xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision 8730046c)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28 
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33 
34 #define RMI_DEVICE_RESET_CMD	0x01
35 #define DEFAULT_RESET_DELAY_MS	100
36 
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 	struct rmi_function *fn, *tmp;
40 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41 
42 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43 
44 	devm_kfree(&rmi_dev->dev, data->irq_memory);
45 	data->irq_memory = NULL;
46 	data->irq_status = NULL;
47 	data->fn_irq_bits = NULL;
48 	data->current_irq_mask = NULL;
49 	data->new_irq_mask = NULL;
50 
51 	data->f01_container = NULL;
52 	data->f34_container = NULL;
53 
54 	/* Doing it in the reverse order so F01 will be removed last */
55 	list_for_each_entry_safe_reverse(fn, tmp,
56 					 &data->function_list, node) {
57 		list_del(&fn->node);
58 		rmi_unregister_function(fn);
59 	}
60 }
61 
62 static int reset_one_function(struct rmi_function *fn)
63 {
64 	struct rmi_function_handler *fh;
65 	int retval = 0;
66 
67 	if (!fn || !fn->dev.driver)
68 		return 0;
69 
70 	fh = to_rmi_function_handler(fn->dev.driver);
71 	if (fh->reset) {
72 		retval = fh->reset(fn);
73 		if (retval < 0)
74 			dev_err(&fn->dev, "Reset failed with code %d.\n",
75 				retval);
76 	}
77 
78 	return retval;
79 }
80 
81 static int configure_one_function(struct rmi_function *fn)
82 {
83 	struct rmi_function_handler *fh;
84 	int retval = 0;
85 
86 	if (!fn || !fn->dev.driver)
87 		return 0;
88 
89 	fh = to_rmi_function_handler(fn->dev.driver);
90 	if (fh->config) {
91 		retval = fh->config(fn);
92 		if (retval < 0)
93 			dev_err(&fn->dev, "Config failed with code %d.\n",
94 				retval);
95 	}
96 
97 	return retval;
98 }
99 
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 	struct rmi_function *entry;
104 	int retval;
105 
106 	list_for_each_entry(entry, &data->function_list, node) {
107 		retval = reset_one_function(entry);
108 		if (retval < 0)
109 			return retval;
110 	}
111 
112 	return 0;
113 }
114 
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 	struct rmi_function *entry;
119 	int retval;
120 
121 	list_for_each_entry(entry, &data->function_list, node) {
122 		retval = configure_one_function(entry);
123 		if (retval < 0)
124 			return retval;
125 	}
126 
127 	return 0;
128 }
129 
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 				  struct rmi_function *fn)
132 {
133 	struct rmi_function_handler *fh;
134 
135 	if (!fn || !fn->dev.driver)
136 		return;
137 
138 	fh = to_rmi_function_handler(fn->dev.driver);
139 	if (fh->attention) {
140 		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141 				data->irq_count);
142 		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 			fh->attention(fn, data->fn_irq_bits);
144 	}
145 }
146 
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 	struct device *dev = &rmi_dev->dev;
151 	struct rmi_function *entry;
152 	int error;
153 
154 	if (!data)
155 		return 0;
156 
157 	if (!data->attn_data.data) {
158 		error = rmi_read_block(rmi_dev,
159 				data->f01_container->fd.data_base_addr + 1,
160 				data->irq_status, data->num_of_irq_regs);
161 		if (error < 0) {
162 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
163 			return error;
164 		}
165 	}
166 
167 	mutex_lock(&data->irq_mutex);
168 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169 	       data->irq_count);
170 	/*
171 	 * At this point, irq_status has all bits that are set in the
172 	 * interrupt status register and are enabled.
173 	 */
174 	mutex_unlock(&data->irq_mutex);
175 
176 	/*
177 	 * It would be nice to be able to use irq_chip to handle these
178 	 * nested IRQs.  Unfortunately, most of the current customers for
179 	 * this driver are using older kernels (3.0.x) that don't support
180 	 * the features required for that.  Once they've shifted to more
181 	 * recent kernels (say, 3.3 and higher), this should be switched to
182 	 * use irq_chip.
