xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision d2c43ff1)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28 
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33 
34 #define RMI_DEVICE_RESET_CMD	0x01
35 #define DEFAULT_RESET_DELAY_MS	100
36 
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 	struct rmi_function *fn, *tmp;
40 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41 
42 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43 
44 	devm_kfree(&rmi_dev->dev, data->irq_memory);
45 	data->irq_memory = NULL;
46 	data->irq_status = NULL;
47 	data->fn_irq_bits = NULL;
48 	data->current_irq_mask = NULL;
49 	data->new_irq_mask = NULL;
50 
51 	data->f01_container = NULL;
52 	data->f34_container = NULL;
53 
54 	/* Doing it in the reverse order so F01 will be removed last */
55 	list_for_each_entry_safe_reverse(fn, tmp,
56 					 &data->function_list, node) {
57 		list_del(&fn->node);
58 		rmi_unregister_function(fn);
59 	}
60 }
61 
62 static int reset_one_function(struct rmi_function *fn)
63 {
64 	struct rmi_function_handler *fh;
65 	int retval = 0;
66 
67 	if (!fn || !fn->dev.driver)
68 		return 0;
69 
70 	fh = to_rmi_function_handler(fn->dev.driver);
71 	if (fh->reset) {
72 		retval = fh->reset(fn);
73 		if (retval < 0)
74 			dev_err(&fn->dev, "Reset failed with code %d.\n",
75 				retval);
76 	}
77 
78 	return retval;
79 }
80 
81 static int configure_one_function(struct rmi_function *fn)
82 {
83 	struct rmi_function_handler *fh;
84 	int retval = 0;
85 
86 	if (!fn || !fn->dev.driver)
87 		return 0;
88 
89 	fh = to_rmi_function_handler(fn->dev.driver);
90 	if (fh->config) {
91 		retval = fh->config(fn);
92 		if (retval < 0)
93 			dev_err(&fn->dev, "Config failed with code %d.\n",
94 				retval);
95 	}
96 
97 	return retval;
98 }
99 
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 	struct rmi_function *entry;
104 	int retval;
105 
106 	list_for_each_entry(entry, &data->function_list, node) {
107 		retval = reset_one_function(entry);
108 		if (retval < 0)
109 			return retval;
110 	}
111 
112 	return 0;
113 }
114 
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 	struct rmi_function *entry;
119 	int retval;
120 
121 	list_for_each_entry(entry, &data->function_list, node) {
122 		retval = configure_one_function(entry);
123 		if (retval < 0)
124 			return retval;
125 	}
126 
127 	return 0;
128 }
129 
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 				  struct rmi_function *fn)
132 {
133 	struct rmi_function_handler *fh;
134 
135 	if (!fn || !fn->dev.driver)
136 		return;
137 
138 	fh = to_rmi_function_handler(fn->dev.driver);
139 	if (fh->attention) {
140 		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141 				data->irq_count);
142 		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 			fh->attention(fn, data->fn_irq_bits);
144 	}
145 }
146 
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 	struct device *dev = &rmi_dev->dev;
151 	struct rmi_function *entry;
152 	int error;
153 
154 	if (!data)
155 		return 0;
156 
157 	if (!data->attn_data.data) {
158 		error = rmi_read_block(rmi_dev,
159 				data->f01_container->fd.data_base_addr + 1,
160 				data->irq_status, data->num_of_irq_regs);
161 		if (error < 0) {
162 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
163 			return error;
164 		}
165 	}
166 
167 	mutex_lock(&data->irq_mutex);
168 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169 	       data->irq_count);
170 	/*
171 	 * At this point, irq_status has all bits that are set in the
172 	 * interrupt status register and are enabled.
173 	 */
174 	mutex_unlock(&data->irq_mutex);
175 
176 	/*
177 	 * It would be nice to be able to use irq_chip to handle these
178 	 * nested IRQs.  Unfortunately, most of the current customers for
179 	 * this driver are using older kernels (3.0.x) that don't support
180 	 * the features required for that.  Once they've shifted to more
181 	 * recent kernels (say, 3.3 and higher), this should be switched to
182 	 * use irq_chip.
