xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision 98ddec80)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28 
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33 
34 #define RMI_DEVICE_RESET_CMD	0x01
35 #define DEFAULT_RESET_DELAY_MS	100
36 
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 	struct rmi_function *fn, *tmp;
40 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41 
42 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43 
44 	/* Doing it in the reverse order so F01 will be removed last */
45 	list_for_each_entry_safe_reverse(fn, tmp,
46 					 &data->function_list, node) {
47 		list_del(&fn->node);
48 		rmi_unregister_function(fn);
49 	}
50 
51 	devm_kfree(&rmi_dev->dev, data->irq_memory);
52 	data->irq_memory = NULL;
53 	data->irq_status = NULL;
54 	data->fn_irq_bits = NULL;
55 	data->current_irq_mask = NULL;
56 	data->new_irq_mask = NULL;
57 
58 	data->f01_container = NULL;
59 	data->f34_container = NULL;
60 }
61 
62 static int reset_one_function(struct rmi_function *fn)
63 {
64 	struct rmi_function_handler *fh;
65 	int retval = 0;
66 
67 	if (!fn || !fn->dev.driver)
68 		return 0;
69 
70 	fh = to_rmi_function_handler(fn->dev.driver);
71 	if (fh->reset) {
72 		retval = fh->reset(fn);
73 		if (retval < 0)
74 			dev_err(&fn->dev, "Reset failed with code %d.\n",
75 				retval);
76 	}
77 
78 	return retval;
79 }
80 
81 static int configure_one_function(struct rmi_function *fn)
82 {
83 	struct rmi_function_handler *fh;
84 	int retval = 0;
85 
86 	if (!fn || !fn->dev.driver)
87 		return 0;
88 
89 	fh = to_rmi_function_handler(fn->dev.driver);
90 	if (fh->config) {
91 		retval = fh->config(fn);
92 		if (retval < 0)
93 			dev_err(&fn->dev, "Config failed with code %d.\n",
94 				retval);
95 	}
96 
97 	return retval;
98 }
99 
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 	struct rmi_function *entry;
104 	int retval;
105 
106 	list_for_each_entry(entry, &data->function_list, node) {
107 		retval = reset_one_function(entry);
108 		if (retval < 0)
109 			return retval;
110 	}
111 
112 	return 0;
113 }
114 
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 	struct rmi_function *entry;
119 	int retval;
120 
121 	list_for_each_entry(entry, &data->function_list, node) {
122 		retval = configure_one_function(entry);
123 		if (retval < 0)
124 			return retval;
125 	}
126 
127 	return 0;
128 }
129 
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 				  struct rmi_function *fn)
132 {
133 	struct rmi_function_handler *fh;
134 
135 	if (!fn || !fn->dev.driver)
136 		return;
137 
138 	fh = to_rmi_function_handler(fn->dev.driver);
139 	if (fh->attention) {
140 		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141 				data->irq_count);
142 		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 			fh->attention(fn, data->fn_irq_bits);
144 	}
145 }
146 
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 	struct device *dev = &rmi_dev->dev;
151 	struct rmi_function *entry;
152 	int error;
153 
154 	if (!data)
155 		return 0;
156 
157 	if (!data->attn_data.data) {
158 		error = rmi_read_block(rmi_dev,
159 				data->f01_container->fd.data_base_addr + 1,
160 				data->irq_status, data->num_of_irq_regs);
161 		if (error < 0) {
162 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
163 			return error;
164 		}
165 	}
166 
167 	mutex_lock(&data->irq_mutex);
168 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169 	       data->irq_count);
170 	/*
171 	 * At this point, irq_status has all bits that are set in the
172 	 * interrupt status register and are enabled.
173 	 */
174 	mutex_unlock(&data->irq_mutex);
175 
176 	/*
177 	 * It would be nice to be able to use irq_chip to handle these
178 	 * nested IRQs.  Unfortunately, most of the current customers for
179 	 * this driver are using older kernels (3.0.x) that don't support
180 	 * the features required for that.  Once they've shifted to more
181 	 * recent kernels (say, 3.3 and higher), this should be switched to
182 	 * use irq_chip.
