xref: /openbmc/linux/drivers/input/serio/hp_sdc.c (revision b6dcefde)
1 /*
2  * HP i8042-based System Device Controller driver.
3  *
4  * Copyright (c) 2001 Brian S. Julin
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * Alternatively, this software may be distributed under the terms of the
17  * GNU General Public License ("GPL").
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  *
29  * References:
30  * System Device Controller Microprocessor Firmware Theory of Operation
31  *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
32  * Helge Deller's original hilkbd.c port for PA-RISC.
33  *
34  *
35  * Driver theory of operation:
36  *
37  * hp_sdc_put does all writing to the SDC.  ISR can run on a different
38  * CPU than hp_sdc_put, but only one CPU runs hp_sdc_put at a time
39  * (it cannot really benefit from SMP anyway.)  A tasket fit this perfectly.
40  *
41  * All data coming back from the SDC is sent via interrupt and can be read
42  * fully in the ISR, so there are no latency/throughput problems there.
43  * The problem is with output, due to the slow clock speed of the SDC
44  * compared to the CPU.  This should not be too horrible most of the time,
45  * but if used with HIL devices that support the multibyte transfer command,
46  * keeping outbound throughput flowing at the 6500KBps that the HIL is
47  * capable of is more than can be done at HZ=100.
48  *
49  * Busy polling for IBF clear wastes CPU cycles and bus cycles.  hp_sdc.ibf
50  * is set to 0 when the IBF flag in the status register has cleared.  ISR
51  * may do this, and may also access the parts of queued transactions related
52  * to reading data back from the SDC, but otherwise will not touch the
53  * hp_sdc state. Whenever a register is written hp_sdc.ibf is set to 1.
54  *
55  * The i8042 write index and the values in the 4-byte input buffer
56  * starting at 0x70 are kept track of in hp_sdc.wi, and .r7[], respectively,
57  * to minimize the amount of IO needed to the SDC.  However these values
58  * do not need to be locked since they are only ever accessed by hp_sdc_put.
59  *
60  * A timer task schedules the tasklet once per second just to make
61  * sure it doesn't freeze up and to allow for bad reads to time out.
62  */
63 
64 #include <linux/hp_sdc.h>
65 #include <linux/errno.h>
66 #include <linux/init.h>
67 #include <linux/module.h>
68 #include <linux/ioport.h>
69 #include <linux/time.h>
70 #include <linux/semaphore.h>
71 #include <linux/slab.h>
72 #include <linux/hil.h>
73 #include <asm/io.h>
74 #include <asm/system.h>
75 
76 /* Machine-specific abstraction */
77 
78 #if defined(__hppa__)
79 # include <asm/parisc-device.h>
80 # define sdc_readb(p)		gsc_readb(p)
81 # define sdc_writeb(v,p)	gsc_writeb((v),(p))
82 #elif defined(__mc68000__)
83 # include <asm/uaccess.h>
84 # define sdc_readb(p)		in_8(p)
85 # define sdc_writeb(v,p)	out_8((p),(v))
86 #else
87 # error "HIL is not supported on this platform"
88 #endif
89 
90 #define PREFIX "HP SDC: "
91 
92 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
93 MODULE_DESCRIPTION("HP i8042-based SDC Driver");
94 MODULE_LICENSE("Dual BSD/GPL");
95 
96 EXPORT_SYMBOL(hp_sdc_request_timer_irq);
97 EXPORT_SYMBOL(hp_sdc_request_hil_irq);
98 EXPORT_SYMBOL(hp_sdc_request_cooked_irq);
99 
100 EXPORT_SYMBOL(hp_sdc_release_timer_irq);
101 EXPORT_SYMBOL(hp_sdc_release_hil_irq);
102 EXPORT_SYMBOL(hp_sdc_release_cooked_irq);
103 
104 EXPORT_SYMBOL(__hp_sdc_enqueue_transaction);
105 EXPORT_SYMBOL(hp_sdc_enqueue_transaction);
106 EXPORT_SYMBOL(hp_sdc_dequeue_transaction);
107 
108 static unsigned int hp_sdc_disabled;
109 module_param_named(no_hpsdc, hp_sdc_disabled, bool, 0);
110 MODULE_PARM_DESC(no_hpsdc, "Do not enable HP SDC driver.");
111 
112 static hp_i8042_sdc	hp_sdc;	/* All driver state is kept in here. */
113 
114 /*************** primitives for use in any context *********************/
115 static inline uint8_t hp_sdc_status_in8(void)
116 {
117 	uint8_t status;
118 	unsigned long flags;
119 
120 	write_lock_irqsave(&hp_sdc.ibf_lock, flags);
121 	status = sdc_readb(hp_sdc.status_io);
122 	if (!(status & HP_SDC_STATUS_IBF))
123 		hp_sdc.ibf = 0;
124 	write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
125 
126 	return status;
127 }
128 
129 static inline uint8_t hp_sdc_data_in8(void)
130 {
131 	return sdc_readb(hp_sdc.data_io);
132 }
133 
134 static inline void hp_sdc_status_out8(uint8_t val)
135 {
136 	unsigned long flags;
137 
138 	write_lock_irqsave(&hp_sdc.ibf_lock, flags);
139 	hp_sdc.ibf = 1;
140 	if ((val & 0xf0) == 0xe0)
141 		hp_sdc.wi = 0xff;
142 	sdc_writeb(val, hp_sdc.status_io);
143 	write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
144 }
145 
146 static inline void hp_sdc_data_out8(uint8_t val)
147 {
148 	unsigned long flags;
149 
150 	write_lock_irqsave(&hp_sdc.ibf_lock, flags);
151 	hp_sdc.ibf = 1;
152 	sdc_writeb(val, hp_sdc.data_io);
153 	write_unlock_irqrestore(&hp_sdc.ibf_lock, flags);
154 }
155 
156 /*	Care must be taken to only invoke hp_sdc_spin_ibf when
157  *	absolutely needed, or in rarely invoked subroutines.