183 	 */
184 	list_for_each_entry(entry, &data->function_list, node)
185 		process_one_interrupt(data, entry);
186 
187 	if (data->input)
188 		input_sync(data->input);
189 
190 	return 0;
191 }
192 
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 		       void *data, size_t size)
195 {
196 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 	struct rmi4_attn_data attn_data;
198 	void *fifo_data;
199 
200 	if (!drvdata->enabled)
201 		return;
202 
203 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
204 	if (!fifo_data)
205 		return;
206 
207 	attn_data.irq_status = irq_status;
208 	attn_data.size = size;
209 	attn_data.data = fifo_data;
210 
211 	kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214 
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217 	struct rmi_device *rmi_dev = dev_id;
218 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 	struct rmi4_attn_data attn_data = {0};
220 	int ret, count;
221 
222 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223 	if (count) {
224 		*(drvdata->irq_status) = attn_data.irq_status;
225 		drvdata->attn_data = attn_data;
226 	}
227 
228 	ret = rmi_process_interrupt_requests(rmi_dev);
229 	if (ret)
230 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 			"Failed to process interrupt request: %d\n", ret);
232 
233 	if (count)
234 		kfree(attn_data.data);
235 
236 	if (!kfifo_is_empty(&drvdata->attn_fifo))
237 		return rmi_irq_fn(irq, dev_id);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static int rmi_irq_init(struct rmi_device *rmi_dev)
243 {
244 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
245 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 	int irq_flags = irq_get_trigger_type(pdata->irq);
247 	int ret;
248 
249 	if (!irq_flags)
250 		irq_flags = IRQF_TRIGGER_LOW;
251 
252 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
253 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
254 					dev_name(rmi_dev->xport->dev),
255 					rmi_dev);
256 	if (ret < 0) {
257 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
258 			pdata->irq);
259 
260 		return ret;
261 	}
262 
263 	data->enabled = true;
264 
265 	return 0;
266 }
267 
268 static int suspend_one_function(struct rmi_function *fn)
269 {
270 	struct rmi_function_handler *fh;
271 	int retval = 0;
272 
273 	if (!fn || !fn->dev.driver)
274 		return 0;
275 
276 	fh = to_rmi_function_handler(fn->dev.driver);
277 	if (fh->suspend) {
278 		retval = fh->suspend(fn);
279 		if (retval < 0)
280 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
281 				retval);
282 	}
283 
284 	return retval;
285 }
286 
287 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
288 {
289 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
290 	struct rmi_function *entry;
291 	int retval;
292 
293 	list_for_each_entry(entry, &data->function_list, node) {
294 		retval = suspend_one_function(entry);
295 		if (retval < 0)
296 			return retval;
297 	}
298 
299 	return 0;
300 }
301 
302 static int resume_one_function(struct rmi_function *fn)
303 {
304 	struct rmi_function_handler *fh;
305 	int retval = 0;
306 
307 	if (!fn || !fn->dev.driver)
308 		return 0;
309 
310 	fh = to_rmi_function_handler(fn->dev.driver);
311 	if (fh->resume) {
312 		retval = fh->resume(fn);
313 		if (retval < 0)
314 			dev_err(&fn->dev, "Resume failed with code %d.\n",
315 				retval);
316 	}
317 
318 	return retval;
319 }
320 
321 static int rmi_resume_functions(struct rmi_device *rmi_dev)
322 {
323 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
324 	struct rmi_function *entry;
325 	int retval;
326 
327 	list_for_each_entry(entry, &data->function_list, node) {
328 		retval = resume_one_function(entry);
329 		if (retval < 0)
330 			return retval;
331 	}
332 
333 	return 0;
334 }
335 
336 int rmi_enable_sensor(struct rmi_device *rmi_dev)
337 {
338 	int retval = 0;
339 
340 	retval = rmi_driver_process_config_requests(rmi_dev);
341 	if (retval < 0)
342 		return retval;
343 
344 	return rmi_process_interrupt_requests(rmi_dev);
345 }
346 
347 /**
348  * rmi_driver_set_input_params - set input device id and other data.
