1 /* 2 * Copyright (c) 2011-2016 Synaptics Incorporated 3 * Copyright (c) 2011 Unixphere 4 * 5 * This driver provides the core support for a single RMI4-based device. 6 * 7 * The RMI4 specification can be found here (URL split for line length): 8 * 9 * http://www.synaptics.com/sites/default/files/ 10 * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/delay.h> 19 #include <linux/fs.h> 20 #include <linux/irq.h> 21 #include <linux/pm.h> 22 #include <linux/slab.h> 23 #include <linux/of.h> 24 #include <uapi/linux/input.h> 25 #include <linux/rmi.h> 26 #include "rmi_bus.h" 27 #include "rmi_driver.h" 28 29 #define HAS_NONSTANDARD_PDT_MASK 0x40 30 #define RMI4_MAX_PAGE 0xff 31 #define RMI4_PAGE_SIZE 0x100 32 #define RMI4_PAGE_MASK 0xFF00 33 34 #define RMI_DEVICE_RESET_CMD 0x01 35 #define DEFAULT_RESET_DELAY_MS 100 36 37 void rmi_free_function_list(struct rmi_device *rmi_dev) 38 { 39 struct rmi_function *fn, *tmp; 40 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 41 42 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n"); 43 44 devm_kfree(&rmi_dev->dev, data->irq_memory); 45 data->irq_memory = NULL; 46 data->irq_status = NULL; 47 data->fn_irq_bits = NULL; 48 data->current_irq_mask = NULL; 49 data->new_irq_mask = NULL; 50 51 data->f01_container = NULL; 52 data->f34_container = NULL; 53 54 /* Doing it in the reverse order so F01 will be removed last */ 55 list_for_each_entry_safe_reverse(fn, tmp, 56 &data->function_list, node) { 57 list_del(&fn->node); 58 rmi_unregister_function(fn); 59 } 60 } 61 62 static int reset_one_function(struct rmi_function *fn) 63 { 64 struct rmi_function_handler *fh; 65 int retval = 0; 66 67 if (!fn || !fn->dev.driver) 68 return 0; 69 70 fh = to_rmi_function_handler(fn->dev.driver); 71 if (fh->reset) { 72 retval = fh->reset(fn); 73 if (retval < 0) 74 dev_err(&fn->dev, "Reset failed with code %d.\n", 75 retval); 76 } 77 78 return retval; 79 } 80 81 static int configure_one_function(struct rmi_function *fn) 82 { 83 struct rmi_function_handler *fh; 84 int retval = 0; 85 86 if (!fn || !fn->dev.driver) 87 return 0; 88 89 fh = to_rmi_function_handler(fn->dev.driver); 90 if (fh->config) { 91 retval = fh->config(fn); 92 if (retval < 0) 93 dev_err(&fn->dev, "Config failed with code %d.\n", 94 retval); 95 } 96 97 return retval; 98 } 99 100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) 101 { 102 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 103 struct rmi_function *entry; 104 int retval; 105 106 list_for_each_entry(entry, &data->function_list, node) { 107 retval = reset_one_function(entry); 108 if (retval < 0) 109 return retval; 110 } 111 112 return 0; 113 } 114 115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) 116 { 117 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 118 struct rmi_function *entry; 119 int retval; 120 121 list_for_each_entry(entry, &data->function_list, node) { 122 retval = configure_one_function(entry); 123 if (retval < 0) 124 return retval; 125 } 126 127 return 0; 128 } 129 130 static void process_one_interrupt(struct rmi_driver_data *data, 131 struct rmi_function *fn) 132 { 133 struct rmi_function_handler *fh; 134 135 if (!fn || !fn->dev.driver) 136 return; 137 138 fh = to_rmi_function_handler(fn->dev.driver); 139 if (fh->attention) { 140 bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask, 141 data->irq_count); 142 if (!bitmap_empty(data->fn_irq_bits, data->irq_count)) 143 fh->attention(fn, data->fn_irq_bits); 144 } 145 } 146 147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) 148 { 149 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 150 struct device *dev = &rmi_dev->dev; 151 struct rmi_function *entry; 152 int error; 153 154 if (!data) 155 return 0; 156 157 if (!data->attn_data.data) { 158 error = rmi_read_block(rmi_dev, 159 data->f01_container->fd.data_base_addr + 1, 160 data->irq_status, data->num_of_irq_regs); 161 if (error < 0) { 162 dev_err(dev, "Failed to read irqs, code=%d\n", error); 163 return error; 164 } 165 } 166 167 mutex_lock(&data->irq_mutex); 168 bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask, 169 data->irq_count); 170 /* 171 * At this point, irq_status has all bits that are set in the 172 * interrupt status register and are enabled. 