183 	 */
184 	list_for_each_entry(entry, &data->function_list, node)
185 		process_one_interrupt(data, entry);
186 
187 	if (data->input)
188 		input_sync(data->input);
189 
190 	return 0;
191 }
192 
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 		       void *data, size_t size)
195 {
196 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 	struct rmi4_attn_data attn_data;
198 	void *fifo_data;
199 
200 	if (!drvdata->enabled)
201 		return;
202 
203 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
204 	if (!fifo_data)
205 		return;
206 
207 	attn_data.irq_status = irq_status;
208 	attn_data.size = size;
209 	attn_data.data = fifo_data;
210 
211 	kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214 
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217 	struct rmi_device *rmi_dev = dev_id;
218 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 	struct rmi4_attn_data attn_data = {0};
220 	int ret, count;
221 
222 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223 	if (count) {
224 		*(drvdata->irq_status) = attn_data.irq_status;
225 		drvdata->attn_data = attn_data;
226 	}
227 
228 	ret = rmi_process_interrupt_requests(rmi_dev);
229 	if (ret)
230 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 			"Failed to process interrupt request: %d\n", ret);
232 
233 	if (count) {
234 		kfree(attn_data.data);
235 		attn_data.data = NULL;
236 	}
237 
238 	if (!kfifo_is_empty(&drvdata->attn_fifo))
239 		return rmi_irq_fn(irq, dev_id);
240 
241 	return IRQ_HANDLED;
242 }
243 
244 static int rmi_irq_init(struct rmi_device *rmi_dev)
245 {
246 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
247 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
248 	int irq_flags = irq_get_trigger_type(pdata->irq);
249 	int ret;
250 
251 	if (!irq_flags)
252 		irq_flags = IRQF_TRIGGER_LOW;
253 
254 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
255 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
256 					dev_driver_string(rmi_dev->xport->dev),
257 					rmi_dev);
258 	if (ret < 0) {
259 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
260 			pdata->irq);
261 
262 		return ret;
263 	}
264 
265 	data->enabled = true;
266 
267 	return 0;
268 }
269 
270 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
271 {
272 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
273 	struct rmi_function *entry;
274 
275 	list_for_each_entry(entry, &data->function_list, node) {
276 		if (entry->fd.function_number == number)
277 			return entry;
278 	}
279 
280 	return NULL;
281 }
282 
283 static int suspend_one_function(struct rmi_function *fn)
284 {
285 	struct rmi_function_handler *fh;
286 	int retval = 0;
287 
288 	if (!fn || !fn->dev.driver)
289 		return 0;
290 
291 	fh = to_rmi_function_handler(fn->dev.driver);
292 	if (fh->suspend) {
293 		retval = fh->suspend(fn);
294 		if (retval < 0)
295 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
296 				retval);
297 	}
298 
299 	return retval;
300 }
301 
302 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
303 {
304 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
305 	struct rmi_function *entry;
306 	int retval;
307 
308 	list_for_each_entry(entry, &data->function_list, node) {
309 		retval = suspend_one_function(entry);
310 		if (retval < 0)
311 			return retval;
312 	}
313 
314 	return 0;
315 }
316 
317 static int resume_one_function(struct rmi_function *fn)
318 {
319 	struct rmi_function_handler *fh;
320 	int retval = 0;
321 
322 	if (!fn || !fn->dev.driver)
323 		return 0;
324 
325 	fh = to_rmi_function_handler(fn->dev.driver);
326 	if (fh->resume) {
327 		retval = fh->resume(fn);
328 		if (retval < 0)
329 			dev_err(&fn->dev, "Resume failed with code %d.\n",
330 				retval);
331 	}
332 
333 	return retval;
334 }
335 
336 static int rmi_resume_functions(struct rmi_device *rmi_dev)
337 {
338 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
339 	struct rmi_function *entry;
340 	int retval;
341 
342 	list_for_each_entry(entry, &data->function_list, node) {
343 		retval = resume_one_function(entry);
344 		if (retval < 0)
345 			return retval;
346 	}
347 
348 	return 0;
349 }
350 
351 int rmi_enable_sensor(struct rmi_device *rmi_dev)
352 {
353 	int retval = 0;
354 
355 	retval = rmi_driver_process_config_requests(rmi_dev);
356 	if (retval < 0)
357 		return retval;
358 
359 	return rmi_process_interrupt_requests(rmi_dev);
360 }
361 
362 /**
363  * rmi_driver_set_input_params - set input device id and other data.