349  *
350  * @rmi_dev: Pointer to an RMI device
351  * @input: Pointer to input device
352  *
353  */
354 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
355 				struct input_dev *input)
356 {
357 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
358 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
359 	input->id.bustype = BUS_RMI;
360 	return 0;
361 }
362 
363 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
364 				struct input_dev *input)
365 {
366 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
367 	char *device_name = rmi_f01_get_product_ID(data->f01_container);
368 	char *name;
369 
370 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
371 			      "Synaptics %s", device_name);
372 	if (!name)
373 		return;
374 
375 	input->name = name;
376 }
377 
378 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
379 				   unsigned long *mask)
380 {
381 	int error = 0;
382 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
383 	struct device *dev = &rmi_dev->dev;
384 
385 	mutex_lock(&data->irq_mutex);
386 	bitmap_or(data->new_irq_mask,
387 		  data->current_irq_mask, mask, data->irq_count);
388 
389 	error = rmi_write_block(rmi_dev,
390 			data->f01_container->fd.control_base_addr + 1,
391 			data->new_irq_mask, data->num_of_irq_regs);
392 	if (error < 0) {
393 		dev_err(dev, "%s: Failed to change enabled interrupts!",
394 							__func__);
395 		goto error_unlock;
396 	}
397 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
398 		    data->num_of_irq_regs);
399 
400 error_unlock:
401 	mutex_unlock(&data->irq_mutex);
402 	return error;
403 }
404 
405 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
406 				     unsigned long *mask)
407 {
408 	int error = 0;
409 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
410 	struct device *dev = &rmi_dev->dev;
411 
412 	mutex_lock(&data->irq_mutex);
413 	bitmap_andnot(data->new_irq_mask,
414 		  data->current_irq_mask, mask, data->irq_count);
415 
416 	error = rmi_write_block(rmi_dev,
417 			data->f01_container->fd.control_base_addr + 1,
418 			data->new_irq_mask, data->num_of_irq_regs);
419 	if (error < 0) {
420 		dev_err(dev, "%s: Failed to change enabled interrupts!",
421 							__func__);
422 		goto error_unlock;
423 	}
424 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
425 		    data->num_of_irq_regs);
426 
427 error_unlock:
428 	mutex_unlock(&data->irq_mutex);
429 	return error;
430 }
431 
432 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
433 {
434 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
435 	int error;
436 
437 	/*
438 	 * Can get called before the driver is fully ready to deal with
439 	 * this situation.
440 	 */
441 	if (!data || !data->f01_container) {
442 		dev_warn(&rmi_dev->dev,
443 			 "Not ready to handle reset yet!\n");
444 		return 0;
445 	}
446 
447 	error = rmi_read_block(rmi_dev,
448 			       data->f01_container->fd.control_base_addr + 1,
449 			       data->current_irq_mask, data->num_of_irq_regs);
450 	if (error < 0) {
451 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
452 			__func__);
453 		return error;
454 	}
455 
456 	error = rmi_driver_process_reset_requests(rmi_dev);
457 	if (error < 0)
458 		return error;
459 
460 	error = rmi_driver_process_config_requests(rmi_dev);
461 	if (error < 0)
462 		return error;
463 
464 	return 0;
465 }
466 
467 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
468 			      struct pdt_entry *entry, u16 pdt_address)
469 {
470 	u8 buf[RMI_PDT_ENTRY_SIZE];
471 	int error;
472 
473 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
474 	if (error) {
475 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
476 				pdt_address, error);
477 		return error;
478 	}
479 
480 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
481 	entry->query_base_addr = buf[0];
482 	entry->command_base_addr = buf[1];
483 	entry->control_base_addr = buf[2];
484 	entry->data_base_addr = buf[3];
485 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
486 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
487 	entry->function_number = buf[5];
488 
489 	return 0;
490 }
491 
492 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
493 				      struct rmi_function_descriptor *fd)
494 {
495 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
496 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
497 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
498 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
499 	fd->function_number = pdt->function_number;
500 	fd->interrupt_source_count = pdt->interrupt_source_count;
501 	fd->function_version = pdt->function_version;
502 }
503 
504 #define RMI_SCAN_CONTINUE	0
505 #define RMI_SCAN_DONE		1
506 
507 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
508 			     int page,
509 			     int *empty_pages,
510 			     void *ctx,
511 			     int (*callback)(struct rmi_device *rmi_dev,
512 					     void *ctx,
513 					     const struct pdt_entry *entry))
514 {
515 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
516 	struct pdt_entry pdt_entry;
517 	u16 page_start = RMI4_PAGE_SIZE * page;
518 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
519 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
520 	u16 addr;
521 	int error;
522 	int retval;
523 
524 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
525 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
526 		if (error)
527 			return error;
528 
529 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
530 			break;
531 
532 		retval = callback(rmi_dev, ctx, &pdt_entry);
533 		if (retval != RMI_SCAN_CONTINUE)
534 			return retval;
535 	}
536 
537 	/*
538 	 * Count number of empty PDT pages. If a gap of two pages
539 	 * or more is found, stop scanning.