173 */ 174 mutex_unlock(&data->irq_mutex); 175 176 /* 177 * It would be nice to be able to use irq_chip to handle these 178 * nested IRQs. Unfortunately, most of the current customers for 179 * this driver are using older kernels (3.0.x) that don't support 180 * the features required for that. Once they've shifted to more 181 * recent kernels (say, 3.3 and higher), this should be switched to 182 * use irq_chip. 183 */ 184 list_for_each_entry(entry, &data->function_list, node) 185 process_one_interrupt(data, entry); 186 187 if (data->input) 188 input_sync(data->input); 189 190 return 0; 191 } 192 193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status, 194 void *data, size_t size) 195 { 196 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); 197 struct rmi4_attn_data attn_data; 198 void *fifo_data; 199 200 if (!drvdata->enabled) 201 return; 202 203 fifo_data = kmemdup(data, size, GFP_ATOMIC); 204 if (!fifo_data) 205 return; 206 207 attn_data.irq_status = irq_status; 208 attn_data.size = size; 209 attn_data.data = fifo_data; 210 211 kfifo_put(&drvdata->attn_fifo, attn_data); 212 } 213 EXPORT_SYMBOL_GPL(rmi_set_attn_data); 214 215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id) 216 { 217 struct rmi_device *rmi_dev = dev_id; 218 struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); 219 struct rmi4_attn_data attn_data = {0}; 220 int ret, count; 221 222 count = kfifo_get(&drvdata->attn_fifo, &attn_data); 223 if (count) { 224 *(drvdata->irq_status) = attn_data.irq_status; 225 drvdata->attn_data = attn_data; 226 } 227 228 ret = rmi_process_interrupt_requests(rmi_dev); 229 if (ret) 230 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, 231 "Failed to process interrupt request: %d\n", ret); 232 233 if (count) 234 kfree(attn_data.data); 235 236 if (!kfifo_is_empty(&drvdata->attn_fifo)) 237 return rmi_irq_fn(irq, dev_id); 238 239 return IRQ_HANDLED; 240 } 241 242 static int rmi_irq_init(struct rmi_device *rmi_dev) 243 { 244 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 245 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 246 int irq_flags = irq_get_trigger_type(pdata->irq); 247 int ret; 248 249 if (!irq_flags) 250 irq_flags = IRQF_TRIGGER_LOW; 251 252 ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL, 253 rmi_irq_fn, irq_flags | IRQF_ONESHOT, 254 dev_name(rmi_dev->xport->dev), 255 rmi_dev); 256 if (ret < 0) { 257 dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n", 258 pdata->irq); 259 260 return ret; 261 } 262 263 data->enabled = true; 264 265 return 0; 266 } 267 268 static int suspend_one_function(struct rmi_function *fn) 269 { 270 struct rmi_function_handler *fh; 271 int retval = 0; 272 273 if (!fn || !fn->dev.driver) 274 return 0; 275 276 fh = to_rmi_function_handler(fn->dev.driver); 277 if (fh->suspend) { 278 retval = fh->suspend(fn); 279 if (retval < 0) 280 dev_err(&fn->dev, "Suspend failed with code %d.\n", 281 retval); 282 } 283 284 return retval; 285 } 286 287 static int rmi_suspend_functions(struct rmi_device *rmi_dev) 288 { 289 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 290 struct rmi_function *entry; 291 int retval; 292 293 list_for_each_entry(entry, &data->function_list, node) { 294 retval = suspend_one_function(entry); 295 if (retval < 0) 296 return retval; 297 } 298 299 return 0; 300 } 301 302 static int resume_one_function(struct rmi_function *fn) 303 { 304 struct rmi_function_handler *fh; 305 int retval = 0; 306 307 if (!fn || !fn->dev.driver) 308 return 0; 309 310 fh = to_rmi_function_handler(fn->dev.driver); 311 if (fh->resume) { 312 retval = fh->resume(fn); 313 if (retval < 0) 314 dev_err(&fn->dev, "Resume failed with code %d.\n", 315 retval); 316 } 317 318 return retval; 319 } 320 321 static int rmi_resume_functions(struct rmi_device *rmi_dev) 322 { 323 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 324 struct rmi_function *entry; 325 int retval; 326 327 list_for_each_entry(entry, &data->function_list, node) { 328 retval = resume_one_function(entry); 329 if (retval < 0) 330 return retval; 331 } 332 333 return 0; 334 } 335 336 int rmi_enable_sensor(struct rmi_device *rmi_dev) 337 { 338 int retval = 0; 339 340 retval = rmi_driver_process_config_requests(rmi_dev); 341 if (retval < 0) 342 return retval; 343 344 return rmi_process_interrupt_requests(rmi_dev); 345 } 346 347 /** 