183 	 */
184 	list_for_each_entry(entry, &data->function_list, node)
185 		process_one_interrupt(data, entry);
186 
187 	if (data->input)
188 		input_sync(data->input);
189 
190 	return 0;
191 }
192 
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 		       void *data, size_t size)
195 {
196 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 	struct rmi4_attn_data attn_data;
198 	void *fifo_data;
199 
200 	if (!drvdata->enabled)
201 		return;
202 
203 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
204 	if (!fifo_data)
205 		return;
206 
207 	attn_data.irq_status = irq_status;
208 	attn_data.size = size;
209 	attn_data.data = fifo_data;
210 
211 	kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214 
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217 	struct rmi_device *rmi_dev = dev_id;
218 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 	struct rmi4_attn_data attn_data = {0};
220 	int ret, count;
221 
222 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223 	if (count) {
224 		*(drvdata->irq_status) = attn_data.irq_status;
225 		drvdata->attn_data = attn_data;
226 	}
227 
228 	ret = rmi_process_interrupt_requests(rmi_dev);
229 	if (ret)
230 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 			"Failed to process interrupt request: %d\n", ret);
232 
233 	if (count)
234 		kfree(attn_data.data);
235 
236 	if (!kfifo_is_empty(&drvdata->attn_fifo))
237 		return rmi_irq_fn(irq, dev_id);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
243 {
244 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 	int irq_flags = irq_get_trigger_type(pdata->irq);
247 	int ret;
248 
249 	if (!irq_flags)
250 		irq_flags = IRQF_TRIGGER_LOW;
251 
252 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254 					dev_driver_string(rmi_dev->xport->dev),
255 					rmi_dev);
256 	if (ret < 0) {
257 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
258 			pdata->irq);
259 
260 		return ret;
261 	}
262 
263 	data->enabled = true;
264 
265 	return 0;
266 }
267 
268 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
269 {
270 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
271 	struct rmi_function *entry;
272 
273 	list_for_each_entry(entry, &data->function_list, node) {
274 		if (entry->fd.function_number == number)
275 			return entry;
276 	}
277 
278 	return NULL;
279 }
280 
281 static int suspend_one_function(struct rmi_function *fn)
282 {
283 	struct rmi_function_handler *fh;
284 	int retval = 0;
285 
286 	if (!fn || !fn->dev.driver)
287 		return 0;
288 
289 	fh = to_rmi_function_handler(fn->dev.driver);
290 	if (fh->suspend) {
291 		retval = fh->suspend(fn);
292 		if (retval < 0)
293 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
294 				retval);
295 	}
296 
297 	return retval;
298 }
299 
300 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
301 {
302 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
303 	struct rmi_function *entry;
304 	int retval;
305 
306 	list_for_each_entry(entry, &data->function_list, node) {
307 		retval = suspend_one_function(entry);
308 		if (retval < 0)
309 			return retval;
310 	}
311 
312 	return 0;
313 }
314 
315 static int resume_one_function(struct rmi_function *fn)
316 {
317 	struct rmi_function_handler *fh;
318 	int retval = 0;
319 
320 	if (!fn || !fn->dev.driver)
321 		return 0;
322 
323 	fh = to_rmi_function_handler(fn->dev.driver);
324 	if (fh->resume) {
325 		retval = fh->resume(fn);
326 		if (retval < 0)
327 			dev_err(&fn->dev, "Resume failed with code %d.\n",
328 				retval);
329 	}
330 
331 	return retval;
332 }
333 
334 static int rmi_resume_functions(struct rmi_device *rmi_dev)
335 {
336 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
337 	struct rmi_function *entry;
338 	int retval;
339 
340 	list_for_each_entry(entry, &data->function_list, node) {
341 		retval = resume_one_function(entry);
342 		if (retval < 0)
343 			return retval;
344 	}
345 
346 	return 0;
347 }
348 
349 int rmi_enable_sensor(struct rmi_device *rmi_dev)
350 {
351 	int retval = 0;
352 
353 	retval = rmi_driver_process_config_requests(rmi_dev);
354 	if (retval < 0)
355 		return retval;
356 
357 	return rmi_process_interrupt_requests(rmi_dev);
358 }
359 
360 /**
361  * rmi_driver_set_input_params - set input device id and other data.