540 	 */
541 	if (addr == pdt_start)
542 		++*empty_pages;
543 	else
544 		*empty_pages = 0;
545 
546 	return (data->bootloader_mode || *empty_pages >= 2) ?
547 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
548 }
549 
550 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
551 		 int (*callback)(struct rmi_device *rmi_dev,
552 		 void *ctx, const struct pdt_entry *entry))
553 {
554 	int page;
555 	int empty_pages = 0;
556 	int retval = RMI_SCAN_DONE;
557 
558 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
559 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
560 					   ctx, callback);
561 		if (retval != RMI_SCAN_CONTINUE)
562 			break;
563 	}
564 
565 	return retval < 0 ? retval : 0;
566 }
567 
568 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
569 				struct rmi_register_descriptor *rdesc)
570 {
571 	int ret;
572 	u8 size_presence_reg;
573 	u8 buf[35];
574 	int presense_offset = 1;
575 	u8 *struct_buf;
576 	int reg;
577 	int offset = 0;
578 	int map_offset = 0;
579 	int i;
580 	int b;
581 
582 	/*
583 	 * The first register of the register descriptor is the size of
584 	 * the register descriptor's presense register.
585 	 */
586 	ret = rmi_read(d, addr, &size_presence_reg);
587 	if (ret)
588 		return ret;
589 	++addr;
590 
591 	if (size_presence_reg < 0 || size_presence_reg > 35)
592 		return -EIO;
593 
594 	memset(buf, 0, sizeof(buf));
595 
596 	/*
597 	 * The presence register contains the size of the register structure
598 	 * and a bitmap which identified which packet registers are present
599 	 * for this particular register type (ie query, control, or data).
600 	 */
601 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
602 	if (ret)
603 		return ret;
604 	++addr;
605 
606 	if (buf[0] == 0) {
607 		presense_offset = 3;
608 		rdesc->struct_size = buf[1] | (buf[2] << 8);
609 	} else {
610 		rdesc->struct_size = buf[0];
611 	}
612 
613 	for (i = presense_offset; i < size_presence_reg; i++) {
614 		for (b = 0; b < 8; b++) {
615 			if (buf[i] & (0x1 << b))
616 				bitmap_set(rdesc->presense_map, map_offset, 1);
617 			++map_offset;
618 		}
619 	}
620 
621 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
622 						RMI_REG_DESC_PRESENSE_BITS);
623 
624 	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
625 				sizeof(struct rmi_register_desc_item),
626 				GFP_KERNEL);
627 	if (!rdesc->registers)
628 		return -ENOMEM;
629 
630 	/*
631 	 * Allocate a temporary buffer to hold the register structure.
632 	 * I'm not using devm_kzalloc here since it will not be retained
633 	 * after exiting this function
634 	 */
635 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
636 	if (!struct_buf)
637 		return -ENOMEM;
638 
639 	/*
640 	 * The register structure contains information about every packet
641 	 * register of this type. This includes the size of the packet
642 	 * register and a bitmap of all subpackets contained in the packet
643 	 * register.
