1 /* 2 * Copyright (c) 2011-2016 Synaptics Incorporated 3 * Copyright (c) 2011 Unixphere 4 * 5 * This driver provides the core support for a single RMI4-based device. 6 * 7 * The RMI4 specification can be found here (URL split for line length): 8 * 9 * http://www.synaptics.com/sites/default/files/ 10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/delay.h> 19 #include <linux/fs.h> 20 #include <linux/kconfig.h> 21 #include <linux/pm.h> 22 #include <linux/slab.h> 23 #include <linux/of.h> 24 #include <uapi/linux/input.h> 25 #include <linux/rmi.h> 26 #include "rmi_bus.h" 27 #include "rmi_driver.h" 28 29 #define HAS_NONSTANDARD_PDT_MASK 0x40 30 #define RMI4_MAX_PAGE 0xff 31 #define RMI4_PAGE_SIZE 0x100 32 #define RMI4_PAGE_MASK 0xFF00 33 34 #define RMI_DEVICE_RESET_CMD 0x01 35 #define DEFAULT_RESET_DELAY_MS 100 36 37 static void rmi_free_function_list(struct rmi_device *rmi_dev) 38 { 39 struct rmi_function *fn, *tmp; 40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 41 42 data->f01_container = NULL; 43 44 /* Doing it in the reverse order so F01 will be removed last */ 45 list_for_each_entry_safe_reverse(fn, tmp, 46 &data->function_list, node) { 47 list_del(&fn->node); 48 rmi_unregister_function(fn); 49 } 50 } 51 52 static int reset_one_function(struct rmi_function *fn) 53 { 54 struct rmi_function_handler *fh; 55 int retval = 0; 56 57 if (!fn || !fn->dev.driver) 58 return 0; 59 60 fh = to_rmi_function_handler(fn->dev.driver); 61 if (fh->reset) { 62 retval = fh->reset(fn); 63 if (retval < 0) 64 dev_err(&fn->dev, "Reset failed with code %d.\n", 65 retval); 66 } 67 68 return retval; 69 } 70 71 static int configure_one_function(struct rmi_function *fn) 72 { 73 struct rmi_function_handler *fh; 74 int retval = 0; 75 76 if (!fn || !fn->dev.driver) 77 return 0; 78 79 fh = to_rmi_function_handler(fn->dev.driver); 80 if (fh->config) { 81 retval = fh->config(fn); 82 if (retval < 0) 83 dev_err(&fn->dev, "Config failed with code %d.\n", 84 retval); 85 } 86 87 return retval; 88 } 89 90 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) 91 { 92 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 93 struct rmi_function *entry; 94 int retval; 95 96 list_for_each_entry(entry, &data->function_list, node) { 97 retval = reset_one_function(entry); 98 if (retval < 0) 99 return retval; 100 } 101 102 return 0; 103 } 104 105 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) 106 { 107 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 108 struct rmi_function *entry; 109 int retval; 110 111 list_for_each_entry(entry, &data->function_list, node) { 112 retval = configure_one_function(entry); 113 if (retval < 0) 114 return retval; 115 } 116 117 return 0; 118 } 119 120 static void process_one_interrupt(struct rmi_driver_data *data, 121 struct rmi_function *fn) 122 { 123 struct rmi_function_handler *fh; 124 125 if (!fn || !fn->dev.driver) 126 return; 127 128 fh = to_rmi_function_handler(fn->dev.driver); 129 if (fh->attention) { 130 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask, 131 data->irq_count); 132 if (!bitmap_empty(data->fn_irq_bits, data->irq_count)) 133 fh->attention(fn, data->fn_irq_bits); 134 } 135 } 136 137 int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) 138 { 139 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 140 struct device *dev = &rmi_dev->dev; 141 struct rmi_function *entry; 142 int error; 143 144 if (!data) 145 return 0; 146 147 if (!rmi_dev->xport->attn_data) { 148 error = rmi_read_block(rmi_dev, 149 data->f01_container->fd.data_base_addr + 1, 150 data->irq_status, data->num_of_irq_regs); 151 if (error < 0) { 152 dev_err(dev, "Failed to read irqs, code=%d\n", error); 153 return error; 154 } 155 } 156 157 mutex_lock(&data->irq_mutex); 158 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask, 159 data->irq_count); 160 /* 161 * At this point, irq_status has all bits that are set in the 162 * interrupt status register and are enabled. 