348 * rmi_driver_set_input_params - set input device id and other data. 349 * 350 * @rmi_dev: Pointer to an RMI device 351 * @input: Pointer to input device 352 * 353 */ 354 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, 355 struct input_dev *input) 356 { 357 input->name = SYNAPTICS_INPUT_DEVICE_NAME; 358 input->id.vendor = SYNAPTICS_VENDOR_ID; 359 input->id.bustype = BUS_RMI; 360 return 0; 361 } 362 363 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, 364 struct input_dev *input) 365 { 366 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 367 char *device_name = rmi_f01_get_product_ID(data->f01_container); 368 char *name; 369 370 name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, 371 "Synaptics %s", device_name); 372 if (!name) 373 return; 374 375 input->name = name; 376 } 377 378 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, 379 unsigned long *mask) 380 { 381 int error = 0; 382 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 383 struct device *dev = &rmi_dev->dev; 384 385 mutex_lock(&data->irq_mutex); 386 bitmap_or(data->new_irq_mask, 387 data->current_irq_mask, mask, data->irq_count); 388 389 error = rmi_write_block(rmi_dev, 390 data->f01_container->fd.control_base_addr + 1, 391 data->new_irq_mask, data->num_of_irq_regs); 392 if (error < 0) { 393 dev_err(dev, "%s: Failed to change enabled interrupts!", 394 __func__); 395 goto error_unlock; 396 } 397 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 398 data->num_of_irq_regs); 399 400 error_unlock: 401 mutex_unlock(&data->irq_mutex); 402 return error; 403 } 404 405 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, 406 unsigned long *mask) 407 { 408 int error = 0; 409 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 410 struct device *dev = &rmi_dev->dev; 411 412 mutex_lock(&data->irq_mutex); 413 bitmap_andnot(data->new_irq_mask, 414 data->current_irq_mask, mask, data->irq_count); 415 416 error = rmi_write_block(rmi_dev, 417 data->f01_container->fd.control_base_addr + 1, 418 data->new_irq_mask, data->num_of_irq_regs); 419 if (error < 0) { 420 dev_err(dev, "%s: Failed to change enabled interrupts!", 421 __func__); 422 goto error_unlock; 423 } 424 bitmap_copy(data->current_irq_mask, data->new_irq_mask, 425 data->num_of_irq_regs); 426 427 error_unlock: 428 mutex_unlock(&data->irq_mutex); 429 return error; 430 } 431 432 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) 433 { 434 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 435 int error; 436 437 /* 438 * Can get called before the driver is fully ready to deal with 439 * this situation. 440 */ 441 if (!data || !data->f01_container) { 442 dev_warn(&rmi_dev->dev, 443 "Not ready to handle reset yet!\n"); 444 return 0; 445 } 446 447 error = rmi_read_block(rmi_dev, 448 data->f01_container->fd.control_base_addr + 1, 449 data->current_irq_mask, data->num_of_irq_regs); 450 if (error < 0) { 451 dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", 452 __func__); 453 return error; 454 } 455 456 error = rmi_driver_process_reset_requests(rmi_dev); 457 if (error < 0) 458 return error; 459 460 error = rmi_driver_process_config_requests(rmi_dev); 461 if (error < 0) 462 return error; 463 464 return 0; 465 } 466 467 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev, 468 struct pdt_entry *entry, u16 pdt_address) 469 { 470 u8 buf[RMI_PDT_ENTRY_SIZE]; 471 int error; 472 473 error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); 474 if (error) { 475 dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", 476 pdt_address, error); 477 return error; 478 } 479 480 entry->page_start = pdt_address & RMI4_PAGE_MASK; 481 entry->query_base_addr = buf[0]; 482 entry->command_base_addr = buf[1]; 483 entry->control_base_addr = buf[2]; 484 entry->data_base_addr = buf[3]; 485 entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; 486 entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; 487 entry->function_number = buf[5]; 488 489 return 0; 490 } 491 492 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, 493 struct rmi_function_descriptor *fd) 494 { 495 fd->query_base_addr = pdt->query_base_addr + pdt->page_start; 496 fd->command_base_addr = pdt->command_base_addr + pdt->page_start; 497 fd->control_base_addr = pdt->control_base_addr + pdt->page_start; 