158  *	Not only does it waste CPU cycles, it also wastes bus cycles.
159  */
160 static inline void hp_sdc_spin_ibf(void)
161 {
162 	unsigned long flags;
163 	rwlock_t *lock;
164 
165 	lock = &hp_sdc.ibf_lock;
166 
167 	read_lock_irqsave(lock, flags);
168 	if (!hp_sdc.ibf) {
169 		read_unlock_irqrestore(lock, flags);
170 		return;
171 	}
172 	read_unlock(lock);
173 	write_lock(lock);
174 	while (sdc_readb(hp_sdc.status_io) & HP_SDC_STATUS_IBF)
175 		{ }
176 	hp_sdc.ibf = 0;
177 	write_unlock_irqrestore(lock, flags);
178 }
179 
180 
181 /************************ Interrupt context functions ************************/
182 static void hp_sdc_take(int irq, void *dev_id, uint8_t status, uint8_t data)
183 {
184 	hp_sdc_transaction *curr;
185 
186 	read_lock(&hp_sdc.rtq_lock);
187 	if (hp_sdc.rcurr < 0) {
188 		read_unlock(&hp_sdc.rtq_lock);
189 		return;
190 	}
191 	curr = hp_sdc.tq[hp_sdc.rcurr];
192 	read_unlock(&hp_sdc.rtq_lock);
193 
194 	curr->seq[curr->idx++] = status;
195 	curr->seq[curr->idx++] = data;
196 	hp_sdc.rqty -= 2;
197 	do_gettimeofday(&hp_sdc.rtv);
198 
199 	if (hp_sdc.rqty <= 0) {
200 		/* All data has been gathered. */
201 		if (curr->seq[curr->actidx] & HP_SDC_ACT_SEMAPHORE)
202 			if (curr->act.semaphore)
203 				up(curr->act.semaphore);
204 
205 		if (curr->seq[curr->actidx] & HP_SDC_ACT_CALLBACK)
206 			if (curr->act.irqhook)
207 				curr->act.irqhook(irq, dev_id, status, data);
208 
209 		curr->actidx = curr->idx;
210 		curr->idx++;
211 		/* Return control of this transaction */
212 		write_lock(&hp_sdc.rtq_lock);
213 		hp_sdc.rcurr = -1;
214 		hp_sdc.rqty = 0;
215 		write_unlock(&hp_sdc.rtq_lock);
216 		tasklet_schedule(&hp_sdc.task);
217 	}
218 }
219 
220 static irqreturn_t hp_sdc_isr(int irq, void *dev_id)
221 {
222 	uint8_t status, data;
223 
224 	status = hp_sdc_status_in8();
225 	/* Read data unconditionally to advance i8042. */
226 	data =   hp_sdc_data_in8();
227 
228 	/* For now we are ignoring these until we get the SDC to behave. */
229 	if (((status & 0xf1) == 0x51) && data == 0x82)
230 		return IRQ_HANDLED;
231 
232 	switch (status & HP_SDC_STATUS_IRQMASK) {
233 	case 0: /* This case is not documented. */
234 		break;
235 
236 	case HP_SDC_STATUS_USERTIMER:
237 	case HP_SDC_STATUS_PERIODIC:
238 	case HP_SDC_STATUS_TIMER:
239 		read_lock(&hp_sdc.hook_lock);
240 		if (hp_sdc.timer != NULL)
241 			hp_sdc.timer(irq, dev_id, status, data);
242 		read_unlock(&hp_sdc.hook_lock);
243 		break;
244 
245 	case HP_SDC_STATUS_REG:
246 		hp_sdc_take(irq, dev_id, status, data);
247 		break;
248 
249 	case HP_SDC_STATUS_HILCMD:
250 	case HP_SDC_STATUS_HILDATA:
251 		read_lock(&hp_sdc.hook_lock);
252 		if (hp_sdc.hil != NULL)
253 			hp_sdc.hil(irq, dev_id, status, data);
254 		read_unlock(&hp_sdc.hook_lock);
255 		break;
256 
257 	case HP_SDC_STATUS_PUP:
258 		read_lock(&hp_sdc.hook_lock);
259 		if (hp_sdc.pup != NULL)
260 			hp_sdc.pup(irq, dev_id, status, data);
261 		else
262 			printk(KERN_INFO PREFIX "HP SDC reports successful PUP.\n");
263 		read_unlock(&hp_sdc.hook_lock);
264 		break;
265 
266 	default:
267 		read_lock(&hp_sdc.hook_lock);
268 		if (hp_sdc.cooked != NULL)
269 			hp_sdc.cooked(irq, dev_id, status, data);
270 		read_unlock(&hp_sdc.hook_lock);
271 		break;
272 	}
273 
274 	return IRQ_HANDLED;
275 }
276 
277 
278 static irqreturn_t hp_sdc_nmisr(int irq, void *dev_id)
279 {
280 	int status;
281 
282 	status = hp_sdc_status_in8();
283 	printk(KERN_WARNING PREFIX "NMI !\n");
284 
285 #if 0
286 	if (status & HP_SDC_NMISTATUS_FHS) {
287 		read_lock(&hp_sdc.hook_lock);
288 		if (hp_sdc.timer != NULL)
289 			hp_sdc.timer(irq, dev_id, status, 0);
290 		read_unlock(&hp_sdc.hook_lock);
291 	} else {
292 		/* TODO: pass this on to the HIL handler, or do SAK here? */
293 		printk(KERN_WARNING PREFIX "HIL NMI\n");
294 	}
295 #endif
296 
297 	return IRQ_HANDLED;
298 }
299 
300 
301 /***************** Kernel (tasklet) context functions ****************/
302 
303 unsigned long hp_sdc_put(void);
304 
305 static void hp_sdc_tasklet(unsigned long foo)
306 {
307 	write_lock_irq(&hp_sdc.rtq_lock);
308 
309 	if (hp_sdc.rcurr >= 0) {
310 		struct timeval tv;
311 
312 		do_gettimeofday(&tv);
313 		if (tv.tv_sec > hp_sdc.rtv.tv_sec)
314 			tv.tv_usec += USEC_PER_SEC;
315 
316 		if (tv.tv_usec - hp_sdc.rtv.tv_usec > HP_SDC_MAX_REG_DELAY) {
317 			hp_sdc_transaction *curr;
318 			uint8_t tmp;
319 
320 			curr = hp_sdc.tq[hp_sdc.rcurr];
321 			/* If this turns out to be a normal failure mode
322 			 * we'll need to figure out a way to communicate
323 			 * it back to the application. and be less verbose.