362  *
363  * @rmi_dev: Pointer to an RMI device
364  * @input: Pointer to input device
365  *
366  */
367 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
368 				struct input_dev *input)
369 {
370 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
371 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
372 	input->id.bustype = BUS_RMI;
373 	return 0;
374 }
375 
376 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
377 				struct input_dev *input)
378 {
379 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
380 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
381 	char *name;
382 
383 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
384 			      "Synaptics %s", device_name);
385 	if (!name)
386 		return;
387 
388 	input->name = name;
389 }
390 
391 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
392 				   unsigned long *mask)
393 {
394 	int error = 0;
395 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
396 	struct device *dev = &rmi_dev->dev;
397 
398 	mutex_lock(&data->irq_mutex);
399 	bitmap_or(data->new_irq_mask,
400 		  data->current_irq_mask, mask, data->irq_count);
401 
402 	error = rmi_write_block(rmi_dev,
403 			data->f01_container->fd.control_base_addr + 1,
404 			data->new_irq_mask, data->num_of_irq_regs);
405 	if (error < 0) {
406 		dev_err(dev, "%s: Failed to change enabled interrupts!",
407 							__func__);
408 		goto error_unlock;
409 	}
410 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
411 		    data->num_of_irq_regs);
412 
413 error_unlock:
414 	mutex_unlock(&data->irq_mutex);
415 	return error;
416 }
417 
418 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
419 				     unsigned long *mask)
420 {
421 	int error = 0;
422 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
423 	struct device *dev = &rmi_dev->dev;
424 
425 	mutex_lock(&data->irq_mutex);
426 	bitmap_andnot(data->new_irq_mask,
427 		  data->current_irq_mask, mask, data->irq_count);
428 
429 	error = rmi_write_block(rmi_dev,
430 			data->f01_container->fd.control_base_addr + 1,
431 			data->new_irq_mask, data->num_of_irq_regs);
432 	if (error < 0) {
433 		dev_err(dev, "%s: Failed to change enabled interrupts!",
434 							__func__);
435 		goto error_unlock;
436 	}
437 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
438 		    data->num_of_irq_regs);
439 
440 error_unlock:
441 	mutex_unlock(&data->irq_mutex);
442 	return error;
443 }
444 
445 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
446 {
447 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
448 	int error;
449 
450 	/*
451 	 * Can get called before the driver is fully ready to deal with
452 	 * this situation.
453 	 */
454 	if (!data || !data->f01_container) {
455 		dev_warn(&rmi_dev->dev,
456 			 "Not ready to handle reset yet!\n");
457 		return 0;
458 	}
459 
460 	error = rmi_read_block(rmi_dev,
461 			       data->f01_container->fd.control_base_addr + 1,
462 			       data->current_irq_mask, data->num_of_irq_regs);
463 	if (error < 0) {
464 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
465 			__func__);
466 		return error;
467 	}
468 
469 	error = rmi_driver_process_reset_requests(rmi_dev);
470 	if (error < 0)
471 		return error;
472 
473 	error = rmi_driver_process_config_requests(rmi_dev);
474 	if (error < 0)
475 		return error;
476 
477 	return 0;
478 }
479 
480 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
481 			      struct pdt_entry *entry, u16 pdt_address)
482 {
483 	u8 buf[RMI_PDT_ENTRY_SIZE];
484 	int error;
485 
486 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
487 	if (error) {
488 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
489 				pdt_address, error);
490 		return error;
491 	}
492 
493 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
494 	entry->query_base_addr = buf[0];
495 	entry->command_base_addr = buf[1];
496 	entry->control_base_addr = buf[2];
497 	entry->data_base_addr = buf[3];
498 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
499 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
500 	entry->function_number = buf[5];
501 
502 	return 0;
503 }
504 
505 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
506 				      struct rmi_function_descriptor *fd)
507 {
508 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
509 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
510 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
511 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
512 	fd->function_number = pdt->function_number;
513 	fd->interrupt_source_count = pdt->interrupt_source_count;
514 	fd->function_version = pdt->function_version;
515 }
516 
517 #define RMI_SCAN_CONTINUE	0
518 #define RMI_SCAN_DONE		1
519 
520 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
521 			     int page,
522 			     int *empty_pages,
523 			     void *ctx,
524 			     int (*callback)(struct rmi_device *rmi_dev,
525 					     void *ctx,
526 					     const struct pdt_entry *entry))
527 {
528 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
529 	struct pdt_entry pdt_entry;
530 	u16 page_start = RMI4_PAGE_SIZE * page;
531 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
532 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
533 	u16 addr;
534 	int error;
535 	int retval;
536 
537 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
538 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
539 		if (error)
540 			return error;
541 
542 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
543 			break;
544 
545 		retval = callback(rmi_dev, ctx, &pdt_entry);
546 		if (retval != RMI_SCAN_CONTINUE)
547 			return retval;
548 	}
549 
550 	/*
551 	 * Count number of empty PDT pages. If a gap of two pages
552 	 * or more is found, stop scanning.