498 fd->data_base_addr = pdt->data_base_addr + pdt->page_start; 499 fd->function_number = pdt->function_number; 500 fd->interrupt_source_count = pdt->interrupt_source_count; 501 fd->function_version = pdt->function_version; 502 } 503 504 #define RMI_SCAN_CONTINUE 0 505 #define RMI_SCAN_DONE 1 506 507 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, 508 int page, 509 int *empty_pages, 510 void *ctx, 511 int (*callback)(struct rmi_device *rmi_dev, 512 void *ctx, 513 const struct pdt_entry *entry)) 514 { 515 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 516 struct pdt_entry pdt_entry; 517 u16 page_start = RMI4_PAGE_SIZE * page; 518 u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; 519 u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; 520 u16 addr; 521 int error; 522 int retval; 523 524 for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { 525 error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); 526 if (error) 527 return error; 528 529 if (RMI4_END_OF_PDT(pdt_entry.function_number)) 530 break; 531 532 retval = callback(rmi_dev, ctx, &pdt_entry); 533 if (retval != RMI_SCAN_CONTINUE) 534 return retval; 535 } 536 537 /* 538 * Count number of empty PDT pages. If a gap of two pages 539 * or more is found, stop scanning. 540 */ 541 if (addr == pdt_start) 542 ++*empty_pages; 543 else 544 *empty_pages = 0; 545 546 return (data->bootloader_mode || *empty_pages >= 2) ? 547 RMI_SCAN_DONE : RMI_SCAN_CONTINUE; 548 } 549 550 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, 551 int (*callback)(struct rmi_device *rmi_dev, 552 void *ctx, const struct pdt_entry *entry)) 553 { 554 int page; 555 int empty_pages = 0; 556 int retval = RMI_SCAN_DONE; 557 558 for (page = 0; page <= RMI4_MAX_PAGE; page++) { 559 retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages, 560 ctx, callback); 561 if (retval != RMI_SCAN_CONTINUE) 562 break; 563 } 564 565 return retval < 0 ? retval : 0; 566 } 567 568 int rmi_read_register_desc(struct rmi_device *d, u16 addr, 569 struct rmi_register_descriptor *rdesc) 570 { 571 int ret; 572 u8 size_presence_reg; 573 u8 buf[35]; 574 int presense_offset = 1; 575 u8 *struct_buf; 576 int reg; 577 int offset = 0; 578 int map_offset = 0; 579 int i; 580 int b; 581 582 /* 583 * The first register of the register descriptor is the size of 584 * the register descriptor's presense register. 585 */ 586 ret = rmi_read(d, addr, &size_presence_reg); 587 if (ret) 588 return ret; 589 ++addr; 590 591 if (size_presence_reg < 0 || size_presence_reg > 35) 592 return -EIO; 593 594 memset(buf, 0, sizeof(buf)); 595 596 /* 597 * The presence register contains the size of the register structure 598 * and a bitmap which identified which packet registers are present 599 * for this particular register type (ie query, control, or data). 600 */ 601 ret = rmi_read_block(d, addr, buf, size_presence_reg); 602 if (ret) 603 return ret; 604 ++addr; 605 606 if (buf[0] == 0) { 607 presense_offset = 3; 608 rdesc->struct_size = buf[1] | (buf[2] << 8); 609 } else { 610 rdesc->struct_size = buf[0]; 611 } 612 613 for (i = presense_offset; i < size_presence_reg; i++) { 614 for (b = 0; b < 8; b++) { 615 if (buf[i] & (0x1 << b)) 616 bitmap_set(rdesc->presense_map, map_offset, 1); 617 ++map_offset; 618 } 619 } 620 621 rdesc->num_registers = bitmap_weight(rdesc->presense_map, 622 RMI_REG_DESC_PRESENSE_BITS); 623 624 rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers * 625 sizeof(struct rmi_register_desc_item), 626 GFP_KERNEL); 627 if (!rdesc->registers) 628 return -ENOMEM; 629 630 /* 631 * Allocate a temporary buffer to hold the register structure. 632 * I'm not using devm_kzalloc here since it will not be retained 633 * after exiting this function 634 */ 635 struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); 636 if (!struct_buf) 637 return -ENOMEM; 638 639 /* 640 * The register structure contains information about every packet 641 * register of this type. This includes the size of the packet 642 * register and a bitmap of all subpackets contained in the packet 643 * register. 