163 */ 164 mutex_unlock(&data->irq_mutex); 165 166 /* 167 * It would be nice to be able to use irq_chip to handle these 168 * nested IRQs. Unfortunately, most of the current customers for 169 * this driver are using older kernels (3.0.x) that don't support 170 * the features required for that. Once they've shifted to more 171 * recent kernels (say, 3.3 and higher), this should be switched to 172 * use irq_chip. 173 */ 174 list_for_each_entry(entry, &data->function_list, node) 175 process_one_interrupt(data, entry); 176 177 if (data->input) 178 input_sync(data->input); 179 180 return 0; 181 } 182 EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests); 183 184 static int suspend_one_function(struct rmi_function *fn) 185 { 186 struct rmi_function_handler *fh; 187 int retval = 0; 188 189 if (!fn || !fn->dev.driver) 190 return 0; 191 192 fh = to_rmi_function_handler(fn->dev.driver); 193 if (fh->suspend) { 194 retval = fh->suspend(fn); 195 if (retval < 0) 196 dev_err(&fn->dev, "Suspend failed with code %d.\n", 197 retval); 198 } 199 200 return retval; 201 } 202 203 static int rmi_suspend_functions(struct rmi_device *rmi_dev) 204 { 205 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 206 struct rmi_function *entry; 207 int retval; 208 209 list_for_each_entry(entry, &data->function_list, node) { 210 retval = suspend_one_function(entry); 211 if (retval < 0) 212 return retval; 213 } 214 215 return 0; 216 } 217 218 static int resume_one_function(struct rmi_function *fn) 219 { 220 struct rmi_function_handler *fh; 221 int retval = 0; 222 223 if (!fn || !fn->dev.driver) 224 return 0; 225 226 fh = to_rmi_function_handler(fn->dev.driver); 227 if (fh->resume) { 228 retval = fh->resume(fn); 229 if (retval < 0) 230 dev_err(&fn->dev, "Resume failed with code %d.\n", 231 retval); 232 } 233 234 return retval; 235 } 236 237 static int rmi_resume_functions(struct rmi_device *rmi_dev) 238 { 239 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 240 struct rmi_function *entry; 241 int retval; 242 243 list_for_each_entry(entry, &data->function_list, node) { 244 retval = resume_one_function(entry); 245 if (retval < 0) 246 return retval; 247 } 248 249 return 0; 250 } 251 252 static int enable_sensor(struct rmi_device *rmi_dev) 253 { 254 int retval = 0; 255 256 retval = rmi_driver_process_config_requests(rmi_dev); 257 if (retval < 0) 258 return retval; 259 260 return rmi_process_interrupt_requests(rmi_dev); 261 } 262 263 /** 264 * rmi_driver_set_input_params - set input device id and other data. 265 * 266 * @rmi_dev: Pointer to an RMI device 267 * @input: Pointer to input device 268 * 269 */ 270 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, 271 struct input_dev *input) 272 { 273 input->name = SYNAPTICS_INPUT_DEVICE_NAME; 274 input->id.vendor = SYNAPTICS_VENDOR_ID; 275 input->id.bustype = BUS_RMI; 276 return 0; 277 } 278 279 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, 280 struct input_dev *input) 281 { 282 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 283 char *device_name = rmi_f01_get_product_ID(data->f01_container); 284 char *name; 285 286 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, 287 "Synaptics %s", device_name); 288 if (!name) 289 return; 290 291 input->name = name; 292 } 293 294 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, 295 unsigned long *mask) 296 { 297 int error = 0; 298 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 299 struct device *dev = &rmi_dev->dev; 300 301 mutex_lock(&data->irq_mutex); 302 bitmap_or(data->new_irq_mask, 303 data->current_irq_mask, mask, data->irq_count); 304 305 error = rmi_write_block(rmi_dev, 306 data->f01_container->fd.control_base_addr + 1, 307 data->new_irq_mask, data->num_of_irq_regs); 308 if (error < 0) { 309 dev_err(dev, "%s: Failed to change enabled interrupts!", 310 __func__); 311 goto error_unlock; 312 } 313 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 314 data->num_of_irq_regs); 315 316 error_unlock: 317 mutex_unlock(&data->irq_mutex); 318 return error; 319 } 320 321 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, 322 unsigned long *mask) 323 { 324 int error = 0; 325 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 326 struct device *dev = &rmi_dev->dev; 327 328 mutex_lock(&data->irq_mutex); 