xref: /openbmc/linux/drivers/input/rmi4/rmi_spi.c (revision 110e6f26)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/rmi.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <linux/irq.h>
16 #include <linux/of.h>
17 #include "rmi_driver.h"
18 
19 #define RMI_SPI_DEFAULT_XFER_BUF_SIZE	64
20 
21 #define RMI_PAGE_SELECT_REGISTER	0x00FF
22 #define RMI_SPI_PAGE(addr)		(((addr) >> 8) & 0x80)
23 #define RMI_SPI_XFER_SIZE_LIMIT		255
24 
25 #define BUFFER_SIZE_INCREMENT 32
26 
27 enum rmi_spi_op {
28 	RMI_SPI_WRITE = 0,
29 	RMI_SPI_READ,
30 	RMI_SPI_V2_READ_UNIFIED,
31 	RMI_SPI_V2_READ_SPLIT,
32 	RMI_SPI_V2_WRITE,
33 };
34 
35 struct rmi_spi_cmd {
36 	enum rmi_spi_op op;
37 	u16 addr;
38 };
39 
40 struct rmi_spi_xport {
41 	struct rmi_transport_dev xport;
42 	struct spi_device *spi;
43 
44 	struct mutex page_mutex;
45 	int page;
46 
47 	int irq;
48 
49 	u8 *rx_buf;
50 	u8 *tx_buf;
51 	int xfer_buf_size;
52 
53 	struct spi_transfer *rx_xfers;
54 	struct spi_transfer *tx_xfers;
55 	int rx_xfer_count;
56 	int tx_xfer_count;
57 };
58 
59 static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
60 {
61 	struct spi_device *spi = rmi_spi->spi;
62 	int buf_size = rmi_spi->xfer_buf_size
63 		? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
64 	struct spi_transfer *xfer_buf;
65 	void *buf;
66 	void *tmp;
67 
68 	while (buf_size < len)
69 		buf_size *= 2;
70 
71 	if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
72 		buf_size = RMI_SPI_XFER_SIZE_LIMIT;
73 
74 	tmp = rmi_spi->rx_buf;
75 	buf = devm_kzalloc(&spi->dev, buf_size * 2,
76 				GFP_KERNEL | GFP_DMA);
77 	if (!buf)
78 		return -ENOMEM;
79 
80 	rmi_spi->rx_buf = buf;
81 	rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
82 	rmi_spi->xfer_buf_size = buf_size;
83 
84 	if (tmp)
85 		devm_kfree(&spi->dev, tmp);
86 
87 	if (rmi_spi->xport.pdata.spi_data.read_delay_us)
88 		rmi_spi->rx_xfer_count = buf_size;
89 	else
90 		rmi_spi->rx_xfer_count = 1;
91 
92 	if (rmi_spi->xport.pdata.spi_data.write_delay_us)
93 		rmi_spi->tx_xfer_count = buf_size;
94 	else
95 		rmi_spi->tx_xfer_count = 1;
96 
97 	/*
98 	 * Allocate a pool of spi_transfer buffers for devices which need
99 	 * per byte delays.
100 	 */
101 	tmp = rmi_spi->rx_xfers;
102 	xfer_buf = devm_kzalloc(&spi->dev,
103 		(rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count)
104 		* sizeof(struct spi_transfer), GFP_KERNEL);
105 	if (!xfer_buf)
106 		return -ENOMEM;
107 
108 	rmi_spi->rx_xfers = xfer_buf;
109 	rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
110 
111 	if (tmp)
112 		devm_kfree(&spi->dev, tmp);
113 
114 	return 0;
115 }
116 
117 static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
118 			const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
119 			int tx_len, u8 *rx_buf, int rx_len)
120 {
121 	struct spi_device *spi = rmi_spi->spi;
122 	struct rmi_device_platform_data_spi *spi_data =
123 					&rmi_spi->xport.pdata.spi_data;
124 	struct spi_message msg;
125 	struct spi_transfer *xfer;
126 	int ret = 0;
127 	int len;
128 	int cmd_len = 0;
129 	int total_tx_len;
130 	int i;
131 	u16 addr = cmd->addr;
132 
133 	spi_message_init(&msg);
134 
135 	switch (cmd->op) {
136 	case RMI_SPI_WRITE:
137 	case RMI_SPI_READ:
138 		cmd_len += 2;
139 		break;
140 	case RMI_SPI_V2_READ_UNIFIED:
141 	case RMI_SPI_V2_READ_SPLIT:
142 	case RMI_SPI_V2_WRITE:
143 		cmd_len += 4;
144 		break;
145 	}
146 
147 	total_tx_len = cmd_len + tx_len;
148 	len = max(total_tx_len, rx_len);
149 
150 	if (len > RMI_SPI_XFER_SIZE_LIMIT)
151 		return -EINVAL;
152 
153 	if (rmi_spi->xfer_buf_size < len)
154 		rmi_spi_manage_pools(rmi_spi, len);
155 
156 	if (addr == 0)
157 		/*
158 		 * SPI needs an address. Use 0x7FF if we want to keep
159 		 * reading from the last position of the register pointer.
