1 /* 2 * Copyright (c) 2011-2016 Synaptics Incorporated 3 * Copyright (c) 2011 Unixphere 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/rmi.h> 12 #include <linux/slab.h> 13 #include <linux/uaccess.h> 14 #include <linux/of.h> 15 #include <asm/unaligned.h> 16 #include "rmi_driver.h" 17 18 #define RMI_PRODUCT_ID_LENGTH 10 19 #define RMI_PRODUCT_INFO_LENGTH 2 20 21 #define RMI_DATE_CODE_LENGTH 3 22 23 #define PRODUCT_ID_OFFSET 0x10 24 #define PRODUCT_INFO_OFFSET 0x1E 25 26 27 /* Force a firmware reset of the sensor */ 28 #define RMI_F01_CMD_DEVICE_RESET 1 29 30 /* Various F01_RMI_QueryX bits */ 31 32 #define RMI_F01_QRY1_CUSTOM_MAP BIT(0) 33 #define RMI_F01_QRY1_NON_COMPLIANT BIT(1) 34 #define RMI_F01_QRY1_HAS_LTS BIT(2) 35 #define RMI_F01_QRY1_HAS_SENSOR_ID BIT(3) 36 #define RMI_F01_QRY1_HAS_CHARGER_INP BIT(4) 37 #define RMI_F01_QRY1_HAS_ADJ_DOZE BIT(5) 38 #define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF BIT(6) 39 #define RMI_F01_QRY1_HAS_QUERY42 BIT(7) 40 41 #define RMI_F01_QRY5_YEAR_MASK 0x1f 42 #define RMI_F01_QRY6_MONTH_MASK 0x0f 43 #define RMI_F01_QRY7_DAY_MASK 0x1f 44 45 #define RMI_F01_QRY2_PRODINFO_MASK 0x7f 46 47 #define RMI_F01_BASIC_QUERY_LEN 21 /* From Query 00 through 20 */ 48 49 struct f01_basic_properties { 50 u8 manufacturer_id; 51 bool has_lts; 52 bool has_adjustable_doze; 53 bool has_adjustable_doze_holdoff; 54 char dom[11]; /* YYYY/MM/DD + '\0' */ 55 u8 product_id[RMI_PRODUCT_ID_LENGTH + 1]; 56 u16 productinfo; 57 u32 firmware_id; 58 u32 package_id; 59 }; 60 61 /* F01 device status bits */ 62 63 /* Most recent device status event */ 64 #define RMI_F01_STATUS_CODE(status) ((status) & 0x0f) 65 /* The device has lost its configuration for some reason. */ 66 #define RMI_F01_STATUS_UNCONFIGURED(status) (!!((status) & 0x80)) 67 /* The device is in bootloader mode */ 68 #define RMI_F01_STATUS_BOOTLOADER(status) ((status) & 0x40) 69 70 /* Control register bits */ 71 72 /* 73 * Sleep mode controls power management on the device and affects all 74 * functions of the device. 75 */ 76 #define RMI_F01_CTRL0_SLEEP_MODE_MASK 0x03 77 78 #define RMI_SLEEP_MODE_NORMAL 0x00 79 #define RMI_SLEEP_MODE_SENSOR_SLEEP 0x01 80 #define RMI_SLEEP_MODE_RESERVED0 0x02 81 #define RMI_SLEEP_MODE_RESERVED1 0x03 82 83 /* 84 * This bit disables whatever sleep mode may be selected by the sleep_mode 85 * field and forces the device to run at full power without sleeping. 86 */ 87 #define RMI_F01_CTRL0_NOSLEEP_BIT BIT(2) 88 89 /* 90 * When this bit is set, the touch controller employs a noise-filtering 91 * algorithm designed for use with a connected battery charger. 92 */ 93 #define RMI_F01_CTRL0_CHARGER_BIT BIT(5) 94 95 /* 96 * Sets the report rate for the device. The effect of this setting is 97 * highly product dependent. Check the spec sheet for your particular 98 * touch sensor. 99 */ 100 #define RMI_F01_CTRL0_REPORTRATE_BIT BIT(6) 101 102 /* 103 * Written by the host as an indicator that the device has been 104 * successfully configured. 105 */ 106 #define RMI_F01_CTRL0_CONFIGURED_BIT BIT(7) 107 108 /** 109 * @ctrl0 - see the bit definitions above. 110 * @doze_interval - controls the interval between checks for finger presence 111 * when the touch sensor is in doze mode, in units of 10ms. 112 * @wakeup_threshold - controls the capacitance threshold at which the touch 113 * sensor will decide to wake up from that low power state. 