553 	 */
554 	if (addr == pdt_start)
555 		++*empty_pages;
556 	else
557 		*empty_pages = 0;
558 
559 	return (data->bootloader_mode || *empty_pages >= 2) ?
560 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
561 }
562 
563 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
564 		 int (*callback)(struct rmi_device *rmi_dev,
565 		 void *ctx, const struct pdt_entry *entry))
566 {
567 	int page;
568 	int empty_pages = 0;
569 	int retval = RMI_SCAN_DONE;
570 
571 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
572 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
573 					   ctx, callback);
574 		if (retval != RMI_SCAN_CONTINUE)
575 			break;
576 	}
577 
578 	return retval < 0 ? retval : 0;
579 }
580 
581 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
582 				struct rmi_register_descriptor *rdesc)
583 {
584 	int ret;
585 	u8 size_presence_reg;
586 	u8 buf[35];
587 	int presense_offset = 1;
588 	u8 *struct_buf;
589 	int reg;
590 	int offset = 0;
591 	int map_offset = 0;
592 	int i;
593 	int b;
594 
595 	/*
596 	 * The first register of the register descriptor is the size of
597 	 * the register descriptor's presense register.
598 	 */
599 	ret = rmi_read(d, addr, &size_presence_reg);
600 	if (ret)
601 		return ret;
602 	++addr;
603 
604 	if (size_presence_reg < 0 || size_presence_reg > 35)
605 		return -EIO;
606 
607 	memset(buf, 0, sizeof(buf));
608 
609 	/*
610 	 * The presence register contains the size of the register structure
611 	 * and a bitmap which identified which packet registers are present
612 	 * for this particular register type (ie query, control, or data).
613 	 */
614 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
615 	if (ret)
616 		return ret;
617 	++addr;
618 
619 	if (buf[0] == 0) {
620 		presense_offset = 3;
621 		rdesc->struct_size = buf[1] | (buf[2] << 8);
622 	} else {
623 		rdesc->struct_size = buf[0];
624 	}
625 
626 	for (i = presense_offset; i < size_presence_reg; i++) {
627 		for (b = 0; b < 8; b++) {
628 			if (buf[i] & (0x1 << b))
629 				bitmap_set(rdesc->presense_map, map_offset, 1);
630 			++map_offset;
631 		}
632 	}
633 
634 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
635 						RMI_REG_DESC_PRESENSE_BITS);
636 
637 	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
638 				sizeof(struct rmi_register_desc_item),
639 				GFP_KERNEL);
640 	if (!rdesc->registers)
641 		return -ENOMEM;
642 
643 	/*
644 	 * Allocate a temporary buffer to hold the register structure.
645 	 * I'm not using devm_kzalloc here since it will not be retained
646 	 * after exiting this function
647 	 */
648 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
649 	if (!struct_buf)
650 		return -ENOMEM;
651 
652 	/*
653 	 * The register structure contains information about every packet
654 	 * register of this type. This includes the size of the packet
655 	 * register and a bitmap of all subpackets contained in the packet
656 	 * register.