160 		 */
161 		addr = 0x7FF;
162 
163 	switch (cmd->op) {
164 	case RMI_SPI_WRITE:
165 		rmi_spi->tx_buf[0] = (addr >> 8);
166 		rmi_spi->tx_buf[1] = addr & 0xFF;
167 		break;
168 	case RMI_SPI_READ:
169 		rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
170 		rmi_spi->tx_buf[1] = addr & 0xFF;
171 		break;
172 	case RMI_SPI_V2_READ_UNIFIED:
173 		break;
174 	case RMI_SPI_V2_READ_SPLIT:
175 		break;
176 	case RMI_SPI_V2_WRITE:
177 		rmi_spi->tx_buf[0] = 0x40;
178 		rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
179 		rmi_spi->tx_buf[2] = addr & 0xFF;
180 		rmi_spi->tx_buf[3] = tx_len;
181 		break;
182 	}
183 
184 	if (tx_buf)
185 		memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
186 
187 	if (rmi_spi->tx_xfer_count > 1) {
188 		for (i = 0; i < total_tx_len; i++) {
189 			xfer = &rmi_spi->tx_xfers[i];
190 			memset(xfer, 0,	sizeof(struct spi_transfer));
191 			xfer->tx_buf = &rmi_spi->tx_buf[i];
192 			xfer->len = 1;
193 			xfer->delay_usecs = spi_data->write_delay_us;
194 			spi_message_add_tail(xfer, &msg);
195 		}
196 	} else {
197 		xfer = rmi_spi->tx_xfers;
198 		memset(xfer, 0, sizeof(struct spi_transfer));
199 		xfer->tx_buf = rmi_spi->tx_buf;
200 		xfer->len = total_tx_len;
201 		spi_message_add_tail(xfer, &msg);
202 	}
203 
204 	rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
205 		__func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
206 		total_tx_len, total_tx_len, rmi_spi->tx_buf);
207 
208 	if (rx_buf) {
209 		if (rmi_spi->rx_xfer_count > 1) {
210 			for (i = 0; i < rx_len; i++) {
211 				xfer = &rmi_spi->rx_xfers[i];
212 				memset(xfer, 0, sizeof(struct spi_transfer));
213 				xfer->rx_buf = &rmi_spi->rx_buf[i];
214 				xfer->len = 1;
215 				xfer->delay_usecs = spi_data->read_delay_us;
216 				spi_message_add_tail(xfer, &msg);
217 			}
218 		} else {
219 			xfer = rmi_spi->rx_xfers;
220 			memset(xfer, 0, sizeof(struct spi_transfer));
221 			xfer->rx_buf = rmi_spi->rx_buf;
222 			xfer->len = rx_len;
223 			spi_message_add_tail(xfer, &msg);
224 		}
225 	}
226 
227 	ret = spi_sync(spi, &msg);
228 	if (ret < 0) {
229 		dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
230 		return ret;
231 	}
232 
233 	if (rx_buf) {
234 		memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
235 		rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
236 			__func__, rx_len, rx_len, rx_buf);
237 	}
238 
239 	return 0;
240 }
241 
242 /*
243  * rmi_set_page - Set RMI page
244  * @xport: The pointer to the rmi_transport_dev struct
245  * @page: The new page address.
246  *
247  * RMI devices have 16-bit addressing, but some of the transport
248  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
249  * a page address at 0xff of every page so we can reliable page addresses
250  * every 256 registers.
251  *
252  * The page_mutex lock must be held when this function is entered.
253  *
254  * Returns zero on success, non-zero on failure.