114 * @doze_holdoff - controls how long the touch sensor waits after the last 115 * finger lifts before entering the doze state, in units of 100ms. 116 */ 117 struct f01_device_control { 118 u8 ctrl0; 119 u8 doze_interval; 120 u8 wakeup_threshold; 121 u8 doze_holdoff; 122 }; 123 124 struct f01_data { 125 struct f01_basic_properties properties; 126 struct f01_device_control device_control; 127 128 u16 doze_interval_addr; 129 u16 wakeup_threshold_addr; 130 u16 doze_holdoff_addr; 131 132 bool suspended; 133 bool old_nosleep; 134 135 unsigned int num_of_irq_regs; 136 }; 137 138 static int rmi_f01_read_properties(struct rmi_device *rmi_dev, 139 u16 query_base_addr, 140 struct f01_basic_properties *props) 141 { 142 u8 queries[RMI_F01_BASIC_QUERY_LEN]; 143 int ret; 144 int query_offset = query_base_addr; 145 bool has_ds4_queries = false; 146 bool has_query42 = false; 147 bool has_sensor_id = false; 148 bool has_package_id_query = false; 149 bool has_build_id_query = false; 150 u16 prod_info_addr; 151 u8 ds4_query_len; 152 153 ret = rmi_read_block(rmi_dev, query_offset, 154 queries, RMI_F01_BASIC_QUERY_LEN); 155 if (ret) { 156 dev_err(&rmi_dev->dev, 157 "Failed to read device query registers: %d\n", ret); 158 return ret; 159 } 160 161 prod_info_addr = query_offset + 17; 162 query_offset += RMI_F01_BASIC_QUERY_LEN; 163 164 /* Now parse what we got */ 165 props->manufacturer_id = queries[0]; 166 167 props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS; 168 props->has_adjustable_doze = 169 queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE; 170 props->has_adjustable_doze_holdoff = 171 queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF; 172 has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42; 173 has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID; 174 175 snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d", 176 queries[5] & RMI_F01_QRY5_YEAR_MASK, 177 queries[6] & RMI_F01_QRY6_MONTH_MASK, 178 queries[7] & RMI_F01_QRY7_DAY_MASK); 179 180 memcpy(props->product_id, &queries[11], 181 RMI_PRODUCT_ID_LENGTH); 182 props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0'; 183 184 props->productinfo = 185 ((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) | 186 (queries[3] & RMI_F01_QRY2_PRODINFO_MASK); 187 188 if (has_sensor_id) 189 query_offset++; 190 191 if (has_query42) { 192 ret = rmi_read(rmi_dev, query_offset, queries); 193 if (ret) { 194 dev_err(&rmi_dev->dev, 195 "Failed to read query 42 register: %d\n", ret); 196 return ret; 197 } 198 199 has_ds4_queries = !!(queries[0] & BIT(0)); 200 query_offset++; 201 } 202 203 if (has_ds4_queries) { 204 ret = rmi_read(rmi_dev, query_offset, &ds4_query_len); 205 if (ret) { 206 dev_err(&rmi_dev->dev, 207 "Failed to read DS4 queries length: %d\n", ret); 208 return ret; 209 } 210 query_offset++; 211 212 if (ds4_query_len > 0) { 213 ret = rmi_read(rmi_dev, query_offset, queries); 214 if (ret) { 215 dev_err(&rmi_dev->dev, 216 "Failed to read DS4 queries: %d\n", 217 ret); 218 return ret; 219 } 220 221 has_package_id_query = !!(queries[0] & BIT(0)); 222 has_build_id_query = !!