ads7846_platform_data *pdata = spi->dev.platform_data;
1185 	unsigned long irq_flags;
1186 	int err;
1187 
1188 	if (!spi->irq) {
1189 		dev_dbg(&spi->dev, "no IRQ?\n");
1190 		return -ENODEV;
1191 	}
1192 
1193 	if (!pdata) {
1194 		dev_dbg(&spi->dev, "no platform data?\n");
1195 		return -ENODEV;
1196 	}
1197 
1198 	/* don't exceed max specified sample rate */
1199 	if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1200 		dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1201 				(spi->max_speed_hz/SAMPLE_BITS)/1000);
1202 		return -EINVAL;
1203 	}
1204 
1205 	/* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1206 	 * that even if the hardware can do that, the SPI controller driver
1207 	 * may not.  So we stick to very-portable 8 bit words, both RX and TX.
1208 	 */
1209 	spi->bits_per_word = 8;
1210 	spi->mode = SPI_MODE_0;
1211 	err = spi_setup(spi);
1212 	if (err < 0)
1213 		return err;
1214 
1215 	ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1216 	packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1217 	input_dev = input_allocate_device();
1218 	if (!ts || !packet || !input_dev) {
1219 		err = -ENOMEM;
1220 		goto err_free_mem;
1221 	}
1222 
1223 	dev_set_drvdata(&spi->dev, ts);
1224 
1225 	ts->packet = packet;
1226 	ts->spi = spi;
1227 	ts->input = input_dev;
1228 	ts->vref_mv = pdata->vref_mv;
1229 	ts->swap_xy = pdata->swap_xy;
1230 
1231 	mutex_init(&ts->lock);
1232 	init_waitqueue_head(&ts->wait);
1233 
1234 	ts->model = pdata->model ? : 7846;
1235 	ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1236 	ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1237 	ts->pressure_max = pdata->pressure_max ? : ~0;
1238 
1239 	if (pdata->filter != NULL) {
1240 		if (pdata->filter_init != NULL) {
1241 			err = pdata->filter_init(pdata, &ts->filter_data);
1242 			if (err < 0)
1243 				goto err_free_mem;
1244 		}
1245 		ts->filter = pdata->filter;
1246 		ts->filter_cleanup = pdata->filter_cleanup;
1247 	} else if (pdata->debounce_max) {
1248 		ts->debounce_max = pdata->debounce_max;
1249 		if (ts->debounce_max < 2)
1250 			ts->debounce_max = 2;
1251 		ts->debounce_tol = pdata->debounce_tol;
1252 		ts->debounce_rep = pdata->debounce_rep;
1253 		ts->filter = ads7846_debounce_filter;
1254 		ts->filter_data = ts;
1255 	} else {
1256 		ts->filter = ads7846_no_filter;
1257 	}
1258 
1259 	err = ads7846_setup_pendown(spi, ts);
1260 	if (err)
1261 		goto err_cleanup_filter;
1262 
1263 	if (pdata->penirq_recheck_delay_usecs)
1264 		ts->penirq_recheck_delay_usecs =
1265 				pdata->penirq_recheck_delay_usecs;
1266 
1267 	ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1268 
1269 	snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1270 	snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1271 
1272 	input_dev->name = ts->name;
1273 	input_dev->phys = ts->phys;
1274 	input_dev->dev.parent = &spi->dev;
1275 
1276 	input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1277 	input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1278 	input_set_abs_params(input_dev, ABS_X,
1279 			pdata->x_min ? : 0,
1280 			pdata->x_max ? : MAX_12BIT,
1281 			0, 0);
1282 	input_set_abs_params(input_dev, ABS_Y,
1283 			pdata->y_min ? : 0,
1284 			pdata->y_max ? : MAX_12BIT,
1285 			0, 0);
1286 	input_set_abs_params(input_dev, ABS_PRESSURE,
1287 			pdata->pressure_min, pdata->pressure_max, 0, 0);
1288 
1289 	ads7846_setup_spi_msg(ts, pdata);
1290 
1291 	ts->reg = regulator_get(&spi->dev, "vcc");
1292 	if (IS_ERR(ts->reg)) {
1293 		err = PTR_ERR(ts->reg);
1294 		dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1295 		goto err_free_gpio;
1296 	}
1297 
1298 	err = regulator_enable(ts->reg);
1299 	if (err) {
1300 		dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1301 		goto err_put_regulator;
1302 	}
1303 
1304 	irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1305 	irq_flags |= IRQF_ONESHOT;
1306 
1307 	err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1308 				   irq_flags, spi->dev.driver->name, ts);
1309 	if (err && !pdata->irq_flags) {
1310 		dev_info(&spi->dev,
1311 			"trying pin change workaround on irq %d\n", spi->irq);
1312 		irq_flags |= IRQF_TRIGGER_RISING;
1313 		err = request_threaded_irq(spi->irq,
1314 				  ads7846_hard_irq, ads7846_irq,
1315 				  irq_flags, spi->dev.driver->name, ts);
1316 	}
1317 
1318 	if (err) {
1319 		dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1320 		goto err_disable_regulator;
1321 	}
1322 
1323 	err = ads784x_hwmon_register(spi, ts);
1324 	if (err)
1325 		goto err_free_irq;
1326 
1327 	dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1328 
1329 	/*
1330 	 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1331 	 * the touchscreen, in case it's not connected.