324 			 */
325 			printk(KERN_WARNING PREFIX "read timeout (%ius)!\n",
326 			       (int)(tv.tv_usec - hp_sdc.rtv.tv_usec));
327 			curr->idx += hp_sdc.rqty;
328 			hp_sdc.rqty = 0;
329 			tmp = curr->seq[curr->actidx];
330 			curr->seq[curr->actidx] |= HP_SDC_ACT_DEAD;
331 			if (tmp & HP_SDC_ACT_SEMAPHORE)
332 				if (curr->act.semaphore)
333 					up(curr->act.semaphore);
334 
335 			if (tmp & HP_SDC_ACT_CALLBACK) {
336 				/* Note this means that irqhooks may be called
337 				 * in tasklet/bh context.
338 				 */
339 				if (curr->act.irqhook)
340 					curr->act.irqhook(0, NULL, 0, 0);
341 			}
342 
343 			curr->actidx = curr->idx;
344 			curr->idx++;
345 			hp_sdc.rcurr = -1;
346 		}
347 	}
348 	write_unlock_irq(&hp_sdc.rtq_lock);
349 	hp_sdc_put();
350 }
351 
352 unsigned long hp_sdc_put(void)
353 {
354 	hp_sdc_transaction *curr;
355 	uint8_t act;
356 	int idx, curridx;
357 
358 	int limit = 0;
359 
360 	write_lock(&hp_sdc.lock);
361 
362 	/* If i8042 buffers are full, we cannot do anything that
363 	   requires output, so we skip to the administrativa. */
364 	if (hp_sdc.ibf) {
365 		hp_sdc_status_in8();
366 		if (hp_sdc.ibf)
367 			goto finish;
368 	}
369 
370  anew:
371 	/* See if we are in the middle of a sequence. */
372 	if (hp_sdc.wcurr < 0)
373 		hp_sdc.wcurr = 0;
374 	read_lock_irq(&hp_sdc.rtq_lock);
375 	if (hp_sdc.rcurr == hp_sdc.wcurr)
376 		hp_sdc.wcurr++;
377 	read_unlock_irq(&hp_sdc.rtq_lock);
378 	if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
379 		hp_sdc.wcurr = 0;
380 	curridx = hp_sdc.wcurr;
381 
382 	if (hp_sdc.tq[curridx] != NULL)
383 		goto start;
384 
385 	while (++curridx != hp_sdc.wcurr) {
386 		if (curridx >= HP_SDC_QUEUE_LEN) {
387 			curridx = -1; /* Wrap to top */
388 			continue;
389 		}
390 		read_lock_irq(&hp_sdc.rtq_lock);
391 		if (hp_sdc.rcurr == curridx) {
392 			read_unlock_irq(&hp_sdc.rtq_lock);
393 			continue;
394 		}
395 		read_unlock_irq(&hp_sdc.rtq_lock);
396 		if (hp_sdc.tq[curridx] != NULL)
397 			break; /* Found one. */
398 	}
399 	if (curridx == hp_sdc.wcurr) { /* There's nothing queued to do. */
400 		curridx = -1;
401 	}
402 	hp_sdc.wcurr = curridx;
403 
404  start:
405 
406 	/* Check to see if the interrupt mask needs to be set. */
407 	if (hp_sdc.set_im) {
408 		hp_sdc_status_out8(hp_sdc.im | HP_SDC_CMD_SET_IM);
409 		hp_sdc.set_im = 0;
410 		goto finish;
411 	}
412 
413 	if (hp_sdc.wcurr == -1)
414 		goto done;
415 
416 	curr = hp_sdc.tq[curridx];
417 	idx = curr->actidx;
418 
419 	if (curr->actidx >= curr->endidx) {
420 		hp_sdc.tq[curridx] = NULL;
421 		/* Interleave outbound data between the transactions. */
422 		hp_sdc.wcurr++;
423 		if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
424 			hp_sdc.wcurr = 0;
425 		goto finish;
426 	}
427 
428 	act = curr->seq[idx];
429 	idx++;
430 
431 	if (curr->idx >= curr->endidx) {
432 		if (act & HP_SDC_ACT_DEALLOC)
433 			kfree(curr);
434 		hp_sdc.tq[curridx] = NULL;
435 		/* Interleave outbound data between the transactions. */
436 		hp_sdc.wcurr++;
437 		if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
438 			hp_sdc.wcurr = 0;
439 		goto finish;
440 	}
441 
442 	while (act & HP_SDC_ACT_PRECMD) {
443 		if (curr->idx != idx) {
444 			idx++;
445 			act &= ~HP_SDC_ACT_PRECMD;
446 			break;
447 		}
448 		hp_sdc_status_out8(curr->seq[idx]);
449 		curr->idx++;
450 		/* act finished? */
451 		if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_PRECMD)
452 			goto actdone;
453 		/* skip quantity field if data-out sequence follows. */
454 		if (act & HP_SDC_ACT_DATAOUT)
455 			curr->idx++;
456 		goto finish;
457 	}
458 	if (act & HP_SDC_ACT_DATAOUT) {
459 		int qty;
460 
461 		qty = curr->seq[idx];
462 		idx++;
463 		if (curr->idx - idx < qty) {
464 			hp_sdc_data_out8(curr->seq[curr->idx]);
465 			curr->idx++;
466 			/* act finished? */
467 			if (curr->idx - idx >= qty &&