644 	 */
645 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
646 	if (ret)
647 		goto free_struct_buff;
648 
649 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
650 	for (i = 0; i < rdesc->num_registers; i++) {
651 		struct rmi_register_desc_item *item = &rdesc->registers[i];
652 		int reg_size = struct_buf[offset];
653 
654 		++offset;
655 		if (reg_size == 0) {
656 			reg_size = struct_buf[offset] |
657 					(struct_buf[offset + 1] << 8);
658 			offset += 2;
659 		}
660 
661 		if (reg_size == 0) {
662 			reg_size = struct_buf[offset] |
663 					(struct_buf[offset + 1] << 8) |
664 					(struct_buf[offset + 2] << 16) |
665 					(struct_buf[offset + 3] << 24);
666 			offset += 4;
667 		}
668 
669 		item->reg = reg;
670 		item->reg_size = reg_size;
671 
672 		map_offset = 0;
673 
674 		do {
675 			for (b = 0; b < 7; b++) {
676 				if (struct_buf[offset] & (0x1 << b))
677 					bitmap_set(item->subpacket_map,
678 						map_offset, 1);
679 				++map_offset;
680 			}
681 		} while (struct_buf[offset++] & 0x80);
682 
683 		item->num_subpackets = bitmap_weight(item->subpacket_map,
684 						RMI_REG_DESC_SUBPACKET_BITS);
685 
686 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
687 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
688 			item->reg, item->reg_size, item->num_subpackets);
689 
690 		reg = find_next_bit(rdesc->presense_map,
691 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
692 	}
693 
694 free_struct_buff:
695 	kfree(struct_buf);
696 	return ret;
697 }
698 
699 const struct rmi_register_desc_item *rmi_get_register_desc_item(
700 				struct rmi_register_descriptor *rdesc, u16 reg)
701 {
702 	const struct rmi_register_desc_item *item;
703 	int i;
704 
705 	for (i = 0; i < rdesc->num_registers; i++) {
706 		item = &rdesc->registers[i];
707 		if (item->reg == reg)
708 			return item;
709 	}
710 
711 	return NULL;
712 }
713 
714 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
715 {
716 	const struct rmi_register_desc_item *item;
717 	int i;
718 	size_t size = 0;
719 
720 	for (i = 0; i < rdesc->num_registers; i++) {
721 		item = &rdesc->registers[i];
722 		size += item->reg_size;
723 	}
724 	return size;
725 }
726 
727 /* Compute the register offset relative to the base address */
728 int rmi_register_desc_calc_reg_offset(
729 		struct rmi_register_descriptor *rdesc, u16 reg)
730 {
731 	const struct rmi_register_desc_item *item;
732 	int offset = 0;
733 	int i;
734 
735 	for (i = 0; i < rdesc->num_registers; i++) {
736 		item = &rdesc->registers[i];
737 		if (item->reg == reg)
738 			return offset;
739 		++offset;
740 	}
741 	return -1;
742 }
743 
744 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
745 	u8 subpacket)
746 {
747 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
748 				subpacket) == subpacket;
749 }
750 
751 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
752 				     const struct pdt_entry *pdt)
753 {
754 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
755 	int ret;
756 	u8 status;
757 
758 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
759 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
760 		if (ret) {
761 			dev_err(&rmi_dev->dev,
762 				"Failed to read F34 status: %d.\n", ret);
763 			return ret;
764 		}
765 
766 		if (status & BIT(7))
767 			data->bootloader_mode = true;
768 	} else if (pdt->function_number == 0x01) {
769 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
770 		if (ret) {
771 			dev_err(&rmi_dev->dev,
772 				"Failed to read F01 status: %d.\n", ret);
773 			return ret;
774 		}
775 
776 		if (status & BIT(6))
777 			data->bootloader_mode = true;
778 	}
779 
780 	return 0;
781 }
782 
783 static int rmi_count_irqs(struct rmi_device *rmi_dev,
784 			 void *ctx, const struct pdt_entry *pdt)
785 {
786 	int *irq_count = ctx;
787 	int ret;
788 
789 	*irq_count += pdt->interrupt_source_count;
790 
791 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
792 	if (ret < 0)
793 		return ret;
794 
795 	return RMI_SCAN_CONTINUE;
796 }
797 
798 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
799 		      const struct pdt_entry *pdt)
800 {
801 	int error;
802 
803 	if (pdt->function_number == 0x01) {
804 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
805 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
806 		const struct rmi_device_platform_data *pdata =
807 				rmi_get_platform_data(rmi_dev);
808 
809 		if (rmi_dev->xport->ops->reset) {
810 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
811 								cmd_addr);
812 			if (error)
813 				return error;
814 
815 			return RMI_SCAN_DONE;
816 		}
817 
818 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
819 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
820 		if (error) {
821 			dev_err(&rmi_dev->dev,
822 				"Initial reset failed. Code = %d.\n", error);
823 			return error;
824 		}
825 
826 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
827 
828 		return RMI_SCAN_DONE;
829 	}
830 
831 	/* F01 should always be on page 0. If we don't find it there, fail. */
832 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
833 }
834 
835 static int rmi_create_function(struct rmi_device *rmi_dev,
836 			       void *ctx, const struct pdt_entry *pdt)