(queries[0] & BIT(1)); 223 } 224 225 if (has_package_id_query) { 226 ret = rmi_read_block(rmi_dev, prod_info_addr, 227 queries, sizeof(__le64)); 228 if (ret) { 229 dev_err(&rmi_dev->dev, 230 "Failed to read package info: %d\n", 231 ret); 232 return ret; 233 } 234 235 props->package_id = get_unaligned_le64(queries); 236 prod_info_addr++; 237 } 238 239 if (has_build_id_query) { 240 ret = rmi_read_block(rmi_dev, prod_info_addr, queries, 241 3); 242 if (ret) { 243 dev_err(&rmi_dev->dev, 244 "Failed to read product info: %d\n", 245 ret); 246 return ret; 247 } 248 249 props->firmware_id = queries[1] << 8 | queries[0]; 250 props->firmware_id += queries[2] * 65536; 251 } 252 } 253 254 return 0; 255 } 256 257 const char *rmi_f01_get_product_ID(struct rmi_function *fn) 258 { 259 struct f01_data *f01 = dev_get_drvdata(&fn->dev); 260 261 return f01->properties.product_id; 262 } 263 264 static ssize_t rmi_driver_manufacturer_id_show(struct device *dev, 265 struct device_attribute *dattr, 266 char *buf) 267 { 268 struct rmi_driver_data *data = dev_get_drvdata(dev); 269 struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); 270 271 return scnprintf(buf, PAGE_SIZE, "%d\n", 272 f01->properties.manufacturer_id); 273 } 274 275 static DEVICE_ATTR(manufacturer_id, 0444, 276 rmi_driver_manufacturer_id_show, NULL); 277 278 static ssize_t rmi_driver_dom_show(struct device *dev, 279 struct device_attribute *dattr, char *buf) 280 { 281 struct rmi_driver_data *data = dev_get_drvdata(dev); 282 struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); 283 284 return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.dom); 285 } 286 287 static DEVICE_ATTR(date_of_manufacture, 0444, rmi_driver_dom_show, NULL); 288 289 static ssize_t rmi_driver_product_id_show(struct device *dev, 290 struct device_attribute *dattr, 291 char *buf) 292 { 293 struct rmi_driver_data *data = dev_get_drvdata(dev); 294 struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); 295 296 return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.product_id); 297 } 298 299 static DEVICE_ATTR(product_id, 0444, rmi_driver_product_id_show, NULL); 300 301 static ssize_t rmi_driver_firmware_id_show(struct device *dev, 302 struct device_attribute *dattr, 303 char *buf) 304 { 305 struct rmi_driver_data *data = dev_get_drvdata(dev); 306 struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); 307 308 return scnprintf(buf, PAGE_SIZE, "%d\n", f01->properties.firmware_id); 309 } 310 311 static DEVICE_ATTR(firmware_id, 0444, rmi_driver_firmware_id_show, NULL); 312 313 static ssize_t rmi_driver_package_id_show(struct device *dev, 314 struct device_attribute *dattr, 315 char *buf) 316 { 317 struct rmi_driver_data *data = dev_get_drvdata(dev); 318 struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); 319 320 u32 package_id = f01->properties.package_id; 321 322 return scnprintf(buf, PAGE_SIZE, "%04x.%04x\n", 323 package_id & 0xffff, (package_id >> 16) & 0xffff); 324 } 325 326 static DEVICE_ATTR(package_id, 0444, rmi_driver_package_id_show, NULL); 327 328 static struct attribute *rmi_f01_attrs[] = { 329 &dev_attr_manufacturer_id.attr, 330 &dev_attr_date_of_manufacture.attr, 331 &dev_attr_product_id.attr, 332 &dev_attr_firmware_id.attr, 333 &dev_attr_package_id.attr, 334 NULL 335 }; 336 337 static const struct attribute_group rmi_f01_attr_group = { 338 .attrs = rmi_f01_attrs, 339 }; 340 341 #ifdef CONFIG_OF 342 static int rmi_f01_of_probe(struct device *dev, 343 struct rmi_device_platform_data *pdata) 344 { 345 int retval; 346 u32 val; 347 348 retval = rmi_of_property_read_u32(dev, 349 (u32 *)&pdata->power_management.nosleep, 350 "syna,nosleep-mode", 1); 351 if (retval) 352 return retval; 353 354 retval = rmi_of_property_read_u32(dev, &val, 355 "syna,wakeup-threshold", 1); 356 if (retval) 357 return retval; 358 359 pdata->power_management.wakeup_threshold = val; 360 361 retval = rmi_of_property_read_u32(dev, &val, 362 "syna,doze-holdoff-ms", 1); 363 if (retval) 364 return retval; 365 366 pdata->power_management.doze_holdoff = val * 100; 367 368 retval = rmi_of_property_read_u32(dev, &val, 369 "syna,doze-interval-ms", 1); 370 if (retval) 371 return retval; 372 373 pdata->power_management.doze_interval = val / 10; 374 375 return 0; 376 } 377 #else 378 static inline int rmi_f01_of_probe(struct device *dev, 379 struct rmi_device_platform_data *pdata) 380 { 381 return -ENODEV; 382 } 383 #endif 384 385 static int rmi_f01_probe(struct rmi_function *fn) 386 { 387 struct rmi_device *rmi_dev = fn->rmi_dev; 388 struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev); 389 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 390 struct f01_data *f01; 391 int error; 392 u16 ctrl_base_addr = fn->fd.control_base_addr; 393 u8 device_status; 394 u8 temp; 395 396 if (fn->dev.of_node) { 397 error = rmi_f01_of_probe(&fn->dev, pdata); 398 if (error) 399 return error; 400 } 401 402 f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL); 403 if (!f01) 404 return -ENOMEM; 405 406 f01->num_of_irq_regs = driver_data->num_of_irq_regs; 407 408 /* 409 * Set the configured bit and (optionally) other important stuff 410 * in the device control register. 411 */ 412 413 error = rmi_read(rmi_dev, fn->fd.control_base_addr, 414 &f01->device_control.ctrl0); 415 if (error) { 416 dev_err(&fn->dev, "Failed to read F01 control: %d\n", error); 417 return error; 418 } 419 420 switch (pdata->power_management.nosleep) { 421 case RMI_REG_STATE_DEFAULT: 422 break; 423 case RMI_REG_STATE_OFF: 424 f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT; 425 break; 426 case RMI_REG_STATE_ON: 427 f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT; 428 break; 429 } 430 431 /* 432 * Sleep mode might be set as a hangover from a system crash or 433 * reboot without power cycle. If so, clear it so the sensor 434 * is certain to function. 435 */ 436 if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) != 437 RMI_SLEEP_MODE_NORMAL) { 438 dev_warn(&fn->dev, 439 "WARNING: Non-zero sleep mode found. Clearing...\n"); 440 f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; 441 } 442 443 f01->device_control.ctrl0 |= RMI_F01_CTRL0_CONFIGURED_BIT; 444 445 error = rmi_write(rmi_dev, fn->fd.control_base_addr, 446 f01->device_control.ctrl0); 447 if (error) { 448 dev_err(&fn->dev, "Failed to write F01 control: %d\n", error); 449 return error; 450 } 451 452 /* Dummy read in order to clear irqs */ 453 error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp); 454 if (error < 0) { 455 dev_err(&fn->dev, "Failed to read Interrupt Status.\n"); 456 return error; 457 } 458 459 error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr, 460 &f01->properties); 461 if (error < 0) { 462 dev_err(&fn->dev, "Failed to read F01 properties.\n"); 463 return error; 464 } 465 466 dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n", 467 f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown", 468 f01->properties.product_id, f01->properties.firmware_id); 469 470 /* Advance to interrupt control registers, then skip over them. */ 471 ctrl_base_addr++; 472 ctrl_base_addr += f01->num_of_irq_regs; 473 474 /* read control register */ 475 if (f01->properties.has_adjustable_doze) { 476 f01->doze_interval_addr = ctrl_base_addr; 477 ctrl_base_addr++; 478 479 if (pdata->power_management.doze_interval) { 480 f01->device_control.doze_interval = 481 