468 			    (act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAOUT)
469 				goto actdone;
470 			goto finish;
471 		}
472 		idx += qty;
473 		act &= ~HP_SDC_ACT_DATAOUT;
474 	} else
475 	    while (act & HP_SDC_ACT_DATAREG) {
476 		int mask;
477 		uint8_t w7[4];
478 
479 		mask = curr->seq[idx];
480 		if (idx != curr->idx) {
481 			idx++;
482 			idx += !!(mask & 1);
483 			idx += !!(mask & 2);
484 			idx += !!(mask & 4);
485 			idx += !!(mask & 8);
486 			act &= ~HP_SDC_ACT_DATAREG;
487 			break;
488 		}
489 
490 		w7[0] = (mask & 1) ? curr->seq[++idx] : hp_sdc.r7[0];
491 		w7[1] = (mask & 2) ? curr->seq[++idx] : hp_sdc.r7[1];
492 		w7[2] = (mask & 4) ? curr->seq[++idx] : hp_sdc.r7[2];
493 		w7[3] = (mask & 8) ? curr->seq[++idx] : hp_sdc.r7[3];
494 
495 		if (hp_sdc.wi > 0x73 || hp_sdc.wi < 0x70 ||
496 		    w7[hp_sdc.wi - 0x70] == hp_sdc.r7[hp_sdc.wi - 0x70]) {
497 			int i = 0;
498 
499 			/* Need to point the write index register */
500 			while (i < 4 && w7[i] == hp_sdc.r7[i])
501 				i++;
502 
503 			if (i < 4) {
504 				hp_sdc_status_out8(HP_SDC_CMD_SET_D0 + i);
505 				hp_sdc.wi = 0x70 + i;
506 				goto finish;
507 			}
508 
509 			idx++;
510 			if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAREG)
511 				goto actdone;
512 
513 			curr->idx = idx;
514 			act &= ~HP_SDC_ACT_DATAREG;
515 			break;
516 		}
517 
518 		hp_sdc_data_out8(w7[hp_sdc.wi - 0x70]);
519 		hp_sdc.r7[hp_sdc.wi - 0x70] = w7[hp_sdc.wi - 0x70];
520 		hp_sdc.wi++; /* write index register autoincrements */
521 		{
522 			int i = 0;
523 
524 			while ((i < 4) && w7[i] == hp_sdc.r7[i])
525 				i++;
526 			if (i >= 4) {
527 				curr->idx = idx + 1;
528 				if ((act & HP_SDC_ACT_DURING) ==
529 				    HP_SDC_ACT_DATAREG)
530 					goto actdone;
531 			}
532 		}
533 		goto finish;
534 	}
535 	/* We don't go any further in the command if there is a pending read,
536 	   because we don't want interleaved results. */
537 	read_lock_irq(&hp_sdc.rtq_lock);
538 	if (hp_sdc.rcurr >= 0) {
539 		read_unlock_irq(&hp_sdc.rtq_lock);
540 		goto finish;
541 	}
542 	read_unlock_irq(&hp_sdc.rtq_lock);
543 
544 
545 	if (act & HP_SDC_ACT_POSTCMD) {
546 		uint8_t postcmd;
547 
548 		/* curr->idx should == idx at this point. */
549 		postcmd = curr->seq[idx];
550 		curr->idx++;
551 		if (act & HP_SDC_ACT_DATAIN) {
552 
553 			/* Start a new read */
554 			hp_sdc.rqty = curr->seq[curr->idx];
555 			do_gettimeofday(&hp_sdc.rtv);
556 			curr->idx++;
557 			/* Still need to lock here in case of spurious irq. */
558 			write_lock_irq(&hp_sdc.rtq_lock);
559 			hp_sdc.rcurr = curridx;
560 			write_unlock_irq(&hp_sdc.rtq_lock);
561 			hp_sdc_status_out8(postcmd);
562 			goto finish;
563 		}
564 		hp_sdc_status_out8(postcmd);
565 		goto actdone;
566 	}
567 
568  actdone:
569 	if (act & HP_SDC_ACT_SEMAPHORE)
570 		up(curr->act.semaphore);
571 	else if (act & HP_SDC_ACT_CALLBACK)
572 		curr->act.irqhook(0,NULL,0,0);
573 
574 	if (curr->idx >= curr->endidx) { /* This transaction is over. */
575 		if (act & HP_SDC_ACT_DEALLOC)
576 			kfree(curr);
577 		hp_sdc.tq[curridx] = NULL;
578 	} else {
579 		curr->actidx = idx + 1;
580 		curr->idx = idx + 2;
581 	}
582 	/* Interleave outbound data between the transactions. */
583 	hp_sdc.wcurr++;
584 	if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN)
585 		hp_sdc.wcurr = 0;
586 
587  finish:
588 	/* If by some quirk IBF has cleared and our ISR has run to
589 	   see that that has happened, do it all again. */
590 	if (!hp_sdc.ibf && limit++ < 20)
591 		goto anew;
592 
593  done:
594 	if (hp_sdc.wcurr >= 0)
595 		tasklet_schedule(&hp_sdc.task);
596 	write_unlock(&hp_sdc.lock);
597 
598 	return 0;
599 }
600 
601 /******* Functions called in either user or kernel context ****/
602 int __hp_sdc_enqueue_transaction(hp_sdc_transaction *this)
603 {
604 	int i;
605 
606 	if (this == NULL) {
607 		BUG();
608 		return -EINVAL;