255  */
256 static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
257 {
258 	struct rmi_spi_cmd cmd;
259 	int ret;
260 
261 	cmd.op = RMI_SPI_WRITE;
262 	cmd.addr = RMI_PAGE_SELECT_REGISTER;
263 
264 	ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
265 
266 	if (ret)
267 		rmi_spi->page = page;
268 
269 	return ret;
270 }
271 
272 static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
273 			       const void *buf, size_t len)
274 {
275 	struct rmi_spi_xport *rmi_spi =
276 		container_of(xport, struct rmi_spi_xport, xport);
277 	struct rmi_spi_cmd cmd;
278 	int ret;
279 
280 	mutex_lock(&rmi_spi->page_mutex);
281 
282 	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
283 		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
284 		if (ret)
285 			goto exit;
286 	}
287 
288 	cmd.op = RMI_SPI_WRITE;
289 	cmd.addr = addr;
290 
291 	ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
292 
293 exit:
294 	mutex_unlock(&rmi_spi->page_mutex);
295 	return ret;
296 }
297 
298 static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
299 			      void *buf, size_t len)
300 {
301 	struct rmi_spi_xport *rmi_spi =
302 		container_of(xport, struct rmi_spi_xport, xport);
303 	struct rmi_spi_cmd cmd;
304 	int ret;
305 
306 	mutex_lock(&rmi_spi->page_mutex);
307 
308 	if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
309 		ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
310 		if (ret)
311 			goto exit;
312 	}
313 
314 	cmd.op = RMI_SPI_READ;
315 	cmd.addr = addr;
316 
317 	ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
318 
319 exit:
320 	mutex_unlock(&rmi_spi->page_mutex);
321 	return ret;
322 }
323 
324 static const struct rmi_transport_ops rmi_spi_ops = {
325 	.write_block	= rmi_spi_write_block,
326 	.read_block	= rmi_spi_read_block,
327 };
328 
329 static irqreturn_t rmi_spi_irq(int irq, void *dev_id)
330 {
331 	struct rmi_spi_xport *rmi_spi = dev_id;
332 	struct rmi_device *rmi_dev = rmi_spi->xport.rmi_dev;
333 	int ret;
334 
335 	ret = rmi_process_interrupt_requests(rmi_dev);
336 	if (ret)
337 		rmi_dbg(RMI_DEBUG_XPORT, &rmi_dev->dev,
338 			"Failed to process interrupt request: %d\n", ret);
339 
340 	return IRQ_HANDLED;
341 }
342 
343 static int rmi_spi_init_irq(struct spi_device *spi)
344 {
345 	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
346 	int irq_flags = irqd_get_trigger_type(irq_get_irq_data(rmi_spi->irq));
347 	int ret;
348 
349 	if (!irq_flags)
350 		irq_flags = IRQF_TRIGGER_LOW;
351 
352 	ret = devm_request_threaded_irq(&spi->dev, rmi_spi->irq, NULL,
353 			rmi_spi_irq, irq_flags | IRQF_ONESHOT,
354 			dev_name(&spi->dev), rmi_spi);
355 	if (ret < 0) {
356 		dev_warn(&spi->dev, "Failed to register interrupt %d\n",
357 			rmi_spi->irq);
358 		return ret;
359 	}
360 
361 	return 0;
362 }
363 
364 #ifdef CONFIG_OF
365 static int rmi_spi_of_probe(struct spi_device *spi,
366 			struct rmi_device_platform_data *pdata)
367 {
368 	struct device *dev = &spi->dev;
369 	int retval;
370 
371 	retval = rmi_of_property_read_u32(dev,
372 			&pdata->spi_data.read_delay_us,
373 			"spi-rx-delay-us", 1);
374 	if (retval)
375 		return retval;
376 
377 	retval = rmi_of_property_read_u32(dev,
378 			&pdata->spi_data.write_delay_us,
379 			"spi-tx-delay-us", 1);
380 	if (retval)
381 		return retval;
382 
383 	return 0;
384 }
385 
386 static const struct of_device_id rmi_spi_of_match[] = {
387 	{ .compatible = "syna,rmi4-spi" },
388 	{},
389 };
390 MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
391 #else
392 static inline int rmi_spi_of_probe(struct spi_device *spi,
393 				struct rmi_device_platform_data *pdata)
394 {
395 	return -ENODEV;
396 }
397 #endif
398 
399 static int rmi_spi_probe(struct spi_device *spi)
400 {
401 	struct rmi_spi_xport *rmi_spi;
402 	struct rmi_device_platform_data *pdata;
403 	struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
404 	int retval;
405 
406 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
407 		return -EINVAL;
408 
409 	rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
410 			GFP_KERNEL);
411 	if (!rmi_spi)
412 		return -ENOMEM;
413 
414 	pdata = &rmi_spi->xport.pdata;
415 
416 	if (spi->dev.of_node) {
417 		retval = rmi_spi_of_probe(spi, pdata);
418 		if (retval)
419 			return retval;
420 	} else if (spi_pdata) {
421 		*pdata = *spi_pdata;
422 	}
423 
424 	if (pdata->spi_data.bits_per_word)
425 		spi->bits_per_word = pdata->spi_data.bits_per_word;
426 
427 	if (pdata->spi_data.mode)
428 		spi->mode = pdata->spi_data.mode;
429 
430 	retval = spi_setup(spi);
431 	if (retval < 0) {
432 		dev_err(&spi->dev, "spi_setup failed!\n");
433 		return retval;
434 	}
435 
436 	if (spi->irq > 0)
437 		rmi_spi->irq = spi->irq;
438 
439 	rmi_spi->spi = spi;
440 	mutex_init(&rmi_spi->page_mutex);
441 
442 	rmi_spi->xport.dev = &spi->dev;
443 	rmi_spi->xport.proto_name = "spi";
444 	rmi_spi->xport.ops = &rmi_spi_ops;
445 
446 	spi_set_drvdata(spi, rmi_spi);
447 
448 	retval = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
449 	if (retval)
450 		return retval;
451 
452 	/*
453 	 * Setting the page to zero will (a) make sure the PSR is in a
454 	 * known state, and (b) make sure we can talk to the device.