837 {
838 	struct device *dev = &rmi_dev->dev;
839 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
840 	int *current_irq_count = ctx;
841 	struct rmi_function *fn;
842 	int i;
843 	int error;
844 
845 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
846 			pdt->function_number);
847 
848 	fn = kzalloc(sizeof(struct rmi_function) +
849 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
850 		     GFP_KERNEL);
851 	if (!fn) {
852 		dev_err(dev, "Failed to allocate memory for F%02X\n",
853 			pdt->function_number);
854 		return -ENOMEM;
855 	}
856 
857 	INIT_LIST_HEAD(&fn->node);
858 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
859 
860 	fn->rmi_dev = rmi_dev;
861 
862 	fn->num_of_irqs = pdt->interrupt_source_count;
863 	fn->irq_pos = *current_irq_count;
864 	*current_irq_count += fn->num_of_irqs;
865 
866 	for (i = 0; i < fn->num_of_irqs; i++)
867 		set_bit(fn->irq_pos + i, fn->irq_mask);
868 
869 	error = rmi_register_function(fn);
870 	if (error)
871 		goto err_put_fn;
872 
873 	if (pdt->function_number == 0x01)
874 		data->f01_container = fn;
875 	else if (pdt->function_number == 0x34)
876 		data->f34_container = fn;
877 
878 	list_add_tail(&fn->node, &data->function_list);
879 
880 	return RMI_SCAN_CONTINUE;
881 
882 err_put_fn:
883 	put_device(&fn->dev);
884 	return error;
885 }
886 
887 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
888 {
889 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
890 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
891 	int irq = pdata->irq;
892 	int irq_flags;
893 	int retval;
894 
895 	mutex_lock(&data->enabled_mutex);
896 
897 	if (data->enabled)
898 		goto out;
899 
900 	enable_irq(irq);
901 	data->enabled = true;
902 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
903 		retval = disable_irq_wake(irq);
904 		if (!retval)
905 			dev_warn(&rmi_dev->dev,
906 				 "Failed to disable irq for wake: %d\n",
907 				 retval);
908 	}
909 
910 	/*
911 	 * Call rmi_process_interrupt_requests() after enabling irq,
912 	 * otherwise we may lose interrupt on edge-triggered systems.
913 	 */
914 	irq_flags = irq_get_trigger_type(pdata->irq);
915 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
916 		rmi_process_interrupt_requests(rmi_dev);
917 
918 out:
919 	mutex_unlock(&data->enabled_mutex);
920 }
921 
922 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
923 {
924 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
925 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
926 	struct rmi4_attn_data attn_data = {0};
927 	int irq = pdata->irq;
928 	int retval, count;
929 
930 	mutex_lock(&data->enabled_mutex);
931 
932 	if (!data->enabled)
933 		goto out;
934 
935 	data->enabled = false;
936 	disable_irq(irq);
937 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
938 		retval = enable_irq_wake(irq);
939 		if (!retval)
940 			dev_warn(&rmi_dev->dev,
941 				 "Failed to enable irq for wake: %d\n",
942 				 retval);
943 	}
944 
945 	/* make sure the fifo is clean */
946 	while (!kfifo_is_empty(&data->attn_fifo)) {
947 		count = kfifo_get(&data->attn_fifo, &attn_data);
948 		if (count)
949 			kfree(attn_data.data);
950 	}
951 
952 out:
953 	mutex_unlock(&data->enabled_mutex);
954 }
955 
956 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
957 {
958 	int retval;
959 
960 	retval = rmi_suspend_functions(rmi_dev);
961 	if (retval)
962 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
963 			retval);
964 
965 	rmi_disable_irq(rmi_dev, enable_wake);
966 	return retval;
967 }
968 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
969 
970 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
971 {
972 	int retval;
973 
974 	rmi_enable_irq(rmi_dev, clear_wake);
975 
976 	retval = rmi_resume_functions(rmi_dev);
977 	if (retval)
978 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
979 			retval);
980 
981 	return retval;
982 }
983 EXPORT_SYMBOL_GPL(rmi_driver_resume);
984 
985 static int rmi_driver_remove(struct device *dev)
986 {
987 	struct rmi_device *rmi_dev = to_rmi_device(dev);
988 
989 	rmi_disable_irq(rmi_dev, false);
990 
991 	rmi_f34_remove_sysfs(rmi_dev);
992 	rmi_free_function_list(rmi_dev);
993 
994 	return 0;
995 }
996 
997 #ifdef CONFIG_OF
998 static int rmi_driver_of_probe(struct device *dev,
999 				struct rmi_device_platform_data *pdata)
1000 {
1001 	int retval;
1002 
1003 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1004 					"syna,reset-delay-ms", 1);
1005 	if (retval)
1006 		return retval;
1007 
1008 	return 0;
1009 }
1010 #else
1011 static inline int rmi_driver_of_probe(struct device *dev,
1012 					struct rmi_device_platform_data *pdata)
1013 {
1014 	return -ENODEV;
1015 }
1016 #endif
1017 
1018 int rmi_probe_interrupts(struct rmi_driver_data *data)
1019 {
1020 	struct rmi_device *rmi_dev = data->rmi_dev;
1021 	struct device *dev = &rmi_dev->dev;
1022 	int irq_count;
1023 	size_t size;
1024 	int retval;
1025 
1026 	/*
1027 	 * We need to count the IRQs and allocate their storage before scanning
1028 	 * the PDT and creating the function entries, because adding a new
1029 	 * function can trigger events that result in the IRQ related storage
1030 	 * being accessed.