364  *
365  * @rmi_dev: Pointer to an RMI device
366  * @input: Pointer to input device
367  *
368  */
369 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
370 				struct input_dev *input)
371 {
372 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
373 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
374 	input->id.bustype = BUS_RMI;
375 	return 0;
376 }
377 
378 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
379 				struct input_dev *input)
380 {
381 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
382 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
383 	char *name;
384 
385 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
386 			      "Synaptics %s", device_name);
387 	if (!name)
388 		return;
389 
390 	input->name = name;
391 }
392 
393 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
394 				   unsigned long *mask)
395 {
396 	int error = 0;
397 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
398 	struct device *dev = &rmi_dev->dev;
399 
400 	mutex_lock(&data->irq_mutex);
401 	bitmap_or(data->new_irq_mask,
402 		  data->current_irq_mask, mask, data->irq_count);
403 
404 	error = rmi_write_block(rmi_dev,
405 			data->f01_container->fd.control_base_addr + 1,
406 			data->new_irq_mask, data->num_of_irq_regs);
407 	if (error < 0) {
408 		dev_err(dev, "%s: Failed to change enabled interrupts!",
409 							__func__);
410 		goto error_unlock;
411 	}
412 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
413 		    data->num_of_irq_regs);
414 
415 error_unlock:
416 	mutex_unlock(&data->irq_mutex);
417 	return error;
418 }
419 
420 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
421 				     unsigned long *mask)
422 {
423 	int error = 0;
424 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
425 	struct device *dev = &rmi_dev->dev;
426 
427 	mutex_lock(&data->irq_mutex);
428 	bitmap_andnot(data->new_irq_mask,
429 		  data->current_irq_mask, mask, data->irq_count);
430 
431 	error = rmi_write_block(rmi_dev,
432 			data->f01_container->fd.control_base_addr + 1,
433 			data->new_irq_mask, data->num_of_irq_regs);
434 	if (error < 0) {
435 		dev_err(dev, "%s: Failed to change enabled interrupts!",
436 							__func__);
437 		goto error_unlock;
438 	}
439 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
440 		    data->num_of_irq_regs);
441 
442 error_unlock:
443 	mutex_unlock(&data->irq_mutex);
444 	return error;
445 }
446 
447 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
448 {
449 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
450 	int error;
451 
452 	/*
453 	 * Can get called before the driver is fully ready to deal with
454 	 * this situation.
455 	 */
456 	if (!data || !data->f01_container) {
457 		dev_warn(&rmi_dev->dev,
458 			 "Not ready to handle reset yet!\n");
459 		return 0;
460 	}
461 
462 	error = rmi_read_block(rmi_dev,
463 			       data->f01_container->fd.control_base_addr + 1,
464 			       data->current_irq_mask, data->num_of_irq_regs);
465 	if (error < 0) {
466 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
467 			__func__);
468 		return error;
469 	}
470 
471 	error = rmi_driver_process_reset_requests(rmi_dev);
472 	if (error < 0)
473 		return error;
474 
475 	error = rmi_driver_process_config_requests(rmi_dev);
476 	if (error < 0)
477 		return error;
478 
479 	return 0;
480 }
481 
482 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
483 			      struct pdt_entry *entry, u16 pdt_address)
484 {
485 	u8 buf[RMI_PDT_ENTRY_SIZE];
486 	int error;
487 
488 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
489 	if (error) {
490 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
491 				pdt_address, error);
492 		return error;
493 	}
494 
495 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
496 	entry->query_base_addr = buf[0];
497 	entry->command_base_addr = buf[1];
498 	entry->control_base_addr = buf[2];
499 	entry->data_base_addr = buf[3];
500 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
501 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
502 	entry->function_number = buf[5];
503 
504 	return 0;
505 }
506 
507 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
508 				      struct rmi_function_descriptor *fd)
509 {
510 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
511 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
512 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
513 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
514 	fd->function_number = pdt->function_number;
515 	fd->interrupt_source_count = pdt->interrupt_source_count;
516 	fd->function_version = pdt->function_version;
517 }
518 
519 #define RMI_SCAN_CONTINUE	0
520 #define RMI_SCAN_DONE		1
521 
522 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
523 			     int page,
524 			     int *empty_pages,
525 			     void *ctx,
526 			     int (*callback)(struct rmi_device *rmi_dev,
527 					     void *ctx,
528 					     const struct pdt_entry *entry))
529 {
530 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
531 	struct pdt_entry pdt_entry;
532 	u16 page_start = RMI4_PAGE_SIZE * page;
533 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
534 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
535 	u16 addr;
536 	int error;
537 	int retval;
538 
539 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
540 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
541 		if (error)
542 			return error;
543 
544 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
545 			break;
546 
547 		retval = callback(rmi_dev, ctx, &pdt_entry);
548 		if (retval != RMI_SCAN_CONTINUE)
549 			return retval;
550 	}
551 
552 	/*
553 	 * Count number of empty PDT pages. If a gap of two pages
554 	 * or more is found, stop scanning.