609 	}
610 
611 	/* Can't have same transaction on queue twice */
612 	for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
613 		if (hp_sdc.tq[i] == this)
614 			goto fail;
615 
616 	this->actidx = 0;
617 	this->idx = 1;
618 
619 	/* Search for empty slot */
620 	for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
621 		if (hp_sdc.tq[i] == NULL) {
622 			hp_sdc.tq[i] = this;
623 			tasklet_schedule(&hp_sdc.task);
624 			return 0;
625 		}
626 
627 	printk(KERN_WARNING PREFIX "No free slot to add transaction.\n");
628 	return -EBUSY;
629 
630  fail:
631 	printk(KERN_WARNING PREFIX "Transaction add failed: transaction already queued?\n");
632 	return -EINVAL;
633 }
634 
635 int hp_sdc_enqueue_transaction(hp_sdc_transaction *this) {
636 	unsigned long flags;
637 	int ret;
638 
639 	write_lock_irqsave(&hp_sdc.lock, flags);
640 	ret = __hp_sdc_enqueue_transaction(this);
641 	write_unlock_irqrestore(&hp_sdc.lock,flags);
642 
643 	return ret;
644 }
645 
646 int hp_sdc_dequeue_transaction(hp_sdc_transaction *this)
647 {
648 	unsigned long flags;
649 	int i;
650 
651 	write_lock_irqsave(&hp_sdc.lock, flags);
652 
653 	/* TODO: don't remove it if it's not done. */
654 
655 	for (i = 0; i < HP_SDC_QUEUE_LEN; i++)
656 		if (hp_sdc.tq[i] == this)
657 			hp_sdc.tq[i] = NULL;
658 
659 	write_unlock_irqrestore(&hp_sdc.lock, flags);
660 	return 0;
661 }
662 
663 
664 
665 /********************** User context functions **************************/
666 int hp_sdc_request_timer_irq(hp_sdc_irqhook *callback)
667 {
668 	if (callback == NULL || hp_sdc.dev == NULL)
669 		return -EINVAL;
670 
671 	write_lock_irq(&hp_sdc.hook_lock);
672 	if (hp_sdc.timer != NULL) {
673 		write_unlock_irq(&hp_sdc.hook_lock);
674 		return -EBUSY;
675 	}
676 
677 	hp_sdc.timer = callback;
678 	/* Enable interrupts from the timers */
679 	hp_sdc.im &= ~HP_SDC_IM_FH;
680         hp_sdc.im &= ~HP_SDC_IM_PT;
681 	hp_sdc.im &= ~HP_SDC_IM_TIMERS;
682 	hp_sdc.set_im = 1;
683 	write_unlock_irq(&hp_sdc.hook_lock);
684 
685 	tasklet_schedule(&hp_sdc.task);
686 
687 	return 0;
688 }
689 
690 int hp_sdc_request_hil_irq(hp_sdc_irqhook *callback)
691 {
692 	if (callback == NULL || hp_sdc.dev == NULL)
693 		return -EINVAL;
694 
695 	write_lock_irq(&hp_sdc.hook_lock);
696 	if (hp_sdc.hil != NULL) {
697 		write_unlock_irq(&hp_sdc.hook_lock);
698 		return -EBUSY;
699 	}
700 
701 	hp_sdc.hil = callback;
702 	hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
703 	hp_sdc.set_im = 1;
704 	write_unlock_irq(&hp_sdc.hook_lock);
705 
706 	tasklet_schedule(&hp_sdc.task);
707 
708 	return 0;
709 }
710 
711 int hp_sdc_request_cooked_irq(hp_sdc_irqhook *callback)
712 {
713 	if (callback == NULL || hp_sdc.dev == NULL)
714 		return -EINVAL;
715 
716 	write_lock_irq(&hp_sdc.hook_lock);
717 	if (hp_sdc.cooked != NULL) {
718 		write_unlock_irq(&hp_sdc.hook_lock);
719 		return -EBUSY;
720 	}
721 
722 	/* Enable interrupts from the HIL MLC */
723 	hp_sdc.cooked = callback;
724 	hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET);
725 	hp_sdc.set_im = 1;
726 	write_unlock_irq(&hp_sdc.hook_lock);
727 
728 	tasklet_schedule(&hp_sdc.task);
729 
730 	return 0;
731 }
732 
733 int hp_sdc_release_timer_irq(hp_sdc_irqhook *callback)
734 {
735 	write_lock_irq(&hp_sdc.hook_lock);
736 	if ((callback != hp_sdc.timer) ||
737 	    (hp_sdc.timer == NULL)) {
738 		write_unlock_irq(&hp_sdc.hook_lock);
739 		return -EINVAL;
740 	}
741 
742 	/* Disable interrupts from the timers */
743 	hp_sdc.timer = NULL;
744 	hp_sdc.im |= HP_SDC_IM_TIMERS;
745 	hp_sdc.im |= HP_SDC_IM_FH;
746 	hp_sdc.im |= HP_SDC_IM_PT;
747 	hp_sdc.set_im = 1;
748 	write_unlock_irq(&hp_sdc.hook_lock);
749 	tasklet_schedule(&hp_sdc.task);
750 
751 	return 0;
752 }
753 
754 int hp_sdc_release_hil_irq(hp_sdc_irqhook *callback)
755 {
756 	write_lock_irq(&hp_sdc.hook_lock);
757 	if ((callback != hp_sdc.hil) ||