329 bitmap_andnot(data->new_irq_mask, 330 data->current_irq_mask, mask, data->irq_count); 331 332 error = rmi_write_block(rmi_dev, 333 data->f01_container->fd.control_base_addr + 1, 334 data->new_irq_mask, data->num_of_irq_regs); 335 if (error < 0) { 336 dev_err(dev, "%s: Failed to change enabled interrupts!", 337 __func__); 338 goto error_unlock; 339 } 340 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 341 data->num_of_irq_regs); 342 343 error_unlock: 344 mutex_unlock(&data->irq_mutex); 345 return error; 346 } 347 348 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) 349 { 350 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 351 int error; 352 353 /* 354 * Can get called before the driver is fully ready to deal with 355 * this situation. 356 */ 357 if (!data || !data->f01_container) { 358 dev_warn(&rmi_dev->dev, 359 "Not ready to handle reset yet!\n"); 360 return 0; 361 } 362 363 error = rmi_read_block(rmi_dev, 364 data->f01_container->fd.control_base_addr + 1, 365 data->current_irq_mask, data->num_of_irq_regs); 366 if (error < 0) { 367 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", 368 __func__); 369 return error; 370 } 371 372 error = rmi_driver_process_reset_requests(rmi_dev); 373 if (error < 0) 374 return error; 375 376 error = rmi_driver_process_config_requests(rmi_dev); 377 if (error < 0) 378 return error; 379 380 return 0; 381 } 382 383 int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry, 384 u16 pdt_address) 385 { 386 u8 buf[RMI_PDT_ENTRY_SIZE]; 387 int error; 388 389 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); 390 if (error) { 391 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", 392 pdt_address, error); 393 return error; 394 } 395 396 entry->page_start = pdt_address & RMI4_PAGE_MASK; 397 entry->query_base_addr = buf[0]; 398 entry->command_base_addr = buf[1]; 399 entry->control_base_addr = buf[2]; 400 entry->data_base_addr = buf[3]; 401 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; 402 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; 403 entry->function_number = buf[5]; 404 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(rmi_read_pdt_entry); 408 409 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, 410 struct rmi_function_descriptor *fd) 411 { 412 fd->query_base_addr = pdt->query_base_addr + pdt->page_start; 413 fd->command_base_addr = pdt->command_base_addr + pdt->page_start; 414 fd->control_base_addr = pdt->control_base_addr + pdt->page_start; 415 fd->data_base_addr = pdt->data_base_addr + pdt->page_start; 416 fd->function_number = pdt->function_number; 417 fd->interrupt_source_count = pdt->interrupt_source_count; 418 fd->function_version = pdt->function_version; 419 } 420 421 #define RMI_SCAN_CONTINUE 0 422 #define RMI_SCAN_DONE 1 423 424 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, 425 int page, 426 void *ctx, 427 int (*callback)(struct rmi_device *rmi_dev, 428 void *ctx, 429 const struct pdt_entry *entry)) 430 { 431 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 432 struct pdt_entry pdt_entry; 433 u16 page_start = RMI4_PAGE_SIZE * page; 434 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; 435 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; 436 u16 addr; 437 int error; 438 int retval; 439 440 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { 441 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); 442 if (error) 443 return error; 444 445 if (RMI4_END_OF_PDT(pdt_entry.function_number)) 446 break; 447 448 retval = callback(rmi_dev, ctx, &pdt_entry); 449 if (retval != RMI_SCAN_CONTINUE) 450 return retval; 451 } 452 453 return (data->f01_bootloader_mode || addr == pdt_start) ? 