555 	 */
556 	if (addr == pdt_start)
557 		++*empty_pages;
558 	else
559 		*empty_pages = 0;
560 
561 	return (data->bootloader_mode || *empty_pages >= 2) ?
562 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
563 }
564 
565 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
566 		 int (*callback)(struct rmi_device *rmi_dev,
567 		 void *ctx, const struct pdt_entry *entry))
568 {
569 	int page;
570 	int empty_pages = 0;
571 	int retval = RMI_SCAN_DONE;
572 
573 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
574 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
575 					   ctx, callback);
576 		if (retval != RMI_SCAN_CONTINUE)
577 			break;
578 	}
579 
580 	return retval < 0 ? retval : 0;
581 }
582 
583 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
584 				struct rmi_register_descriptor *rdesc)
585 {
586 	int ret;
587 	u8 size_presence_reg;
588 	u8 buf[35];
589 	int presense_offset = 1;
590 	u8 *struct_buf;
591 	int reg;
592 	int offset = 0;
593 	int map_offset = 0;
594 	int i;
595 	int b;
596 
597 	/*
598 	 * The first register of the register descriptor is the size of
599 	 * the register descriptor's presense register.
600 	 */
601 	ret = rmi_read(d, addr, &size_presence_reg);
602 	if (ret)
603 		return ret;
604 	++addr;
605 
606 	if (size_presence_reg < 0 || size_presence_reg > 35)
607 		return -EIO;
608 
609 	memset(buf, 0, sizeof(buf));
610 
611 	/*
612 	 * The presence register contains the size of the register structure
613 	 * and a bitmap which identified which packet registers are present
614 	 * for this particular register type (ie query, control, or data).
615 	 */
616 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
617 	if (ret)
618 		return ret;
619 	++addr;
620 
621 	if (buf[0] == 0) {
622 		presense_offset = 3;
623 		rdesc->struct_size = buf[1] | (buf[2] << 8);
624 	} else {
625 		rdesc->struct_size = buf[0];
626 	}
627 
628 	for (i = presense_offset; i < size_presence_reg; i++) {
629 		for (b = 0; b < 8; b++) {
630 			if (buf[i] & (0x1 << b))
631 				bitmap_set(rdesc->presense_map, map_offset, 1);
632 			++map_offset;
633 		}
634 	}
635 
636 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
637 						RMI_REG_DESC_PRESENSE_BITS);
638 
639 	rdesc->registers = devm_kcalloc(&d->dev,
640 					rdesc->num_registers,
641 					sizeof(struct rmi_register_desc_item),
642 					GFP_KERNEL);
643 	if (!rdesc->registers)
644 		return -ENOMEM;
645 
646 	/*
647 	 * Allocate a temporary buffer to hold the register structure.
648 	 * I'm not using devm_kzalloc here since it will not be retained
649 	 * after exiting this function
650 	 */
651 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
652 	if (!struct_buf)
653 		return -ENOMEM;
654 
655 	/*
656 	 * The register structure contains information about every packet
657 	 * register of this type. This includes the size of the packet
658 	 * register and a bitmap of all subpackets contained in the packet
659 	 * register.