644 */ 645 ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); 646 if (ret) 647 goto free_struct_buff; 648 649 reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); 650 for (i = 0; i < rdesc->num_registers; i++) { 651 struct rmi_register_desc_item *item = &rdesc->registers[i]; 652 int reg_size = struct_buf[offset]; 653 654 ++offset; 655 if (reg_size == 0) { 656 reg_size = struct_buf[offset] | 657 (struct_buf[offset + 1] << 8); 658 offset += 2; 659 } 660 661 if (reg_size == 0) { 662 reg_size = struct_buf[offset] | 663 (struct_buf[offset + 1] << 8) | 664 (struct_buf[offset + 2] << 16) | 665 (struct_buf[offset + 3] << 24); 666 offset += 4; 667 } 668 669 item->reg = reg; 670 item->reg_size = reg_size; 671 672 map_offset = 0; 673 674 do { 675 for (b = 0; b < 7; b++) { 676 if (struct_buf[offset] & (0x1 << b)) 677 bitmap_set(item->subpacket_map, 678 map_offset, 1); 679 ++map_offset; 680 } 681 } while (struct_buf[offset++] & 0x80); 682 683 item->num_subpackets = bitmap_weight(item->subpacket_map, 684 RMI_REG_DESC_SUBPACKET_BITS); 685 686 rmi_dbg(RMI_DEBUG_CORE, &d->dev, 687 "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, 688 item->reg, item->reg_size, item->num_subpackets); 689 690 reg = find_next_bit(rdesc->presense_map, 691 RMI_REG_DESC_PRESENSE_BITS, reg + 1); 692 } 693 694 free_struct_buff: 695 kfree(struct_buf); 696 return ret; 697 } 698 699 const struct rmi_register_desc_item *rmi_get_register_desc_item( 700 struct rmi_register_descriptor *rdesc, u16 reg) 701 { 702 const struct rmi_register_desc_item *item; 703 int i; 704 705 for (i = 0; i < rdesc->num_registers; i++) { 706 item = &rdesc->registers[i]; 707 if (item->reg == reg) 708 return item; 709 } 710 711 return NULL; 712 } 713 714 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) 715 { 716 const struct rmi_register_desc_item *item; 717 int i; 718 size_t size = 0; 719 720 for (i = 0; i < rdesc->num_registers; i++) { 721 item = &rdesc->registers[i]; 722 size += item->reg_size; 723 } 724 return size; 725 } 726 727 /* Compute the register offset relative to the base address */ 728 int rmi_register_desc_calc_reg_offset( 729 struct rmi_register_descriptor *rdesc, u16 reg) 730 { 731 const struct rmi_register_desc_item *item; 732 int offset = 0; 733 int i; 734 735 for (i = 0; i < rdesc->num_registers; i++) { 736 item = &rdesc->registers[i]; 737 if (item->reg == reg) 738 return offset; 739 ++offset; 740 } 741 return -1; 742 } 743 744 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, 745 u8 subpacket) 746 { 747 return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, 748 subpacket) == subpacket; 749 } 750 751 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, 752 const struct pdt_entry *pdt) 753 { 754 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 755 int ret; 756 u8 status; 757 758 if (pdt->function_number == 0x34 && pdt->function_version > 1) { 759 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); 760 if (ret) { 761 dev_err(&rmi_dev->dev, 762 "Failed to read F34 status: %d.\n", ret); 763 return ret; 764 } 765 766 if (status & BIT(7)) 767 data->bootloader_mode = true; 768 } else if (pdt->function_number == 0x01) { 769 ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); 770 if (ret) { 771 dev_err(&rmi_dev->dev, 772 "Failed to read F01 status: %d.\n", ret); 773 return ret; 774 } 775 776 if (status & BIT(6)) 777 data->bootloader_mode = true; 778 } 779 780 return 0; 781 } 782 783 static int rmi_count_irqs(struct rmi_device *rmi_dev, 784 void *ctx, const struct pdt_entry *pdt) 785 { 786 int *irq_count = ctx; 787 int ret; 788 789 *irq_count += pdt->interrupt_source_count; 790 791 ret = rmi_check_bootloader_mode(rmi_dev, pdt); 792 if (ret < 0) 793 return ret; 794 795 return RMI_SCAN_CONTINUE; 796 } 797 798 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx, 799 const struct pdt_entry *pdt) 800 { 801 int error; 802 803 if (pdt->function_number == 0x01) { 804 u16 cmd_addr = pdt->page_start + pdt->command_base_addr; 805 u8 cmd_buf = RMI_DEVICE_RESET_CMD; 806 const struct rmi_device_platform_data *pdata = 807 rmi_get_platform_data(rmi_dev); 808 809 if (rmi_dev->xport->ops->reset) { 810 error = rmi_dev->xport->ops->reset(rmi_dev->xport, 811 cmd_addr); 812 if (error) 813 return error; 814 815 return RMI_SCAN_DONE; 816 } 817 818 rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n"); 819 error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); 820 if (error) { 821 dev_err(&rmi_dev->dev, 822 "Initial reset failed. Code = %d.