454 RMI_SCAN_DONE : RMI_SCAN_CONTINUE; 455 } 456 457 static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, 458 int (*callback)(struct rmi_device *rmi_dev, 459 void *ctx, 460 const struct pdt_entry *entry)) 461 { 462 int page; 463 int retval = RMI_SCAN_DONE; 464 465 for (page = 0; page <= RMI4_MAX_PAGE; page++) { 466 retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback); 467 if (retval != RMI_SCAN_CONTINUE) 468 break; 469 } 470 471 return retval < 0 ? retval : 0; 472 } 473 474 int rmi_read_register_desc(struct rmi_device *d, u16 addr, 475 struct rmi_register_descriptor *rdesc) 476 { 477 int ret; 478 u8 size_presence_reg; 479 u8 buf[35]; 480 int presense_offset = 1; 481 u8 *struct_buf; 482 int reg; 483 int offset = 0; 484 int map_offset = 0; 485 int i; 486 int b; 487 488 /* 489 * The first register of the register descriptor is the size of 490 * the register descriptor's presense register. 491 */ 492 ret = rmi_read(d, addr, &size_presence_reg); 493 if (ret) 494 return ret; 495 ++addr; 496 497 if (size_presence_reg < 0 || size_presence_reg > 35) 498 return -EIO; 499 500 memset(buf, 0, sizeof(buf)); 501 502 /* 503 * The presence register contains the size of the register structure 504 * and a bitmap which identified which packet registers are present 505 * for this particular register type (ie query, control, or data). 506 */ 507 ret = rmi_read_block(d, addr, buf, size_presence_reg); 508 if (ret) 509 return ret; 510 ++addr; 511 512 if (buf[0] == 0) { 513 presense_offset = 3; 514 rdesc->struct_size = buf[1] | (buf[2] << 8); 515 } else { 516 rdesc->struct_size = buf[0]; 517 } 518 519 for (i = presense_offset; i < size_presence_reg; i++) { 520 for (b = 0; b < 8; b++) { 521 if (buf[i] & (0x1 << b)) 522 bitmap_set(rdesc->presense_map, map_offset, 1); 523 ++map_offset; 524 } 525 } 526 527 rdesc->num_registers = bitmap_weight(rdesc->presense_map, 528 RMI_REG_DESC_PRESENSE_BITS); 529 530 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers * 531 sizeof(struct rmi_register_desc_item), 532 GFP_KERNEL); 533 if (!rdesc->registers) 534 return -ENOMEM; 535 536 /* 537 * Allocate a temporary buffer to hold the register structure. 538 * I'm not using devm_kzalloc here since it will not be retained 539 * after exiting this function 540 */ 541 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); 542 if (!struct_buf) 543 return -ENOMEM; 544 545 /* 546 * The register structure contains information about every packet 547 * register of this type. This includes the size of the packet 548 * register and a bitmap of all subpackets contained in the packet 549 * register. 550 */ 551 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); 552 if (ret) 553 goto free_struct_buff; 554 555 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); 556 for (i = 0; i < rdesc->num_registers; i++) { 557 struct rmi_register_desc_item *item = &rdesc->registers[i]; 558 int reg_size = struct_buf[offset]; 559 560 ++offset; 561 if (reg_size == 0) { 562 reg_size = struct_buf[offset] | 563 (struct_buf[offset + 1] << 8); 564 offset += 2; 565 } 566 567 if (reg_size == 0) { 568 reg_size = struct_buf[offset] | 569 (struct_buf[offset + 1] << 8) | 570 (struct_buf[offset + 2] << 16) | 571 (struct_buf[offset + 3] << 24); 572 offset += 4; 573 } 574 575 item->reg = reg; 576 item->reg_size = reg_size; 577 578 map_offset = 0; 579 580 do { 581 for (b = 0; b < 7; b++) { 582 if (struct_buf[offset] & (0x1 << b)) 583 bitmap_set(item->subpacket_map, 584 map_offset, 1); 585 ++map_offset; 586 } 587 } while (struct_buf[offset++] & 0x80); 588 589 item->num_subpackets = bitmap_weight(item->subpacket_map, 590 RMI_REG_DESC_SUBPACKET_BITS); 591 592 rmi_dbg(RMI_DEBUG_CORE, &d->dev, 593 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, 594 item->reg, item->reg_size, item->num_subpackets); 595 596 reg = find_next_bit(rdesc->presense_map, 597 RMI_REG_DESC_PRESENSE_BITS, reg + 1); 598 } 599 600 free_struct_buff: 601 kfree(struct_buf); 602 return ret; 603 } 604 EXPORT_SYMBOL_GPL(rmi_read_register_desc); 605 606 const struct rmi_register_desc_item *rmi_get_register_desc_item( 607 struct rmi_register_descriptor *rdesc, u16 reg) 608 { 609 const struct rmi_register_desc_item *item; 610 int i; 611 612 for (i = 0; i < rdesc->num_registers; i++) { 613 item = &rdesc->registers[i]; 614 if (item->reg == reg) 615 return item; 616 } 617 618 return NULL; 619 } 620 EXPORT_SYMBOL_GPL(rmi_get_register_desc_item); 621 622 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) 623 { 624 const struct rmi_register_desc_item *item; 625 int