660 	 */
661 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
662 	if (ret)
663 		goto free_struct_buff;
664 
665 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
666 	for (i = 0; i < rdesc->num_registers; i++) {
667 		struct rmi_register_desc_item *item = &rdesc->registers[i];
668 		int reg_size = struct_buf[offset];
669 
670 		++offset;
671 		if (reg_size == 0) {
672 			reg_size = struct_buf[offset] |
673 					(struct_buf[offset + 1] << 8);
674 			offset += 2;
675 		}
676 
677 		if (reg_size == 0) {
678 			reg_size = struct_buf[offset] |
679 					(struct_buf[offset + 1] << 8) |
680 					(struct_buf[offset + 2] << 16) |
681 					(struct_buf[offset + 3] << 24);
682 			offset += 4;
683 		}
684 
685 		item->reg = reg;
686 		item->reg_size = reg_size;
687 
688 		map_offset = 0;
689 
690 		do {
691 			for (b = 0; b < 7; b++) {
692 				if (struct_buf[offset] & (0x1 << b))
693 					bitmap_set(item->subpacket_map,
694 						map_offset, 1);
695 				++map_offset;
696 			}
697 		} while (struct_buf[offset++] & 0x80);
698 
699 		item->num_subpackets = bitmap_weight(item->subpacket_map,
700 						RMI_REG_DESC_SUBPACKET_BITS);
701 
702 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
703 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
704 			item->reg, item->reg_size, item->num_subpackets);
705 
706 		reg = find_next_bit(rdesc->presense_map,
707 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
708 	}
709 
710 free_struct_buff:
711 	kfree(struct_buf);
712 	return ret;
713 }
714 
715 const struct rmi_register_desc_item *rmi_get_register_desc_item(
716 				struct rmi_register_descriptor *rdesc, u16 reg)
717 {
718 	const struct rmi_register_desc_item *item;
719 	int i;
720 
721 	for (i = 0; i < rdesc->num_registers; i++) {
722 		item = &rdesc->registers[i];
723 		if (item->reg == reg)
724 			return item;
725 	}
726 
727 	return NULL;
728 }
729 
730 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
731 {
732 	const struct rmi_register_desc_item *item;
733 	int i;
734 	size_t size = 0;
735 
736 	for (i = 0; i < rdesc->num_registers; i++) {
737 		item = &rdesc->registers[i];
738 		size += item->reg_size;
739 	}
740 	return size;
741 }
742 
743 /* Compute the register offset relative to the base address */
744 int rmi_register_desc_calc_reg_offset(
745 		struct rmi_register_descriptor *rdesc, u16 reg)
746 {
747 	const struct rmi_register_desc_item *item;
748 	int offset = 0;
749 	int i;
750 
751 	for (i = 0; i < rdesc->num_registers; i++) {
752 		item = &rdesc->registers[i];
753 		if (item->reg == reg)
754 			return offset;
755 		++offset;
756 	}
757 	return -1;
758 }
759 
760 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
761 	u8 subpacket)
762 {
763 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
764 				subpacket) == subpacket;
765 }
766 
767 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
768 				     const struct pdt_entry *pdt)
769 {
770 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
771 	int ret;
772 	u8 status;
773 
774 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
775 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
776 		if (ret) {
777 			dev_err(&rmi_dev->dev,
778 				"Failed to read F34 status: %d.\n", ret);
779 			return ret;
780 		}
781 
782 		if (status & BIT(7))
783 			data->bootloader_mode = true;
784 	} else if (pdt->function_number == 0x01) {
785 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
786 		if (ret) {
787 			dev_err(&rmi_dev->dev,
788 				"Failed to read F01 status: %d.\n", ret);
789 			return ret;
790 		}
791 
792 		if (status & BIT(6))
793 			data->bootloader_mode = true;
794 	}
795 
796 	return 0;
797 }
798 
799 static int rmi_count_irqs(struct rmi_device *rmi_dev,
800 			 void *ctx, const struct pdt_entry *pdt)
801 {
802 	int *irq_count = ctx;
803 	int ret;
804 
805 	*irq_count += pdt->interrupt_source_count;
806 
807 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
808 	if (ret < 0)
809 		return ret;
810 
811 	return RMI_SCAN_CONTINUE;
812 }
813 
814 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
815 		      const struct pdt_entry *pdt)
816 {
817 	int error;
818 
819 	if (pdt->function_number == 0x01) {
820 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
821 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
822 		const struct rmi_device_platform_data *pdata =
823 				rmi_get_platform_data(rmi_dev);
824 
825 		if (rmi_dev->xport->ops->reset) {
826 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
827 								cmd_addr);
828 			if (error)
829 				return error;
830 
831 			return RMI_SCAN_DONE;
832 		}
833 
834 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
835 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
836 		if (error) {
837 			dev_err(&rmi_dev->dev,
838 				"Initial reset failed. Code = %d.\n", error);
839 			return error;
840 		}
841 
842 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
843 
844 		return RMI_SCAN_DONE;
845 	}
846 
847 	/* F01 should always be on page 0. If we don't find it there, fail. */
848 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
849 }
850 
851 static int rmi_create_function(struct rmi_device *rmi_dev,
852 			       void *ctx, const struct pdt_entry *pdt)