657 	 */
658 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
659 	if (ret)
660 		goto free_struct_buff;
661 
662 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
663 	for (i = 0; i < rdesc->num_registers; i++) {
664 		struct rmi_register_desc_item *item = &rdesc->registers[i];
665 		int reg_size = struct_buf[offset];
666 
667 		++offset;
668 		if (reg_size == 0) {
669 			reg_size = struct_buf[offset] |
670 					(struct_buf[offset + 1] << 8);
671 			offset += 2;
672 		}
673 
674 		if (reg_size == 0) {
675 			reg_size = struct_buf[offset] |
676 					(struct_buf[offset + 1] << 8) |
677 					(struct_buf[offset + 2] << 16) |
678 					(struct_buf[offset + 3] << 24);
679 			offset += 4;
680 		}
681 
682 		item->reg = reg;
683 		item->reg_size = reg_size;
684 
685 		map_offset = 0;
686 
687 		do {
688 			for (b = 0; b < 7; b++) {
689 				if (struct_buf[offset] & (0x1 << b))
690 					bitmap_set(item->subpacket_map,
691 						map_offset, 1);
692 				++map_offset;
693 			}
694 		} while (struct_buf[offset++] & 0x80);
695 
696 		item->num_subpackets = bitmap_weight(item->subpacket_map,
697 						RMI_REG_DESC_SUBPACKET_BITS);
698 
699 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
700 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
701 			item->reg, item->reg_size, item->num_subpackets);
702 
703 		reg = find_next_bit(rdesc->presense_map,
704 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
705 	}
706 
707 free_struct_buff:
708 	kfree(struct_buf);
709 	return ret;
710 }
711 
712 const struct rmi_register_desc_item *rmi_get_register_desc_item(
713 				struct rmi_register_descriptor *rdesc, u16 reg)
714 {
715 	const struct rmi_register_desc_item *item;
716 	int i;
717 
718 	for (i = 0; i < rdesc->num_registers; i++) {
719 		item = &rdesc->registers[i];
720 		if (item->reg == reg)
721 			return item;
722 	}
723 
724 	return NULL;
725 }
726 
727 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
728 {
729 	const struct rmi_register_desc_item *item;
730 	int i;
731 	size_t size = 0;
732 
733 	for (i = 0; i < rdesc->num_registers; i++) {
734 		item = &rdesc->registers[i];
735 		size += item->reg_size;
736 	}
737 	return size;
738 }
739 
740 /* Compute the register offset relative to the base address */
741 int rmi_register_desc_calc_reg_offset(
742 		struct rmi_register_descriptor *rdesc, u16 reg)
743 {
744 	const struct rmi_register_desc_item *item;
745 	int offset = 0;
746 	int i;
747 
748 	for (i = 0; i < rdesc->num_registers; i++) {
749 		item = &rdesc->registers[i];
750 		if (item->reg == reg)
751 			return offset;
752 		++offset;
753 	}
754 	return -1;
755 }
756 
757 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
758 	u8 subpacket)
759 {
760 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
761 				subpacket) == subpacket;
762 }
763 
764 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
765 				     const struct pdt_entry *pdt)
766 {
767 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
768 	int ret;
769 	u8 status;
770 
771 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
772 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
773 		if (ret) {
774 			dev_err(&rmi_dev->dev,
775 				"Failed to read F34 status: %d.\n", ret);
776 			return ret;
777 		}
778 
779 		if (status & BIT(7))
780 			data->bootloader_mode = true;
781 	} else if (pdt->function_number == 0x01) {
782 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
783 		if (ret) {
784 			dev_err(&rmi_dev->dev,
785 				"Failed to read F01 status: %d.\n", ret);
786 			return ret;
787 		}
788 
789 		if (status & BIT(6))
790 			data->bootloader_mode = true;
791 	}
792 
793 	return 0;
794 }
795 
796 static int rmi_count_irqs(struct rmi_device *rmi_dev,
797 			 void *ctx, const struct pdt_entry *pdt)
798 {
799 	int *irq_count = ctx;
800 	int ret;
801 
802 	*irq_count += pdt->interrupt_source_count;
803 
804 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
805 	if (ret < 0)
806 		return ret;
807 
808 	return RMI_SCAN_CONTINUE;
809 }
810 
811 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
812 		      const struct pdt_entry *pdt)
813 {
814 	int error;
815 
816 	if (pdt->function_number == 0x01) {
817 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
818 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
819 		const struct rmi_device_platform_data *pdata =
820 				rmi_get_platform_data(rmi_dev);
821 
822 		if (rmi_dev->xport->ops->reset) {
823 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
824 								cmd_addr);
825 			if (error)
826 				return error;
827 
828 			return RMI_SCAN_DONE;
829 		}
830 
831 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
832 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
833 		if (error) {
834 			dev_err(&rmi_dev->dev,
835 				"Initial reset failed. Code = %d.\n", error);
836 			return error;
837 		}
838 
839 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
840 
841 		return RMI_SCAN_DONE;
842 	}
843 
844 	/* F01 should always be on page 0. If we don't find it there, fail. */
845 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
846 }
847 
848 static int rmi_create_function(struct rmi_device *rmi_dev,
849 			       void *ctx, const struct pdt_entry *pdt)