i; 626 size_t size = 0; 627 628 for (i = 0; i < rdesc->num_registers; i++) { 629 item = &rdesc->registers[i]; 630 size += item->reg_size; 631 } 632 return size; 633 } 634 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size); 635 636 /* Compute the register offset relative to the base address */ 637 int rmi_register_desc_calc_reg_offset( 638 struct rmi_register_descriptor *rdesc, u16 reg) 639 { 640 const struct rmi_register_desc_item *item; 641 int offset = 0; 642 int i; 643 644 for (i = 0; i < rdesc->num_registers; i++) { 645 item = &rdesc->registers[i]; 646 if (item->reg == reg) 647 return offset; 648 ++offset; 649 } 650 return -1; 651 } 652 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset); 653 654 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, 655 u8 subpacket) 656 { 657 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, 658 subpacket) == subpacket; 659 } 660 661 /* Indicates that flash programming is enabled (bootloader mode). */ 662 #define RMI_F01_STATUS_BOOTLOADER(status) (!!((status) & 0x40)) 663 664 /* 665 * Given the PDT entry for F01, read the device status register to determine 666 * if we're stuck in bootloader mode or not. 667 * 668 */ 669 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, 670 const struct pdt_entry *pdt) 671 { 672 int error; 673 u8 device_status; 674 675 error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start, 676 &device_status); 677 if (error) { 678 dev_err(&rmi_dev->dev, 679 "Failed to read device status: %d.\n", error); 680 return error; 681 } 682 683 return RMI_F01_STATUS_BOOTLOADER(device_status); 684 } 685 686 static int rmi_count_irqs(struct rmi_device *rmi_dev, 687 void *ctx, const struct pdt_entry *pdt) 688 { 689 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 690 int *irq_count = ctx; 691 692 *irq_count += pdt->interrupt_source_count; 693 if (pdt->function_number == 0x01) { 694 data->f01_bootloader_mode = 695 rmi_check_bootloader_mode(rmi_dev, pdt); 696 if (data->f01_bootloader_mode) 697 dev_warn(&rmi_dev->dev, 698 "WARNING: RMI4 device is in bootloader mode!\n"); 699 } 700 701 return RMI_SCAN_CONTINUE; 702 } 703 704 static int rmi_initial_reset(struct rmi_device *rmi_dev, 705 void *ctx, const struct pdt_entry *pdt) 706 { 707 int error; 708 709 if (pdt->function_number == 0x01) { 710 u16 cmd_addr = pdt->page_start + pdt->command_base_addr; 711 u8 cmd_buf = RMI_DEVICE_RESET_CMD; 712 const struct rmi_device_platform_data *pdata = 713 rmi_get_platform_data(rmi_dev); 714 715 if (rmi_dev->xport->ops->reset) { 716 error = rmi_dev->xport->ops->reset(rmi_dev->xport, 717 cmd_addr); 718 if (error) 719 return error; 720 721 return RMI_SCAN_DONE; 722 } 723 724 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); 725 if (error) { 726 dev_err(&rmi_dev->dev, 727 "Initial reset failed. Code = %d.\n", error); 728 return error; 729 } 730 731 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); 732 733 return RMI_SCAN_DONE; 734 } 735 736 /* F01 should always be on page 0. If we don't find it there, fail. */ 737 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; 738 } 739 740 static int rmi_create_function(struct rmi_device *rmi_dev, 741 void *ctx, const struct pdt_entry *pdt) 742 { 743 struct device *dev = &rmi_dev->dev; 744 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 745 int *current_irq_count = ctx; 746 struct rmi_function *fn; 747 int i; 748 int error; 749 750 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", 751 pdt->function_number); 752 753 fn = kzalloc(sizeof(struct rmi_function) + 754 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), 755 GFP_KERNEL); 756 if (!fn) { 757 dev_err(dev, "Failed to allocate memory for F%02X\n", 758 pdt->function_number); 759 return -ENOMEM; 760 } 761 762 INIT_LIST_HEAD(&fn->node); 763 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); 764 765 fn->rmi_dev = rmi_dev; 766 767 fn->num_of_irqs = pdt->interrupt_source_count; 768 fn->irq_pos = *current_irq_count; 769 *current_irq_count += fn->num_of_irqs; 770 771 for (i = 0; i < fn->num_of_irqs; i++) 772 set_bit(fn->irq_pos + i, fn->irq_mask); 773 774 