853 {
854 	struct device *dev = &rmi_dev->dev;
855 	struct rmi_driver_data *data = dev_get_drvdata(dev);
856 	int *current_irq_count = ctx;
857 	struct rmi_function *fn;
858 	int i;
859 	int error;
860 
861 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
862 			pdt->function_number);
863 
864 	fn = kzalloc(sizeof(struct rmi_function) +
865 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
866 		     GFP_KERNEL);
867 	if (!fn) {
868 		dev_err(dev, "Failed to allocate memory for F%02X\n",
869 			pdt->function_number);
870 		return -ENOMEM;
871 	}
872 
873 	INIT_LIST_HEAD(&fn->node);
874 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
875 
876 	fn->rmi_dev = rmi_dev;
877 
878 	fn->num_of_irqs = pdt->interrupt_source_count;
879 	fn->irq_pos = *current_irq_count;
880 	*current_irq_count += fn->num_of_irqs;
881 
882 	for (i = 0; i < fn->num_of_irqs; i++)
883 		set_bit(fn->irq_pos + i, fn->irq_mask);
884 
885 	error = rmi_register_function(fn);
886 	if (error)
887 		goto err_put_fn;
888 
889 	if (pdt->function_number == 0x01)
890 		data->f01_container = fn;
891 	else if (pdt->function_number == 0x34)
892 		data->f34_container = fn;
893 
894 	list_add_tail(&fn->node, &data->function_list);
895 
896 	return RMI_SCAN_CONTINUE;
897 
898 err_put_fn:
899 	put_device(&fn->dev);
900 	return error;
901 }
902 
903 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
904 {
905 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
906 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
907 	int irq = pdata->irq;
908 	int irq_flags;
909 	int retval;
910 
911 	mutex_lock(&data->enabled_mutex);
912 
913 	if (data->enabled)
914 		goto out;
915 
916 	enable_irq(irq);
917 	data->enabled = true;
918 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
919 		retval = disable_irq_wake(irq);
920 		if (retval)
921 			dev_warn(&rmi_dev->dev,
922 				 "Failed to disable irq for wake: %d\n",
923 				 retval);
924 	}
925 
926 	/*
927 	 * Call rmi_process_interrupt_requests() after enabling irq,
928 	 * otherwise we may lose interrupt on edge-triggered systems.
929 	 */
930 	irq_flags = irq_get_trigger_type(pdata->irq);
931 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
932 		rmi_process_interrupt_requests(rmi_dev);
933 
934 out:
935 	mutex_unlock(&data->enabled_mutex);
936 }
937 
938 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
939 {
940 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
941 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
942 	struct rmi4_attn_data attn_data = {0};
943 	int irq = pdata->irq;
944 	int retval, count;
945 
946 	mutex_lock(&data->enabled_mutex);
947 
948 	if (!data->enabled)
949 		goto out;
950 
951 	data->enabled = false;
952 	disable_irq(irq);
953 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
954 		retval = enable_irq_wake(irq);
955 		if (retval)
956 			dev_warn(&rmi_dev->dev,
957 				 "Failed to enable irq for wake: %d\n",
958 				 retval);
959 	}
960 
961 	/* make sure the fifo is clean */
962 	while (!kfifo_is_empty(&data->attn_fifo)) {
963 		count = kfifo_get(&data->attn_fifo, &attn_data);
964 		if (count)
965 			kfree(attn_data.data);
966 	}
967 
968 out:
969 	mutex_unlock(&data->enabled_mutex);
970 }
971 
972 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
973 {
974 	int retval;
975 
976 	retval = rmi_suspend_functions(rmi_dev);
977 	if (retval)
978 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
979 			retval);
980 
981 	rmi_disable_irq(rmi_dev, enable_wake);
982 	return retval;
983 }
984 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
985 
986 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
987 {
988 	int retval;
989 
990 	rmi_enable_irq(rmi_dev, clear_wake);
991 
992 	retval = rmi_resume_functions(rmi_dev);
993 	if (retval)
994 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
995 			retval);
996 
997 	return retval;
998 }
999 EXPORT_SYMBOL_GPL(rmi_driver_resume);
1000 
1001 static int rmi_driver_remove(struct device *dev)
1002 {
1003 	struct rmi_device *rmi_dev = to_rmi_device(dev);
1004 
1005 	rmi_disable_irq(rmi_dev, false);
1006 
1007 	rmi_f34_remove_sysfs(rmi_dev);
1008 	rmi_free_function_list(rmi_dev);
1009 
1010 	return 0;
1011 }
1012 
1013 #ifdef CONFIG_OF
1014 static int rmi_driver_of_probe(struct device *dev,
1015 				struct rmi_device_platform_data *pdata)
1016 {
1017 	int retval;
1018 
1019 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1020 					"syna,reset-delay-ms", 1);
1021 	if (retval)
1022 		return retval;
1023 
1024 	return 0;
1025 }
1026 #else
1027 static inline int rmi_driver_of_probe(struct device *dev,
1028 					struct rmi_device_platform_data *pdata)
1029 {
1030 	return -ENODEV;
1031 }
1032 #endif
1033 
1034 int rmi_probe_interrupts(struct rmi_driver_data *data)
1035 {
1036 	struct rmi_device *rmi_dev = data->rmi_dev;
1037 	struct device *dev = &rmi_dev->dev;
1038 	int irq_count;
1039 	size_t size;
1040 	int retval;
1041 
1042 	/*
1043 	 * We need to count the IRQs and allocate their storage before scanning
1044 	 * the PDT and creating the function entries, because adding a new
1045 	 * function can trigger events that result in the IRQ related storage
1046 	 * being accessed.