455 	 */
456 	retval = rmi_set_page(rmi_spi, 0);
457 	if (retval) {
458 		dev_err(&spi->dev, "Failed to set page select to 0.\n");
459 		return retval;
460 	}
461 
462 	retval = rmi_register_transport_device(&rmi_spi->xport);
463 	if (retval) {
464 		dev_err(&spi->dev, "failed to register transport.\n");
465 		return retval;
466 	}
467 
468 	retval = rmi_spi_init_irq(spi);
469 	if (retval < 0)
470 		return retval;
471 
472 	dev_info(&spi->dev, "registered RMI SPI driver\n");
473 	return 0;
474 }
475 
476 static int rmi_spi_remove(struct spi_device *spi)
477 {
478 	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
479 
480 	rmi_unregister_transport_device(&rmi_spi->xport);
481 
482 	return 0;
483 }
484 
485 #ifdef CONFIG_PM_SLEEP
486 static int rmi_spi_suspend(struct device *dev)
487 {
488 	struct spi_device *spi = to_spi_device(dev);
489 	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
490 	int ret;
491 
492 	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev);
493 	if (ret)
494 		dev_warn(dev, "Failed to resume device: %d\n", ret);
495 
496 	disable_irq(rmi_spi->irq);
497 	if (device_may_wakeup(&spi->dev)) {
498 		ret = enable_irq_wake(rmi_spi->irq);
499 		if (!ret)
500 			dev_warn(dev, "Failed to enable irq for wake: %d\n",
501 				ret);
502 	}
503 	return ret;
504 }
505 
506 static int rmi_spi_resume(struct device *dev)
507 {
508 	struct spi_device *spi = to_spi_device(dev);
509 	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
510 	int ret;
511 
512 	enable_irq(rmi_spi->irq);
513 	if (device_may_wakeup(&spi->dev)) {
514 		ret = disable_irq_wake(rmi_spi->irq);
515 		if (!ret)
516 			dev_warn(dev, "Failed to disable irq for wake: %d\n",
517 				ret);
518 	}
519 
520 	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev);
521 	if (ret)
522 		dev_warn(dev, "Failed to resume device: %d\n", ret);
523 
524 	return ret;
525 }
526 #endif
527 
528 #ifdef CONFIG_PM
529 static int rmi_spi_runtime_suspend(struct device *dev)
530 {
531 	struct spi_device *spi = to_spi_device(dev);
532 	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
533 	int ret;
534 
535 	ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev);
536 	if (ret)
537 		dev_warn(dev, "Failed to resume device: %d\n", ret);
538 
539 	disable_irq(rmi_spi->irq);
540 
541 	return 0;
542 }
543 
544 static int rmi_spi_runtime_resume(struct device *dev)
545 {
546 	struct spi_device *spi = to_spi_device(dev);
547 	struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
548 	int ret;
549 
550 	enable_irq(rmi_spi->irq);
551 
552 	ret = rmi_driver_resume(rmi_spi->xport.rmi_dev);
553 	if (ret)
554 		dev_warn(dev, "Failed to resume device: %d\n", ret);
555 
556 	return 0;
557 }
558 #endif
559 
560 static const struct dev_pm_ops rmi_spi_pm = {
561 	SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
562 	SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
563 			   NULL)
564 };
565 
566 static const struct spi_device_id rmi_id[] = {
567 	{ "rmi4_spi", 0 },
568 	{ }
569 };
570 MODULE_DEVICE_TABLE(spi, rmi_id);
571 
572 static struct spi_driver rmi_spi_driver = {
573 	.driver = {
574 		.name	= "rmi4_spi",
575 		.pm	= &rmi_spi_pm,
576 		.of_match_table = of_match_ptr(rmi_spi_of_match),
577 	},
578 	.id_table	= rmi_id,
579 	.probe		= rmi_spi_probe,
580 	.remove		= rmi_spi_remove,
581 };
582 
583 module_spi_driver(rmi_spi_driver);
584 
585 MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
586 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
587 MODULE_DESCRIPTION("RMI SPI driver");
588 MODULE_LICENSE("GPL");
589 MODULE_VERSION(RMI_DRIVER_VERSION);
590