error = rmi_register_function(fn); 775 if (error) 776 goto err_put_fn; 777 778 if (pdt->function_number == 0x01) 779 data->f01_container = fn; 780 781 list_add_tail(&fn->node, &data->function_list); 782 783 return RMI_SCAN_CONTINUE; 784 785 err_put_fn: 786 put_device(&fn->dev); 787 return error; 788 } 789 790 int rmi_driver_suspend(struct rmi_device *rmi_dev) 791 { 792 int retval = 0; 793 794 retval = rmi_suspend_functions(rmi_dev); 795 if (retval) 796 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 797 retval); 798 799 return retval; 800 } 801 EXPORT_SYMBOL_GPL(rmi_driver_suspend); 802 803 int rmi_driver_resume(struct rmi_device *rmi_dev) 804 { 805 int retval; 806 807 retval = rmi_resume_functions(rmi_dev); 808 if (retval) 809 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 810 retval); 811 812 return retval; 813 } 814 EXPORT_SYMBOL_GPL(rmi_driver_resume); 815 816 static int rmi_driver_remove(struct device *dev) 817 { 818 struct rmi_device *rmi_dev = to_rmi_device(dev); 819 820 rmi_free_function_list(rmi_dev); 821 822 return 0; 823 } 824 825 #ifdef CONFIG_OF 826 static int rmi_driver_of_probe(struct device *dev, 827 struct rmi_device_platform_data *pdata) 828 { 829 int retval; 830 831 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, 832 "syna,reset-delay-ms", 1); 833 if (retval) 834 return retval; 835 836 return 0; 837 } 838 #else 839 static inline int rmi_driver_of_probe(struct device *dev, 840 struct rmi_device_platform_data *pdata) 841 { 842 return -ENODEV; 843 } 844 #endif 845 846 static int rmi_driver_probe(struct device *dev) 847 { 848 struct rmi_driver *rmi_driver; 849 struct rmi_driver_data *data; 850 struct rmi_device_platform_data *pdata; 851 struct rmi_device *rmi_dev; 852 size_t size; 853 void *irq_memory; 854 int irq_count; 855 int retval; 856 857 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", 858 __func__); 859 860 if (!rmi_is_physical_device(dev)) { 861 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); 862 return -ENODEV; 863 } 864 865 rmi_dev = to_rmi_device(dev); 866 rmi_driver = to_rmi_driver(dev->driver); 867 rmi_dev->driver = rmi_driver; 868 869 pdata = rmi_get_platform_data(rmi_dev); 870 871 if (rmi_dev->xport->dev->of_node) { 872 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); 873 if (retval) 874 return retval; 875 } 876 877 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); 878 if (!data) 879 return -ENOMEM; 880 881 INIT_LIST_HEAD(&data->function_list); 882 data->rmi_dev = rmi_dev; 883 dev_set_drvdata(&rmi_dev->dev, data); 884 885 /* 886 * Right before a warm boot, the sensor might be in some unusual state, 887 * such as F54 diagnostics, or F34 bootloader mode after a firmware 888 * or configuration update. In order to clear the sensor to a known 889 * state and/or apply any updates, we issue a initial reset to clear any 890 * previous settings and force it into normal operation. 891 * 892 * We have to do this before actually building the PDT because 893 * the reflash updates (if any) might cause various registers to move 894 * around. 895 * 896 * For a number of reasons, this initial reset may fail to return 897 * within the specified time, but we'll still be able to bring up the 898 * driver normally after that failure. This occurs most commonly in 899 * a cold boot situation (where then firmware takes longer to come up 900 * than from a warm boot) and the reset_delay_ms in the platform data 901 * has been set too short to accommodate that. Since the sensor will 902 * eventually come up and be usable, we don't want to just fail here 903 * and leave the customer's device unusable. So we warn them, and 904 * continue processing. 905 */ 906 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); 907 if (retval < 0) 908 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); 909 910 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); 911 if (retval < 0) { 912 /* 913 * we'll print out a warning and continue since 914 * failure to get the PDT properties is not a cause to fail 915 */ 916 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", 917 PDT_PROPERTIES_LOCATION, retval); 918 } 919 920 /* 921 * We need to count the IRQs and allocate their storage before scanning 922 * the PDT and creating the function entries, because adding a new 923 * function can trigger events that result in the IRQ related storage 924 * being accessed. 