1047 	 */
1048 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1049 	irq_count = 0;
1050 	data->bootloader_mode = false;
1051 
1052 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1053 	if (retval < 0) {
1054 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1055 		return retval;
1056 	}
1057 
1058 	if (data->bootloader_mode)
1059 		dev_warn(dev, "Device in bootloader mode.\n");
1060 
1061 	data->irq_count = irq_count;
1062 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1063 
1064 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1065 	data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1066 	if (!data->irq_memory) {
1067 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1068 		return -ENOMEM;
1069 	}
1070 
1071 	data->irq_status	= data->irq_memory + size * 0;
1072 	data->fn_irq_bits	= data->irq_memory + size * 1;
1073 	data->current_irq_mask	= data->irq_memory + size * 2;
1074 	data->new_irq_mask	= data->irq_memory + size * 3;
1075 
1076 	return retval;
1077 }
1078 
1079 int rmi_init_functions(struct rmi_driver_data *data)
1080 {
1081 	struct rmi_device *rmi_dev = data->rmi_dev;
1082 	struct device *dev = &rmi_dev->dev;
1083 	int irq_count;
1084 	int retval;
1085 
1086 	irq_count = 0;
1087 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1088 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1089 	if (retval < 0) {
1090 		dev_err(dev, "Function creation failed with code %d.\n",
1091 			retval);
1092 		goto err_destroy_functions;
1093 	}
1094 
1095 	if (!data->f01_container) {
1096 		dev_err(dev, "Missing F01 container!\n");
1097 		retval = -EINVAL;
1098 		goto err_destroy_functions;
1099 	}
1100 
1101 	retval = rmi_read_block(rmi_dev,
1102 				data->f01_container->fd.control_base_addr + 1,
1103 				data->current_irq_mask, data->num_of_irq_regs);
1104 	if (retval < 0) {
1105 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1106 			__func__);
1107 		goto err_destroy_functions;
1108 	}
1109 
1110 	return 0;
1111 
1112 err_destroy_functions:
1113 	rmi_free_function_list(rmi_dev);
1114 	return retval;
1115 }
1116 
1117 static int rmi_driver_probe(struct device *dev)
1118 {
1119 	struct rmi_driver *rmi_driver;
1120 	struct rmi_driver_data *data;
1121 	struct rmi_device_platform_data *pdata;
1122 	struct rmi_device *rmi_dev;
1123 	int retval;
1124 
1125 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1126 			__func__);
1127 
1128 	if (!rmi_is_physical_device(dev)) {
1129 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1130 		return -ENODEV;
1131 	}
1132 
1133 	rmi_dev = to_rmi_device(dev);
1134 	rmi_driver = to_rmi_driver(dev->driver);
1135 	rmi_dev->driver = rmi_driver;
1136 
1137 	pdata = rmi_get_platform_data(rmi_dev);
1138 
1139 	if (rmi_dev->xport->dev->of_node) {
1140 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1141 		if (retval)
1142 			return retval;
1143 	}
1144 
1145 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1146 	if (!data)
1147 		return -ENOMEM;
1148 
1149 	INIT_LIST_HEAD(&data->function_list);
1150 	data->rmi_dev = rmi_dev;
1151 	dev_set_drvdata(&rmi_dev->dev, data);
1152 
1153 	/*
1154 	 * Right before a warm boot, the sensor might be in some unusual state,
1155 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1156 	 * or configuration update.  In order to clear the sensor to a known
1157 	 * state and/or apply any updates, we issue a initial reset to clear any
1158 	 * previous settings and force it into normal operation.
1159 	 *
1160 	 * We have to do this before actually building the PDT because
1161 	 * the reflash updates (if any) might cause various registers to move
1162 	 * around.