850 {
851 	struct device *dev = &rmi_dev->dev;
852 	struct rmi_driver_data *data = dev_get_drvdata(dev);
853 	int *current_irq_count = ctx;
854 	struct rmi_function *fn;
855 	int i;
856 	int error;
857 
858 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
859 			pdt->function_number);
860 
861 	fn = kzalloc(sizeof(struct rmi_function) +
862 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
863 		     GFP_KERNEL);
864 	if (!fn) {
865 		dev_err(dev, "Failed to allocate memory for F%02X\n",
866 			pdt->function_number);
867 		return -ENOMEM;
868 	}
869 
870 	INIT_LIST_HEAD(&fn->node);
871 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
872 
873 	fn->rmi_dev = rmi_dev;
874 
875 	fn->num_of_irqs = pdt->interrupt_source_count;
876 	fn->irq_pos = *current_irq_count;
877 	*current_irq_count += fn->num_of_irqs;
878 
879 	for (i = 0; i < fn->num_of_irqs; i++)
880 		set_bit(fn->irq_pos + i, fn->irq_mask);
881 
882 	error = rmi_register_function(fn);
883 	if (error)
884 		goto err_put_fn;
885 
886 	if (pdt->function_number == 0x01)
887 		data->f01_container = fn;
888 	else if (pdt->function_number == 0x34)
889 		data->f34_container = fn;
890 
891 	list_add_tail(&fn->node, &data->function_list);
892 
893 	return RMI_SCAN_CONTINUE;
894 
895 err_put_fn:
896 	put_device(&fn->dev);
897 	return error;
898 }
899 
900 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
901 {
902 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
903 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
904 	int irq = pdata->irq;
905 	int irq_flags;
906 	int retval;
907 
908 	mutex_lock(&data->enabled_mutex);
909 
910 	if (data->enabled)
911 		goto out;
912 
913 	enable_irq(irq);
914 	data->enabled = true;
915 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
916 		retval = disable_irq_wake(irq);
917 		if (retval)
918 			dev_warn(&rmi_dev->dev,
919 				 "Failed to disable irq for wake: %d\n",
920 				 retval);
921 	}
922 
923 	/*
924 	 * Call rmi_process_interrupt_requests() after enabling irq,
925 	 * otherwise we may lose interrupt on edge-triggered systems.
926 	 */
927 	irq_flags = irq_get_trigger_type(pdata->irq);
928 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
929 		rmi_process_interrupt_requests(rmi_dev);
930 
931 out:
932 	mutex_unlock(&data->enabled_mutex);
933 }
934 
935 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
936 {
937 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
938 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
939 	struct rmi4_attn_data attn_data = {0};
940 	int irq = pdata->irq;
941 	int retval, count;
942 
943 	mutex_lock(&data->enabled_mutex);
944 
945 	if (!data->enabled)
946 		goto out;
947 
948 	data->enabled = false;
949 	disable_irq(irq);
950 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
951 		retval = enable_irq_wake(irq);
952 		if (retval)
953 			dev_warn(&rmi_dev->dev,
954 				 "Failed to enable irq for wake: %d\n",
955 				 retval);
956 	}
957 
958 	/* make sure the fifo is clean */
959 	while (!kfifo_is_empty(&data->attn_fifo)) {
960 		count = kfifo_get(&data->attn_fifo, &attn_data);
961 		if (count)
962 			kfree(attn_data.data);
963 	}
964 
965 out:
966 	mutex_unlock(&data->enabled_mutex);
967 }
968 
969 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
970 {
971 	int retval;
972 
973 	retval = rmi_suspend_functions(rmi_dev);
974 	if (retval)
975 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
976 			retval);
977 
978 	rmi_disable_irq(rmi_dev, enable_wake);
979 	return retval;
980 }
981 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
982 
983 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
984 {
985 	int retval;
986 
987 	rmi_enable_irq(rmi_dev, clear_wake);
988 
989 	retval = rmi_resume_functions(rmi_dev);
990 	if (retval)
991 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
992 			retval);
993 
994 	return retval;
995 }
996 EXPORT_SYMBOL_GPL(rmi_driver_resume);
997 
998 static int rmi_driver_remove(struct device *dev)
999 {
1000 	struct rmi_device *rmi_dev = to_rmi_device(dev);
1001 
1002 	rmi_disable_irq(rmi_dev, false);
1003 
1004 	rmi_f34_remove_sysfs(rmi_dev);
1005 	rmi_free_function_list(rmi_dev);
1006 
1007 	return 0;
1008 }
1009 
1010 #ifdef CONFIG_OF
1011 static int rmi_driver_of_probe(struct device *dev,
1012 				struct rmi_device_platform_data *pdata)
1013 {
1014 	int retval;
1015 
1016 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1017 					"syna,reset-delay-ms", 1);
1018 	if (retval)
1019 		return retval;
1020 
1021 	return 0;
1022 }
1023 #else
1024 static inline int rmi_driver_of_probe(struct device *dev,
1025 					struct rmi_device_platform_data *pdata)
1026 {
1027 	return -ENODEV;
1028 }
1029 #endif
1030 
1031 int rmi_probe_interrupts(struct rmi_driver_data *data)
1032 {
1033 	struct rmi_device *rmi_dev = data->rmi_dev;
1034 	struct device *dev = &rmi_dev->dev;
1035 	int irq_count;
1036 	size_t size;
1037 	int retval;
1038 
1039 	/*
1040 	 * We need to count the IRQs and allocate their storage before scanning
1041 	 * the PDT and creating the function entries, because adding a new
1042 	 * function can trigger events that result in the IRQ related storage
1043 	 * being accessed.