758 	    (hp_sdc.hil == NULL)) {
759 		write_unlock_irq(&hp_sdc.hook_lock);
760 		return -EINVAL;
761 	}
762 
763 	hp_sdc.hil = NULL;
764 	/* Disable interrupts from HIL only if there is no cooked driver. */
765 	if(hp_sdc.cooked == NULL) {
766 		hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
767 		hp_sdc.set_im = 1;
768 	}
769 	write_unlock_irq(&hp_sdc.hook_lock);
770 	tasklet_schedule(&hp_sdc.task);
771 
772 	return 0;
773 }
774 
775 int hp_sdc_release_cooked_irq(hp_sdc_irqhook *callback)
776 {
777 	write_lock_irq(&hp_sdc.hook_lock);
778 	if ((callback != hp_sdc.cooked) ||
779 	    (hp_sdc.cooked == NULL)) {
780 		write_unlock_irq(&hp_sdc.hook_lock);
781 		return -EINVAL;
782 	}
783 
784 	hp_sdc.cooked = NULL;
785 	/* Disable interrupts from HIL only if there is no raw HIL driver. */
786 	if(hp_sdc.hil == NULL) {
787 		hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET);
788 		hp_sdc.set_im = 1;
789 	}
790 	write_unlock_irq(&hp_sdc.hook_lock);
791 	tasklet_schedule(&hp_sdc.task);
792 
793 	return 0;
794 }
795 
796 /************************* Keepalive timer task *********************/
797 
798 void hp_sdc_kicker (unsigned long data)
799 {
800 	tasklet_schedule(&hp_sdc.task);
801 	/* Re-insert the periodic task. */
802 	mod_timer(&hp_sdc.kicker, jiffies + HZ);
803 }
804 
805 /************************** Module Initialization ***************************/
806 
807 #if defined(__hppa__)
808 
809 static const struct parisc_device_id hp_sdc_tbl[] = {
810 	{
811 		.hw_type =	HPHW_FIO,
812 		.hversion_rev =	HVERSION_REV_ANY_ID,
813 		.hversion =	HVERSION_ANY_ID,
814 		.sversion =	0x73,
815 	 },
816 	{ 0, }
817 };
818 
819 MODULE_DEVICE_TABLE(parisc, hp_sdc_tbl);
820 
821 static int __init hp_sdc_init_hppa(struct parisc_device *d);
822 static struct delayed_work moduleloader_work;
823 
824 static struct parisc_driver hp_sdc_driver = {
825 	.name =		"hp_sdc",
826 	.id_table =	hp_sdc_tbl,
827 	.probe =	hp_sdc_init_hppa,
828 };
829 
830 #endif /* __hppa__ */
831 
832 static int __init hp_sdc_init(void)
833 {
834 	char *errstr;
835 	hp_sdc_transaction t_sync;
836 	uint8_t ts_sync[6];
837 	struct semaphore s_sync;
838 
839 	rwlock_init(&hp_sdc.lock);
840 	rwlock_init(&hp_sdc.ibf_lock);
841 	rwlock_init(&hp_sdc.rtq_lock);
842 	rwlock_init(&hp_sdc.hook_lock);
843 
844 	hp_sdc.timer		= NULL;
845 	hp_sdc.hil		= NULL;
846 	hp_sdc.pup		= NULL;
847 	hp_sdc.cooked		= NULL;
848 	hp_sdc.im		= HP_SDC_IM_MASK;  /* Mask maskable irqs */
849 	hp_sdc.set_im		= 1;
850 	hp_sdc.wi		= 0xff;
851 	hp_sdc.r7[0]		= 0xff;
852 	hp_sdc.r7[1]		= 0xff;
853 	hp_sdc.r7[2]		= 0xff;
854 	hp_sdc.r7[3]		= 0xff;
855 	hp_sdc.ibf		= 1;
856 
857 	memset(&hp_sdc.tq, 0, sizeof(hp_sdc.tq));
858 
859 	hp_sdc.wcurr		= -1;
860         hp_sdc.rcurr		= -1;
861 	hp_sdc.rqty		= 0;
862 
863 	hp_sdc.dev_err = -ENODEV;
864 
865 	errstr = "IO not found for";
866 	if (!hp_sdc.base_io)
867 		goto err0;
868 
869 	errstr = "IRQ not found for";
870 	if (!hp_sdc.irq)
871 		goto err0;
872 
873 	hp_sdc.dev_err = -EBUSY;
874 
875 #if defined(__hppa__)
876 	errstr = "IO not available for";
877         if (request_region(hp_sdc.data_io, 2, hp_sdc_driver.name))
878 		goto err0;
879 #endif
880 
881 	errstr = "IRQ not available for";
882 	if (request_irq(hp_sdc.irq, &hp_sdc_isr, IRQF_SHARED|IRQF_SAMPLE_RANDOM,
883 			"HP SDC", &hp_sdc))
884 		goto err1;
885 
886 	errstr = "NMI not available for";
887 	if (request_irq(hp_sdc.nmi, &hp_sdc_nmisr, IRQF_SHARED,
888 			"HP SDC NMI", &hp_sdc))
889 		goto err2;
890 
891 	printk(KERN_INFO PREFIX "HP SDC at 0x%p, IRQ %d (NMI IRQ %d)\n",
892 	       (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
893 
894 	hp_sdc_status_in8();
895 	hp_sdc_data_in8();
896 
897 	tasklet_init(&hp_sdc.task, hp_sdc_tasklet, 0);
898 
899 	/* Sync the output buffer registers, thus scheduling hp_sdc_tasklet. */
900 	t_sync.actidx	= 0;
901 	t_sync.idx	= 1;