1332 	 */
1333 	if (ts->model == 7845)
1334 		ads7845_read12_ser(&spi->dev, PWRDOWN);
1335 	else
1336 		(void) ads7846_read12_ser(&spi->dev,
1337 				READ_12BIT_SER(vaux) | ADS_PD10_ALL_ON);
1338 
1339 	err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1340 	if (err)
1341 		goto err_remove_hwmon;
1342 
1343 	err = input_register_device(input_dev);
1344 	if (err)
1345 		goto err_remove_attr_group;
1346 
1347 	device_init_wakeup(&spi->dev, pdata->wakeup);
1348 
1349 	return 0;
1350 
1351  err_remove_attr_group:
1352 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1353  err_remove_hwmon:
1354 	ads784x_hwmon_unregister(spi, ts);
1355  err_free_irq:
1356 	free_irq(spi->irq, ts);
1357  err_disable_regulator:
1358 	regulator_disable(ts->reg);
1359  err_put_regulator:
1360 	regulator_put(ts->reg);
1361  err_free_gpio:
1362 	if (!ts->get_pendown_state)
1363 		gpio_free(ts->gpio_pendown);
1364  err_cleanup_filter:
1365 	if (ts->filter_cleanup)
1366 		ts->filter_cleanup(ts->filter_data);
1367  err_free_mem:
1368 	input_free_device(input_dev);
1369 	kfree(packet);
1370 	kfree(ts);
1371 	return err;
1372 }
1373 
1374 static int __devexit ads7846_remove(struct spi_device *spi)
1375 {
1376 	struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1377 
1378 	device_init_wakeup(&spi->dev, false);
1379 
1380 	sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1381 
1382 	ads7846_disable(ts);
1383 	free_irq(ts->spi->irq, ts);
1384 
1385 	input_unregister_device(ts->input);
1386 
1387 	ads784x_hwmon_unregister(spi, ts);
1388 
1389 	regulator_disable(ts->reg);
1390 	regulator_put(ts->reg);
1391 
1392 	if (!ts->get_pendown_state) {
1393 		/*
1394 		 * If we are not using specialized pendown method we must
1395 		 * have been relying on gpio we set up ourselves.
1396 		 */
1397 		gpio_free(ts->gpio_pendown);
1398 	}
1399 
1400 	if (ts->filter_cleanup)
1401 		ts->filter_cleanup(ts->filter_data);
1402 
1403 	kfree(ts->packet);
1404 	kfree(ts);
1405 
1406 	dev_dbg(&spi->dev, "unregistered touchscreen\n");
1407 
1408 	return 0;
1409 }
1410 
1411 static struct spi_driver ads7846_driver = {
1412 	.driver = {
1413 		.name	= "ads7846",
1414 		.bus	= &spi_bus_type,
1415 		.owner	= THIS_MODULE,
1416 		.pm	= &ads7846_pm,
1417 	},
1418 	.probe		= ads7846_probe,
1419 	.remove		= __devexit_p(ads7846_remove),
1420 };
1421 
1422 static int __init ads7846_init(void)
1423 {
1424 	return spi_register_driver(&ads7846_driver);
1425 }
1426 module_init(ads7846_init);
1427 
1428 static void __exit ads7846_exit(void)
1429 {
1430 	spi_unregister_driver(&ads7846_driver);
1431 }
1432 module_exit(ads7846_exit);
1433 
1434 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1435 MODULE_LICENSE("GPL");
1436 MODULE_ALIAS("spi:ads7846");
1437