\n", error); 823 return error; 824 } 825 826 mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); 827 828 return RMI_SCAN_DONE; 829 } 830 831 /* F01 should always be on page 0. If we don't find it there, fail. */ 832 return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; 833 } 834 835 static int rmi_create_function(struct rmi_device *rmi_dev, 836 void *ctx, const struct pdt_entry *pdt) 837 { 838 struct device *dev = &rmi_dev->dev; 839 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 840 int *current_irq_count = ctx; 841 struct rmi_function *fn; 842 int i; 843 int error; 844 845 rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", 846 pdt->function_number); 847 848 fn = kzalloc(sizeof(struct rmi_function) + 849 BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), 850 GFP_KERNEL); 851 if (!fn) { 852 dev_err(dev, "Failed to allocate memory for F%02X\n", 853 pdt->function_number); 854 return -ENOMEM; 855 } 856 857 INIT_LIST_HEAD(&fn->node); 858 rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); 859 860 fn->rmi_dev = rmi_dev; 861 862 fn->num_of_irqs = pdt->interrupt_source_count; 863 fn->irq_pos = *current_irq_count; 864 *current_irq_count += fn->num_of_irqs; 865 866 for (i = 0; i < fn->num_of_irqs; i++) 867 set_bit(fn->irq_pos + i, fn->irq_mask); 868 869 error = rmi_register_function(fn); 870 if (error) 871 goto err_put_fn; 872 873 if (pdt->function_number == 0x01) 874 data->f01_container = fn; 875 else if (pdt->function_number == 0x34) 876 data->f34_container = fn; 877 878 list_add_tail(&fn->node, &data->function_list); 879 880 return RMI_SCAN_CONTINUE; 881 882 err_put_fn: 883 put_device(&fn->dev); 884 return error; 885 } 886 887 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake) 888 { 889 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 890 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 891 int irq = pdata->irq; 892 int irq_flags; 893 int retval; 894 895 mutex_lock(&data->enabled_mutex); 896 897 if (data->enabled) 898 goto out; 899 900 enable_irq(irq); 901 data->enabled = true; 902 if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) { 903 retval = disable_irq_wake(irq); 904 if (!retval) 905 dev_warn(&rmi_dev->dev, 906 "Failed to disable irq for wake: %d\n", 907 retval); 908 } 909 910 /* 911 * Call rmi_process_interrupt_requests() after enabling irq, 912 * otherwise we may lose interrupt on edge-triggered systems. 913 */ 914 irq_flags = irq_get_trigger_type(pdata->irq); 915 if (irq_flags & IRQ_TYPE_EDGE_BOTH) 916 rmi_process_interrupt_requests(rmi_dev); 917 918 out: 919 mutex_unlock(&data->enabled_mutex); 920 } 921 922 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake) 923 { 924 struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); 925 struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); 926 struct rmi4_attn_data attn_data = {0}; 927 int irq = pdata->irq; 928 int retval, count; 929 930 mutex_lock(&data->enabled_mutex); 931 932 if (!data->enabled) 933 goto out; 934 935 data->enabled = false; 936 disable_irq(irq); 937 if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) { 938 retval = enable_irq_wake(irq); 939 if (!retval) 940 dev_warn(&rmi_dev->dev, 941 "Failed to enable irq for wake: %d\n", 942 retval); 943 } 944 945 /* make sure the fifo is clean */ 946 while (!kfifo_is_empty(&data->attn_fifo)) { 947 count = kfifo_get(&data->attn_fifo, &attn_data); 948 if (count) 949 kfree(attn_data.data); 950 } 951 952 out: 953 mutex_unlock(&data->enabled_mutex); 954 } 955 956 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake) 957 { 958 int retval; 959 960 retval = rmi_suspend_functions(rmi_dev); 961 if (retval) 962 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 963 retval); 964 965 rmi_disable_irq(rmi_dev, enable_wake); 966 return retval; 967 } 968 EXPORT_SYMBOL_GPL(rmi_driver_suspend); 969 970 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake) 971 { 972 int retval; 973 974 rmi_enable_irq(rmi_dev, clear_wake); 975 976 retval = rmi_resume_functions(rmi_dev); 977 if (retval) 978 dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", 979 retval); 980 981 return retval; 982 } 983 EXPORT_SYMBOL_GPL(rmi_driver_resume); 984 985 static int rmi_driver_remove(struct device *dev) 986 { 987 struct rmi_device *rmi_dev = to_rmi_device(dev); 988 989 rmi_disable_irq(rmi_dev, false); 990 991 rmi_f34_remove_sysfs(rmi_dev); 992 rmi_free_function_list(rmi_dev); 993 994 return 0; 995 } 996 997 #ifdef CONFIG_OF 998 static int rmi_driver_of_probe(struct device *dev, 999 struct rmi_device_platform_data *pdata) 1000 { 1001 int retval; 1002 1003 retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, 1004 "syna,reset-delay-ms", 1); 1005 if (retval) 1006 return retval; 1007 1008 return 0; 1009 } 1010 #else 1011 static inline int rmi_driver_of_probe(struct device *dev, 1012 struct rmi_device_platform_data *pdata) 1013 { 1014 return -ENODEV; 1015 } 1016 #endif 1017 1018 int rmi_probe_interrupts(struct rmi_driver_data *data) 1019 { 1020 struct rmi_device *rmi_dev = data->rmi_dev; 1021 struct device *dev = &rmi_dev->dev; 1022 int irq_count; 1023 size_t size; 1024 int retval; 1025 1026 /* 1027 * We need to count the IRQs and allocate their storage before scanning 1028 * the PDT and creating the function entries, because adding a new 1029 * function can trigger events that result in the IRQ related storage 1030 * being accessed. 1031 */ 1032 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__); 1033 irq_count = 0; 1034 data->bootloader_mode = false; 1035 1036 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); 1037 if (retval < 0) { 1038 dev_err(dev, "IRQ counting failed with code %d.\n", retval); 1039 return retval; 1040 } 1041 1042 if (data->bootloader_mode) 1043 dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n"); 1044 1045 data->irq_count = irq_count; 1046 data->num_of_irq_regs = (data->irq_count + 7) / 8; 1047 1048 size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); 1049 data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL); 1050 if (!data->irq_memory) { 1051 dev_err(dev, "Failed to allocate memory for irq masks.\n"); 1052 return retval; 1053 } 1054 1055 data->irq_status = data->irq_memory + size * 0; 1056 data->fn_irq_bits = data->irq_memory + size * 1; 1057 data->current_irq_mask = data->irq_memory + size * 2; 1058 data->new_irq_mask = data->irq_memory + size * 3; 1059 1060 return retval; 1061 } 1062 1063 int rmi_init_functions(struct rmi_driver_data *data) 1064 { 1065 struct rmi_device *rmi_dev = data->rmi_dev; 1066 struct device *dev = &rmi_dev->dev; 1067 int irq_count; 1068 int retval; 1069 1070 irq_count = 0; 1071 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__); 1072 retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); 1073 if (retval < 0) { 1074 dev_err(dev, "Function creation failed with code %d.\n", 1075 retval); 1076 goto err_destroy_functions; 1077 } 1078 1079 if (!data->f01_container) { 1080 dev_err(dev, "Missing F01 container!\n"); 1081 retval = -EINVAL; 1082 goto err_destroy_functions; 1083 } 1084 1085 retval = rmi_read_block(rmi_dev, 1086 data->f01_container->fd.control_base_addr + 1, 1087 data->current_irq_mask, data->num_of_irq_regs); 1088 if (retval < 0) { 1089 dev_err(dev, "%s: Failed to read current IRQ mask.\n", 1090 __func__); 1091 goto err_destroy_functions; 1092 } 1093 1094 return 0; 1095 1096 err_destroy_functions: 1097 rmi_free_function_list(rmi_dev); 1098 return retval; 1099 } 1100 1101 static int rmi_driver_probe(struct device *dev) 1102 { 1103 struct rmi_driver *rmi_driver; 1104 struct rmi_driver_data *data; 1105 struct rmi_device_platform_data *pdata; 1106 struct rmi_device *rmi_dev; 1107 int retval; 1108 1109 rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", 1110 __func__); 1111 1112 if (!rmi_is_physical_device(dev)) { 1113 rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); 1114 return -ENODEV; 1115 } 1116 1117 rmi_dev = to_rmi_device(dev); 1118 rmi_driver = to_rmi_driver(dev->driver); 1119 rmi_dev->driver = rmi_driver; 1120 1121 pdata = rmi_get_platform_data(rmi_dev); 1122 1123 if (rmi_dev->xport->dev->of_node) { 1124 retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); 1125 if (retval) 1126 return retval; 1127 } 1128 1129 data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); 1130 if (!data) 1131 return -ENOMEM; 1132 1133 INIT_LIST_HEAD(&data->function_list); 1134 data->rmi_dev = rmi_dev; 1135 dev_set_drvdata(&rmi_dev->dev, data); 1136 1137 /* 1138 * Right before a warm boot, the sensor might be in some unusual state, 1139 * such as F54 diagnostics, or F34 bootloader mode after a firmware 1140 * or configuration update. In order to clear the sensor to a known 1141 * state and/or apply any updates, we issue a initial reset to clear any 1142 * previous settings and force it into normal operation. 