925 */ 926 rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n"); 927 irq_count = 0; 928 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); 929 if (retval < 0) { 930 dev_err(dev, "IRQ counting failed with code %d.\n", retval); 931 goto err; 932 } 933 data->irq_count = irq_count; 934 data->num_of_irq_regs = (data->irq_count + 7) / 8; 935 936 mutex_init(&data->irq_mutex); 937 938 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); 939 irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL); 940 if (!irq_memory) { 941 dev_err(dev, "Failed to allocate memory for irq masks.\n"); 942 goto err; 943 } 944 945 data->irq_status = irq_memory + size * 0; 946 data->fn_irq_bits = irq_memory + size * 1; 947 data->current_irq_mask = irq_memory + size * 2; 948 data->new_irq_mask = irq_memory + size * 3; 949 950 if (rmi_dev->xport->input) { 951 /* 952 * The transport driver already has an input device. 953 * In some cases it is preferable to reuse the transport 954 * devices input device instead of creating a new one here. 955 * One example is some HID touchpads report "pass-through" 956 * button events are not reported by rmi registers. 957 */ 958 data->input = rmi_dev->xport->input; 959 } else { 960 data->input = devm_input_allocate_device(dev); 961 if (!data->input) { 962 dev_err(dev, "%s: Failed to allocate input device.\n", 963 __func__); 964 retval = -ENOMEM; 965 goto err_destroy_functions; 966 } 967 rmi_driver_set_input_params(rmi_dev, data->input); 968 data->input->phys = devm_kasprintf(dev, GFP_KERNEL, 969 "%s/input0", dev_name(dev)); 970 } 971 972 irq_count = 0; 973 rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions."); 974 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); 975 if (retval < 0) { 976 dev_err(dev, "Function creation failed with code %d.\n", 977 retval); 978 goto err_destroy_functions; 979 } 980 981 if (!data->f01_container) { 982 dev_err(dev, "Missing F01 container!\n"); 983 retval = -EINVAL; 984 goto err_destroy_functions; 985 } 986 987 retval = rmi_read_block(rmi_dev, 988 data->f01_container->fd.control_base_addr + 1, 989 data->current_irq_mask, data->num_of_irq_regs); 990 if (retval < 0) { 991 dev_err(dev, "%s: Failed to read current IRQ mask.\n", 992 __func__); 993 goto err_destroy_functions; 994 } 995 996 if (data->input) { 997 rmi_driver_set_input_name(rmi_dev, data->input); 998 if (!rmi_dev->xport->input) { 999 if (input_register_device(data->input)) { 1000 dev_err(dev, "%s: Failed to register input device.\n", 1001 __func__); 1002 goto err_destroy_functions; 1003 } 1004 } 1005 } 1006 1007 if (data->f01_container->dev.driver) 1008 /* Driver already bound, so enable ATTN now. */ 1009 return enable_sensor(rmi_dev); 1010 1011 return 0; 1012 1013 err_destroy_functions: 1014 rmi_free_function_list(rmi_dev); 1015 err: 1016 return retval < 0 ? retval : 0; 1017 } 1018 1019 static struct rmi_driver rmi_physical_driver = { 1020 .driver = { 1021 .owner = THIS_MODULE, 1022 .name = "rmi4_physical", 1023 .bus = &rmi_bus_type, 1024 .probe = rmi_driver_probe, 1025 .remove = rmi_driver_remove, 1026 }, 1027 .reset_handler = rmi_driver_reset_handler, 1028 .clear_irq_bits = rmi_driver_clear_irq_bits, 1029 .set_irq_bits = rmi_driver_set_irq_bits, 1030 .set_input_params = rmi_driver_set_input_params, 1031 }; 1032 1033 bool rmi_is_physical_driver(struct device_driver *drv) 1034 { 1035 return drv == &rmi_physical_driver.driver; 1036 } 1037 1038 int __init rmi_register_physical_driver(void) 1039 { 1040 int error; 1041 1042 error = driver_register(&rmi_physical_driver.driver); 1043 if (error) { 1044 pr_err("%s: driver register failed, code=%d.\n", __func__, 1045 error); 1046 return error; 1047 } 1048 1049 return 0; 1050 } 1051 1052 void __exit rmi_unregister_physical_driver(void) 1053 { 1054 driver_unregister(&rmi_physical_driver.driver); 1055 } 1056