1044 	 */
1045 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1046 	irq_count = 0;
1047 	data->bootloader_mode = false;
1048 
1049 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1050 	if (retval < 0) {
1051 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1052 		return retval;
1053 	}
1054 
1055 	if (data->bootloader_mode)
1056 		dev_warn(dev, "Device in bootloader mode.\n");
1057 
1058 	data->irq_count = irq_count;
1059 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1060 
1061 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1062 	data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1063 	if (!data->irq_memory) {
1064 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1065 		return -ENOMEM;
1066 	}
1067 
1068 	data->irq_status	= data->irq_memory + size * 0;
1069 	data->fn_irq_bits	= data->irq_memory + size * 1;
1070 	data->current_irq_mask	= data->irq_memory + size * 2;
1071 	data->new_irq_mask	= data->irq_memory + size * 3;
1072 
1073 	return retval;
1074 }
1075 
1076 int rmi_init_functions(struct rmi_driver_data *data)
1077 {
1078 	struct rmi_device *rmi_dev = data->rmi_dev;
1079 	struct device *dev = &rmi_dev->dev;
1080 	int irq_count;
1081 	int retval;
1082 
1083 	irq_count = 0;
1084 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1085 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1086 	if (retval < 0) {
1087 		dev_err(dev, "Function creation failed with code %d.\n",
1088 			retval);
1089 		goto err_destroy_functions;
1090 	}
1091 
1092 	if (!data->f01_container) {
1093 		dev_err(dev, "Missing F01 container!\n");
1094 		retval = -EINVAL;
1095 		goto err_destroy_functions;
1096 	}
1097 
1098 	retval = rmi_read_block(rmi_dev,
1099 				data->f01_container->fd.control_base_addr + 1,
1100 				data->current_irq_mask, data->num_of_irq_regs);
1101 	if (retval < 0) {
1102 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1103 			__func__);
1104 		goto err_destroy_functions;
1105 	}
1106 
1107 	return 0;
1108 
1109 err_destroy_functions:
1110 	rmi_free_function_list(rmi_dev);
1111 	return retval;
1112 }
1113 
1114 static int rmi_driver_probe(struct device *dev)
1115 {
1116 	struct rmi_driver *rmi_driver;
1117 	struct rmi_driver_data *data;
1118 	struct rmi_device_platform_data *pdata;
1119 	struct rmi_device *rmi_dev;
1120 	int retval;
1121 
1122 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1123 			__func__);
1124 
1125 	if (!rmi_is_physical_device(dev)) {
1126 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1127 		return -ENODEV;
1128 	}
1129 
1130 	rmi_dev = to_rmi_device(dev);
1131 	rmi_driver = to_rmi_driver(dev->driver);
1132 	rmi_dev->driver = rmi_driver;
1133 
1134 	pdata = rmi_get_platform_data(rmi_dev);
1135 
1136 	if (rmi_dev->xport->dev->of_node) {
1137 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1138 		if (retval)
1139 			return retval;
1140 	}
1141 
1142 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1143 	if (!data)
1144 		return -ENOMEM;
1145 
1146 	INIT_LIST_HEAD(&data->function_list);
1147 	data->rmi_dev = rmi_dev;
1148 	dev_set_drvdata(&rmi_dev->dev, data);
1149 
1150 	/*
1151 	 * Right before a warm boot, the sensor might be in some unusual state,
1152 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1153 	 * or configuration update.  In order to clear the sensor to a known
1154 	 * state and/or apply any updates, we issue a initial reset to clear any
1155 	 * previous settings and force it into normal operation.
1156 	 *
1157 	 * We have to do this before actually building the PDT because
1158 	 * the reflash updates (if any) might cause various registers to move
1159 	 * around.