1143 * 1144 * We have to do this before actually building the PDT because 1145 * the reflash updates (if any) might cause various registers to move 1146 * around. 1147 * 1148 * For a number of reasons, this initial reset may fail to return 1149 * within the specified time, but we'll still be able to bring up the 1150 * driver normally after that failure. This occurs most commonly in 1151 * a cold boot situation (where then firmware takes longer to come up 1152 * than from a warm boot) and the reset_delay_ms in the platform data 1153 * has been set too short to accommodate that. Since the sensor will 1154 * eventually come up and be usable, we don't want to just fail here 1155 * and leave the customer's device unusable. So we warn them, and 1156 * continue processing. 1157 */ 1158 retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); 1159 if (retval < 0) 1160 dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); 1161 1162 retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); 1163 if (retval < 0) { 1164 /* 1165 * we'll print out a warning and continue since 1166 * failure to get the PDT properties is not a cause to fail 1167 */ 1168 dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", 1169 PDT_PROPERTIES_LOCATION, retval); 1170 } 1171 1172 mutex_init(&data->irq_mutex); 1173 mutex_init(&data->enabled_mutex); 1174 1175 retval = rmi_probe_interrupts(data); 1176 if (retval) 1177 goto err; 1178 1179 if (rmi_dev->xport->input) { 1180 /* 1181 * The transport driver already has an input device. 1182 * In some cases it is preferable to reuse the transport 1183 * devices input device instead of creating a new one here. 1184 * One example is some HID touchpads report "pass-through" 1185 * button events are not reported by rmi registers. 1186 */ 1187 data->input = rmi_dev->xport->input; 1188 } else { 1189 data->input = devm_input_allocate_device(dev); 1190 if (!data->input) { 1191 dev_err(dev, "%s: Failed to allocate input device.\n", 1192 __func__); 1193 retval = -ENOMEM; 1194 goto err; 1195 } 1196 rmi_driver_set_input_params(rmi_dev, data->input); 1197 data->input->phys = devm_kasprintf(dev, GFP_KERNEL, 1198 "%s/input0", dev_name(dev)); 1199 } 1200 1201 retval = rmi_init_functions(data); 1202 if (retval) 1203 goto err; 1204 1205 retval = rmi_f34_create_sysfs(rmi_dev); 1206 if (retval) 1207 goto err; 1208 1209 if (data->input) { 1210 rmi_driver_set_input_name(rmi_dev, data->input); 1211 if (!rmi_dev->xport->input) { 1212 if (input_register_device(data->input)) { 1213 dev_err(dev, "%s: Failed to register input device.\n", 1214 __func__); 1215 goto err_destroy_functions; 1216 } 1217 } 1218 } 1219 1220 retval = rmi_irq_init(rmi_dev); 1221 if (retval < 0) 1222 goto err_destroy_functions; 1223 1224 if (data->f01_container->dev.driver) 1225 /* Driver already bound, so enable ATTN now. */ 1226 return rmi_enable_sensor(rmi_dev); 1227 1228 return 0; 1229 1230 err_destroy_functions: 1231 rmi_free_function_list(rmi_dev); 1232 err: 1233 return retval < 0 ? retval : 0; 1234 } 1235 1236 static struct rmi_driver rmi_physical_driver = { 1237 .driver = { 1238 .owner = THIS_MODULE, 1239 .name = "rmi4_physical", 1240 .bus = &rmi_bus_type, 1241 .probe = rmi_driver_probe, 1242 .remove = rmi_driver_remove, 1243 }, 1244 .reset_handler = rmi_driver_reset_handler, 1245 .clear_irq_bits = rmi_driver_clear_irq_bits, 1246 .set_irq_bits = rmi_driver_set_irq_bits, 1247 .set_input_params = rmi_driver_set_input_params, 1248 }; 1249 1250 bool rmi_is_physical_driver(struct device_driver *drv) 1251 { 1252 return drv == &rmi_physical_driver.driver; 1253 } 1254 1255 int __init rmi_register_physical_driver(void) 1256 { 1257 int error; 1258 1259 error = driver_register(&rmi_physical_driver.driver); 1260 if (error) { 1261 pr_err("%s: driver register failed, code=%d.\n", __func__, 1262 error); 1263 return error; 1264 } 1265 1266 return 0; 1267 } 1268 1269 void __exit rmi_unregister_physical_driver(void) 1270 { 1271 driver_unregister(&rmi_physical_driver.driver); 1272 } 1273