902 	t_sync.endidx	= 6;
903 	t_sync.seq	= ts_sync;
904 	ts_sync[0]	= HP_SDC_ACT_DATAREG | HP_SDC_ACT_SEMAPHORE;
905 	ts_sync[1]	= 0x0f;
906 	ts_sync[2] = ts_sync[3]	= ts_sync[4] = ts_sync[5] = 0;
907 	t_sync.act.semaphore = &s_sync;
908 	init_MUTEX_LOCKED(&s_sync);
909 	hp_sdc_enqueue_transaction(&t_sync);
910 	down(&s_sync); /* Wait for t_sync to complete */
911 
912 	/* Create the keepalive task */
913 	init_timer(&hp_sdc.kicker);
914 	hp_sdc.kicker.expires = jiffies + HZ;
915 	hp_sdc.kicker.function = &hp_sdc_kicker;
916 	add_timer(&hp_sdc.kicker);
917 
918 	hp_sdc.dev_err = 0;
919 	return 0;
920  err2:
921 	free_irq(hp_sdc.irq, &hp_sdc);
922  err1:
923 	release_region(hp_sdc.data_io, 2);
924  err0:
925 	printk(KERN_WARNING PREFIX ": %s SDC IO=0x%p IRQ=0x%x NMI=0x%x\n",
926 		errstr, (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi);
927 	hp_sdc.dev = NULL;
928 
929 	return hp_sdc.dev_err;
930 }
931 
932 #if defined(__hppa__)
933 
934 static void request_module_delayed(struct work_struct *work)
935 {
936 	request_module("hp_sdc_mlc");
937 }
938 
939 static int __init hp_sdc_init_hppa(struct parisc_device *d)
940 {
941 	int ret;
942 
943 	if (!d)
944 		return 1;
945 	if (hp_sdc.dev != NULL)
946 		return 1;	/* We only expect one SDC */
947 
948 	hp_sdc.dev		= d;
949 	hp_sdc.irq		= d->irq;
950 	hp_sdc.nmi		= d->aux_irq;
951 	hp_sdc.base_io		= d->hpa.start;
952 	hp_sdc.data_io		= d->hpa.start + 0x800;
953 	hp_sdc.status_io	= d->hpa.start + 0x801;
954 
955 	INIT_DELAYED_WORK(&moduleloader_work, request_module_delayed);
956 
957 	ret = hp_sdc_init();
958 	/* after successfull initialization give SDC some time to settle
959 	 * and then load the hp_sdc_mlc upper layer driver */
960 	if (!ret)
961 		schedule_delayed_work(&moduleloader_work,
962 			msecs_to_jiffies(2000));
963 
964 	return ret;
965 }
966 
967 #endif /* __hppa__ */
968 
969 static void hp_sdc_exit(void)
970 {
971 	/* do nothing if we don't have a SDC */
972 	if (!hp_sdc.dev)
973 		return;
974 
975 	write_lock_irq(&hp_sdc.lock);
976 
977 	/* Turn off all maskable "sub-function" irq's. */
978 	hp_sdc_spin_ibf();
979 	sdc_writeb(HP_SDC_CMD_SET_IM | HP_SDC_IM_MASK, hp_sdc.status_io);
980 
981 	/* Wait until we know this has been processed by the i8042 */
982 	hp_sdc_spin_ibf();
983 
984 	free_irq(hp_sdc.nmi, &hp_sdc);
985 	free_irq(hp_sdc.irq, &hp_sdc);
986 	write_unlock_irq(&hp_sdc.lock);
987 
988 	del_timer(&hp_sdc.kicker);
989 
990 	tasklet_kill(&hp_sdc.task);
991 
992 #if defined(__hppa__)
993 	cancel_delayed_work_sync(&moduleloader_work);
994 	if (unregister_parisc_driver(&hp_sdc_driver))
995 		printk(KERN_WARNING PREFIX "Error unregistering HP SDC");
996 #endif
997 }
998 
999 static int __init hp_sdc_register(void)
1000 {
1001 	hp_sdc_transaction tq_init;
1002 	uint8_t tq_init_seq[5];
1003 	struct semaphore tq_init_sem;
1004 #if defined(__mc68000__)
1005 	mm_segment_t fs;
1006 	unsigned char i;
1007 #endif
1008 
1009 	if (hp_sdc_disabled) {
1010 		printk(KERN_WARNING PREFIX "HP SDC driver disabled by no_hpsdc=1.\n");
1011 		return -ENODEV;
1012 	}
1013 
1014 	hp_sdc.dev = NULL;
1015 	hp_sdc.dev_err = 0;
1016 #if defined(__hppa__)
1017 	if (register_parisc_driver(&hp_sdc_driver)) {
1018 		printk(KERN_WARNING PREFIX "Error registering SDC with system bus tree.\n");
1019 		return -ENODEV;
1020 	}
1021 #elif defined(__mc68000__)
1022 	if (!MACH_IS_HP300)
1023 	    return -ENODEV;
1024 
1025 	hp_sdc.irq	 = 1;
1026 	hp_sdc.nmi	 = 7;
1027 	hp_sdc.base_io	 = (unsigned long) 0xf0428000;
1028 	hp_sdc.data_io	 = (unsigned long) hp_sdc.base_io + 1;
1029 	hp_sdc.status_io = (unsigned long) hp_sdc.base_io + 3;
1030 	fs = get_fs();
1031 	set_fs(KERNEL_DS);
1032 	if (!get_user(i, (unsigned char *)hp_sdc.data_io))
1033 		hp_sdc.dev = (void *)1;
1034 	set_fs(fs);
1035 	hp_sdc.dev_err   = hp_sdc_init();
1036 #endif
1037 	if (hp_sdc.dev == NULL) {