pdata->power_management.doze_interval; 482 error = rmi_write(rmi_dev, f01->doze_interval_addr, 483 f01->device_control.doze_interval); 484 if (error) { 485 dev_err(&fn->dev, 486 "Failed to configure F01 doze interval register: %d\n", 487 error); 488 return error; 489 } 490 } else { 491 error = rmi_read(rmi_dev, f01->doze_interval_addr, 492 &f01->device_control.doze_interval); 493 if (error) { 494 dev_err(&fn->dev, 495 "Failed to read F01 doze interval register: %d\n", 496 error); 497 return error; 498 } 499 } 500 501 f01->wakeup_threshold_addr = ctrl_base_addr; 502 ctrl_base_addr++; 503 504 if (pdata->power_management.wakeup_threshold) { 505 f01->device_control.wakeup_threshold = 506 pdata->power_management.wakeup_threshold; 507 error = rmi_write(rmi_dev, f01->wakeup_threshold_addr, 508 f01->device_control.wakeup_threshold); 509 if (error) { 510 dev_err(&fn->dev, 511 "Failed to configure F01 wakeup threshold register: %d\n", 512 error); 513 return error; 514 } 515 } else { 516 error = rmi_read(rmi_dev, f01->wakeup_threshold_addr, 517 &f01->device_control.wakeup_threshold); 518 if (error < 0) { 519 dev_err(&fn->dev, 520 "Failed to read F01 wakeup threshold register: %d\n", 521 error); 522 return error; 523 } 524 } 525 } 526 527 if (f01->properties.has_lts) 528 ctrl_base_addr++; 529 530 if (f01->properties.has_adjustable_doze_holdoff) { 531 f01->doze_holdoff_addr = ctrl_base_addr; 532 ctrl_base_addr++; 533 534 if (pdata->power_management.doze_holdoff) { 535 f01->device_control.doze_holdoff = 536 pdata->power_management.doze_holdoff; 537 error = rmi_write(rmi_dev, f01->doze_holdoff_addr, 538 f01->device_control.doze_holdoff); 539 if (error) { 540 dev_err(&fn->dev, 541 "Failed to configure F01 doze holdoff register: %d\n", 542 error); 543 return error; 544 } 545 } else { 546 error = rmi_read(rmi_dev, f01->doze_holdoff_addr, 547 &f01->device_control.doze_holdoff); 548 if (error) { 549 dev_err(&fn->dev, 550 "Failed to read F01 doze holdoff register: %d\n", 551 error); 552 return error; 553 } 554 } 555 } 556 557 error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status); 558 if (error < 0) { 559 dev_err(&fn->dev, 560 "Failed to read device status: %d\n", error); 561 return error; 562 } 563 564 if (RMI_F01_STATUS_UNCONFIGURED(device_status)) { 565 dev_err(&fn->dev, 566 "Device was reset during configuration process, status: %#02x!\n", 567 RMI_F01_STATUS_CODE(device_status)); 568 return -EINVAL; 569 } 570 571 dev_set_drvdata(&fn->dev, f01); 572 573 error = sysfs_create_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group); 574 if (error) 575 dev_warn(&fn->dev, "Failed to create sysfs group: %d\n", error); 576 577 return 0; 578 } 579 580 static void rmi_f01_remove(struct rmi_function *fn) 581 { 582 /* Note that the bus device is used, not the F01 device */ 583 sysfs_remove_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group); 584 } 585 586 static int rmi_f01_config(struct rmi_function *fn) 587 { 588 struct f01_data *f01 = dev_get_drvdata(&fn->dev); 589 int error; 590 591 error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr, 592 f01->device_control.ctrl0); 593 if (error) { 594 dev_err(&fn->dev, 595 "Failed to write device_control register: %d\n", error); 596 return error; 597 } 598 599 if (f01->properties.has_adjustable_doze) { 600 error = rmi_write(fn->rmi_dev, f01->doze_interval_addr, 601 f01->device_control.doze_interval); 602 if (error) { 603 dev_err(&fn->dev, 604 "Failed to write