1163 	 *
1164 	 * For a number of reasons, this initial reset may fail to return
1165 	 * within the specified time, but we'll still be able to bring up the
1166 	 * driver normally after that failure.  This occurs most commonly in
1167 	 * a cold boot situation (where then firmware takes longer to come up
1168 	 * than from a warm boot) and the reset_delay_ms in the platform data
1169 	 * has been set too short to accommodate that.  Since the sensor will
1170 	 * eventually come up and be usable, we don't want to just fail here
1171 	 * and leave the customer's device unusable.  So we warn them, and
1172 	 * continue processing.
1173 	 */
1174 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1175 	if (retval < 0)
1176 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1177 
1178 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1179 	if (retval < 0) {
1180 		/*
1181 		 * we'll print out a warning and continue since
1182 		 * failure to get the PDT properties is not a cause to fail
1183 		 */
1184 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1185 			 PDT_PROPERTIES_LOCATION, retval);
1186 	}
1187 
1188 	mutex_init(&data->irq_mutex);
1189 	mutex_init(&data->enabled_mutex);
1190 
1191 	retval = rmi_probe_interrupts(data);
1192 	if (retval)
1193 		goto err;
1194 
1195 	if (rmi_dev->xport->input) {
1196 		/*
1197 		 * The transport driver already has an input device.
1198 		 * In some cases it is preferable to reuse the transport
1199 		 * devices input device instead of creating a new one here.
1200 		 * One example is some HID touchpads report "pass-through"
1201 		 * button events are not reported by rmi registers.
1202 		 */
1203 		data->input = rmi_dev->xport->input;
1204 	} else {
1205 		data->input = devm_input_allocate_device(dev);
1206 		if (!data->input) {
1207 			dev_err(dev, "%s: Failed to allocate input device.\n",
1208 				__func__);
1209 			retval = -ENOMEM;
1210 			goto err;
1211 		}
1212 		rmi_driver_set_input_params(rmi_dev, data->input);
1213 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1214 						"%s/input0", dev_name(dev));
1215 	}
1216 
1217 	retval = rmi_init_functions(data);
1218 	if (retval)
1219 		goto err;
1220 
1221 	retval = rmi_f34_create_sysfs(rmi_dev);
1222 	if (retval)
1223 		goto err;
1224 
1225 	if (data->input) {
1226 		rmi_driver_set_input_name(rmi_dev, data->input);
1227 		if (!rmi_dev->xport->input) {
1228 			if (input_register_device(data->input)) {
1229 				dev_err(dev, "%s: Failed to register input device.\n",
1230 					__func__);
1231 				goto err_destroy_functions;
1232 			}
1233 		}
1234 	}
1235 
1236 	retval = rmi_irq_init(rmi_dev);
1237 	if (retval < 0)
1238 		goto err_destroy_functions;
1239 
1240 	if (data->f01_container->dev.driver) {
1241 		/* Driver already bound, so enable ATTN now. */
1242 		retval = rmi_enable_sensor(rmi_dev);
1243 		if (retval)
1244 			goto err_disable_irq;
1245 	}
1246 
1247 	return 0;
1248 
1249 err_disable_irq:
1250 	rmi_disable_irq(rmi_dev, false);
1251 err_destroy_functions:
1252 	rmi_free_function_list(rmi_dev);
1253 err:
1254 	return retval;
1255 }
1256 
1257 static struct rmi_driver rmi_physical_driver = {
1258 	.driver = {
1259 		.owner	= THIS_MODULE,
1260 		.name	= "rmi4_physical",
1261 		.bus	= &rmi_bus_type,
1262 		.probe = rmi_driver_probe,
1263 		.remove = rmi_driver_remove,
1264 	},
1265 	.reset_handler = rmi_driver_reset_handler,
1266 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1267 	.set_irq_bits = rmi_driver_set_irq_bits,
1268 	.set_input_params = rmi_driver_set_input_params,
1269 };
1270 
1271 bool rmi_is_physical_driver(struct device_driver *drv)
1272 {
1273 	return drv == &rmi_physical_driver.driver;
1274 }
1275 
1276 int __init rmi_register_physical_driver(void)
1277 {
1278 	int error;
1279 
1280 	error = driver_register(&rmi_physical_driver.driver);
1281 	if (error) {
1282 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1283 		       error);
1284 		return error;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 void __exit rmi_unregister_physical_driver(void)
1291 {
1292 	driver_unregister(&rmi_physical_driver.driver);
1293 }
1294