1038 		printk(KERN_WARNING PREFIX "No SDC found.\n");
1039 		return hp_sdc.dev_err;
1040 	}
1041 
1042 	init_MUTEX_LOCKED(&tq_init_sem);
1043 
1044 	tq_init.actidx		= 0;
1045 	tq_init.idx		= 1;
1046 	tq_init.endidx		= 5;
1047 	tq_init.seq		= tq_init_seq;
1048 	tq_init.act.semaphore	= &tq_init_sem;
1049 
1050 	tq_init_seq[0] =
1051 		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN | HP_SDC_ACT_SEMAPHORE;
1052 	tq_init_seq[1] = HP_SDC_CMD_READ_KCC;
1053 	tq_init_seq[2] = 1;
1054 	tq_init_seq[3] = 0;
1055 	tq_init_seq[4] = 0;
1056 
1057 	hp_sdc_enqueue_transaction(&tq_init);
1058 
1059 	down(&tq_init_sem);
1060 	up(&tq_init_sem);
1061 
1062 	if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
1063 		printk(KERN_WARNING PREFIX "Error reading config byte.\n");
1064 		hp_sdc_exit();
1065 		return -ENODEV;
1066 	}
1067 	hp_sdc.r11 = tq_init_seq[4];
1068 	if (hp_sdc.r11 & HP_SDC_CFG_NEW) {
1069 		const char *str;
1070 		printk(KERN_INFO PREFIX "New style SDC\n");
1071 		tq_init_seq[1] = HP_SDC_CMD_READ_XTD;
1072 		tq_init.actidx		= 0;
1073 		tq_init.idx		= 1;
1074 		down(&tq_init_sem);
1075 		hp_sdc_enqueue_transaction(&tq_init);
1076 		down(&tq_init_sem);
1077 		up(&tq_init_sem);
1078 		if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) {
1079 			printk(KERN_WARNING PREFIX "Error reading extended config byte.\n");
1080 			return -ENODEV;
1081 		}
1082 		hp_sdc.r7e = tq_init_seq[4];
1083 		HP_SDC_XTD_REV_STRINGS(hp_sdc.r7e & HP_SDC_XTD_REV, str)
1084 		printk(KERN_INFO PREFIX "Revision: %s\n", str);
1085 		if (hp_sdc.r7e & HP_SDC_XTD_BEEPER)
1086 			printk(KERN_INFO PREFIX "TI SN76494 beeper present\n");
1087 		if (hp_sdc.r7e & HP_SDC_XTD_BBRTC)
1088 			printk(KERN_INFO PREFIX "OKI MSM-58321 BBRTC present\n");
1089 		printk(KERN_INFO PREFIX "Spunking the self test register to force PUP "
1090 		       "on next firmware reset.\n");
1091 		tq_init_seq[0] = HP_SDC_ACT_PRECMD |
1092 			HP_SDC_ACT_DATAOUT | HP_SDC_ACT_SEMAPHORE;
1093 		tq_init_seq[1] = HP_SDC_CMD_SET_STR;
1094 		tq_init_seq[2] = 1;
1095 		tq_init_seq[3] = 0;
1096 		tq_init.actidx		= 0;
1097 		tq_init.idx		= 1;
1098 		tq_init.endidx		= 4;
1099 		down(&tq_init_sem);
1100 		hp_sdc_enqueue_transaction(&tq_init);
1101 		down(&tq_init_sem);
1102 		up(&tq_init_sem);
1103 	} else
1104 		printk(KERN_INFO PREFIX "Old style SDC (1820-%s).\n",
1105 		       (hp_sdc.r11 & HP_SDC_CFG_REV) ? "3300" : "2564/3087");
1106 
1107         return 0;
1108 }
1109 
1110 module_init(hp_sdc_register);
1111 module_exit(hp_sdc_exit);
1112 
1113 /* Timing notes:  These measurements taken on my 64MHz 7100-LC (715/64)
1114  *                                              cycles cycles-adj    time
1115  * between two consecutive mfctl(16)'s:              4        n/a    63ns
1116  * hp_sdc_spin_ibf when idle:                      119        115   1.7us
1117  * gsc_writeb status register:                      83         79   1.2us
1118  * IBF to clear after sending SET_IM:             6204       6006    93us
1119  * IBF to clear after sending LOAD_RT:            4467       4352    68us
1120  * IBF to clear after sending two LOAD_RTs:      18974      18859   295us
1121  * READ_T1, read status/data, IRQ, call handler: 35564        n/a   556us
1122  * cmd to ~IBF READ_T1 2nd time right after:   5158403        n/a    81ms
1123  * between IRQ received and ~IBF for above:    2578877        n/a    40ms
1124  *
1125  * Performance stats after a run of this module configuring HIL and
1126  * receiving a few mouse events:
1127  *
1128  * status in8  282508 cycles 7128 calls
1129  * status out8   8404 cycles  341 calls
1130  * data out8     1734 cycles   78 calls
1131  * isr         174324 cycles  617 calls (includes take)
1132  * take          1241 cycles    2 calls
1133  * put        1411504 cycles 6937 calls
1134  * task       1655209 cycles 6937 calls (includes put)
1135  *
1136  */
1137