doze interval: %d\n", error); 605 return error; 606 } 607 608 error = rmi_write_block(fn->rmi_dev, 609 f01->wakeup_threshold_addr, 610 &f01->device_control.wakeup_threshold, 611 sizeof(u8)); 612 if (error) { 613 dev_err(&fn->dev, 614 "Failed to write wakeup threshold: %d\n", 615 error); 616 return error; 617 } 618 } 619 620 if (f01->properties.has_adjustable_doze_holdoff) { 621 error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr, 622 f01->device_control.doze_holdoff); 623 if (error) { 624 dev_err(&fn->dev, 625 "Failed to write doze holdoff: %d\n", error); 626 return error; 627 } 628 } 629 630 return 0; 631 } 632 633 static int rmi_f01_suspend(struct rmi_function *fn) 634 { 635 struct f01_data *f01 = dev_get_drvdata(&fn->dev); 636 int error; 637 638 f01->old_nosleep = 639 f01->device_control.ctrl0 & RMI_F01_CTRL0_NOSLEEP_BIT; 640 f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT; 641 642 f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; 643 if (device_may_wakeup(fn->rmi_dev->xport->dev)) 644 f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1; 645 else 646 f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP; 647 648 error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr, 649 f01->device_control.ctrl0); 650 if (error) { 651 dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error); 652 if (f01->old_nosleep) 653 f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT; 654 f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; 655 f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL; 656 return error; 657 } 658 659 return 0; 660 } 661 662 static int rmi_f01_resume(struct rmi_function *fn) 663 { 664 struct f01_data *f01 = dev_get_drvdata(&fn->dev); 665 int error; 666 667 if (f01->old_nosleep) 668 f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT; 669 670 f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; 671 f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL; 672 673 error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr, 674 f01->device_control.ctrl0); 675 if (error) { 676 dev_err(&fn->dev, 677 "Failed to restore normal operation: %d.\n", error); 678 return error; 679 } 680 681 return 0; 682 } 683 684 static irqreturn_t rmi_f01_attention(int irq, void *ctx) 685 { 686 struct rmi_function *fn = ctx; 687 struct rmi_device *rmi_dev = fn->rmi_dev; 688 int error; 689 u8 device_status; 690 691 error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status); 692 if (error) { 693 dev_err(&fn->dev, 694 "Failed to read device status: %d.\n", error); 695 return IRQ_RETVAL(error); 696 } 697 698 if (RMI_F01_STATUS_BOOTLOADER(device_status)) 699 dev_warn(&fn->dev, 700 "Device in bootloader mode, please update firmware\n"); 701 702 if (RMI_F01_STATUS_UNCONFIGURED(device_status)) { 703 dev_warn(&fn->dev, "Device reset detected.\n"); 704 error = rmi_dev->driver->reset_handler(rmi_dev); 705 if (error) { 706 dev_err(&fn->dev, "Device reset failed: %d\n", error); 707 return IRQ_RETVAL(error); 708 } 709 } 710 711 return IRQ_HANDLED; 712 } 713 714 struct rmi_function_handler rmi_f01_handler = { 715 .driver = { 716 .name = "rmi4_f01", 717 /* 718 * Do not allow user unbinding F01 as it is critical 719 * function. 720 */ 721 .suppress_bind_attrs = true, 722 }, 723 .func = 0x01, 724 .probe = rmi_f01_probe, 725 .remove = rmi_f01_remove, 726 .config = rmi_f01_config, 727 .attention = rmi_f01_attention, 728 .suspend = rmi_f01_suspend, 729 .resume = rmi_f01_resume, 730 }; 731