1160 	 *
1161 	 * For a number of reasons, this initial reset may fail to return
1162 	 * within the specified time, but we'll still be able to bring up the
1163 	 * driver normally after that failure.  This occurs most commonly in
1164 	 * a cold boot situation (where then firmware takes longer to come up
1165 	 * than from a warm boot) and the reset_delay_ms in the platform data
1166 	 * has been set too short to accommodate that.  Since the sensor will
1167 	 * eventually come up and be usable, we don't want to just fail here
1168 	 * and leave the customer's device unusable.  So we warn them, and
1169 	 * continue processing.
1170 	 */
1171 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1172 	if (retval < 0)
1173 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1174 
1175 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1176 	if (retval < 0) {
1177 		/*
1178 		 * we'll print out a warning and continue since
1179 		 * failure to get the PDT properties is not a cause to fail
1180 		 */
1181 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1182 			 PDT_PROPERTIES_LOCATION, retval);
1183 	}
1184 
1185 	mutex_init(&data->irq_mutex);
1186 	mutex_init(&data->enabled_mutex);
1187 
1188 	retval = rmi_probe_interrupts(data);
1189 	if (retval)
1190 		goto err;
1191 
1192 	if (rmi_dev->xport->input) {
1193 		/*
1194 		 * The transport driver already has an input device.
1195 		 * In some cases it is preferable to reuse the transport
1196 		 * devices input device instead of creating a new one here.
1197 		 * One example is some HID touchpads report "pass-through"
1198 		 * button events are not reported by rmi registers.
1199 		 */
1200 		data->input = rmi_dev->xport->input;
1201 	} else {
1202 		data->input = devm_input_allocate_device(dev);
1203 		if (!data->input) {
1204 			dev_err(dev, "%s: Failed to allocate input device.\n",
1205 				__func__);
1206 			retval = -ENOMEM;
1207 			goto err;
1208 		}
1209 		rmi_driver_set_input_params(rmi_dev, data->input);
1210 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1211 						"%s/input0", dev_name(dev));
1212 	}
1213 
1214 	retval = rmi_init_functions(data);
1215 	if (retval)
1216 		goto err;
1217 
1218 	retval = rmi_f34_create_sysfs(rmi_dev);
1219 	if (retval)
1220 		goto err;
1221 
1222 	if (data->input) {
1223 		rmi_driver_set_input_name(rmi_dev, data->input);
1224 		if (!rmi_dev->xport->input) {
1225 			if (input_register_device(data->input)) {
1226 				dev_err(dev, "%s: Failed to register input device.\n",
1227 					__func__);
1228 				goto err_destroy_functions;
1229 			}
1230 		}
1231 	}
1232 
1233 	retval = rmi_irq_init(rmi_dev);
1234 	if (retval < 0)
1235 		goto err_destroy_functions;
1236 
1237 	if (data->f01_container->dev.driver) {
1238 		/* Driver already bound, so enable ATTN now. */
1239 		retval = rmi_enable_sensor(rmi_dev);
1240 		if (retval)
1241 			goto err_disable_irq;
1242 	}
1243 
1244 	return 0;
1245 
1246 err_disable_irq:
1247 	rmi_disable_irq(rmi_dev, false);
1248 err_destroy_functions:
1249 	rmi_free_function_list(rmi_dev);
1250 err:
1251 	return retval;
1252 }
1253 
1254 static struct rmi_driver rmi_physical_driver = {
1255 	.driver = {
1256 		.owner	= THIS_MODULE,
1257 		.name	= "rmi4_physical",
1258 		.bus	= &rmi_bus_type,
1259 		.probe = rmi_driver_probe,
1260 		.remove = rmi_driver_remove,
1261 	},
1262 	.reset_handler = rmi_driver_reset_handler,
1263 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1264 	.set_irq_bits = rmi_driver_set_irq_bits,
1265 	.set_input_params = rmi_driver_set_input_params,
1266 };
1267 
1268 bool rmi_is_physical_driver(struct device_driver *drv)
1269 {
1270 	return drv == &rmi_physical_driver.driver;
1271 }
1272 
1273 int __init rmi_register_physical_driver(void)
1274 {
1275 	int error;
1276 
1277 	error = driver_register(&rmi_physical_driver.driver);
1278 	if (error) {
1279 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1280 		       error);
1281 		return error;
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 void __exit rmi_unregister_physical_driver(void)
1288 {
1289 	driver_unregister(&rmi_physical_driver.driver);
1290 }
1291