1031 	 */
1032 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1033 	irq_count = 0;
1034 	data->bootloader_mode = false;
1035 
1036 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1037 	if (retval < 0) {
1038 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1039 		return retval;
1040 	}
1041 
1042 	if (data->bootloader_mode)
1043 		dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n");
1044 
1045 	data->irq_count = irq_count;
1046 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1047 
1048 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1049 	data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1050 	if (!data->irq_memory) {
1051 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1052 		return retval;
1053 	}
1054 
1055 	data->irq_status	= data->irq_memory + size * 0;
1056 	data->fn_irq_bits	= data->irq_memory + size * 1;
1057 	data->current_irq_mask	= data->irq_memory + size * 2;
1058 	data->new_irq_mask	= data->irq_memory + size * 3;
1059 
1060 	return retval;
1061 }
1062 
1063 int rmi_init_functions(struct rmi_driver_data *data)
1064 {
1065 	struct rmi_device *rmi_dev = data->rmi_dev;
1066 	struct device *dev = &rmi_dev->dev;
1067 	int irq_count;
1068 	int retval;
1069 
1070 	irq_count = 0;
1071 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1072 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1073 	if (retval < 0) {
1074 		dev_err(dev, "Function creation failed with code %d.\n",
1075 			retval);
1076 		goto err_destroy_functions;
1077 	}
1078 
1079 	if (!data->f01_container) {
1080 		dev_err(dev, "Missing F01 container!\n");
1081 		retval = -EINVAL;
1082 		goto err_destroy_functions;
1083 	}
1084 
1085 	retval = rmi_read_block(rmi_dev,
1086 				data->f01_container->fd.control_base_addr + 1,
1087 				data->current_irq_mask, data->num_of_irq_regs);
1088 	if (retval < 0) {
1089 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1090 			__func__);
1091 		goto err_destroy_functions;
1092 	}
1093 
1094 	return 0;
1095 
1096 err_destroy_functions:
1097 	rmi_free_function_list(rmi_dev);
1098 	return retval;
1099 }
1100 
1101 static int rmi_driver_probe(struct device *dev)
1102 {
1103 	struct rmi_driver *rmi_driver;
1104 	struct rmi_driver_data *data;
1105 	struct rmi_device_platform_data *pdata;
1106 	struct rmi_device *rmi_dev;
1107 	int retval;
1108 
1109 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1110 			__func__);
1111 
1112 	if (!rmi_is_physical_device(dev)) {
1113 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1114 		return -ENODEV;
1115 	}
1116 
1117 	rmi_dev = to_rmi_device(dev);
1118 	rmi_driver = to_rmi_driver(dev->driver);
1119 	rmi_dev->driver = rmi_driver;
1120 
1121 	pdata = rmi_get_platform_data(rmi_dev);
1122 
1123 	if (rmi_dev->xport->dev->of_node) {
1124 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1125 		if (retval)
1126 			return retval;
1127 	}
1128 
1129 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1130 	if (!data)
1131 		return -ENOMEM;
1132 
1133 	INIT_LIST_HEAD(&data->function_list);
1134 	data->rmi_dev = rmi_dev;
1135 	dev_set_drvdata(&rmi_dev->dev, data);
1136 
1137 	/*
1138 	 * Right before a warm boot, the sensor might be in some unusual state,
1139 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1140 	 * or configuration update.  In order to clear the sensor to a known
1141 	 * state and/or apply any updates, we issue a initial reset to clear any
1142 	 * previous settings and force it into normal operation.
1143 	 *
1144 	 * We have to do this before actually building the PDT because
1145 	 * the reflash updates (if any) might cause various registers to move
1146 	 * around.
1147 	 *
1148 	 * For a number of reasons, this initial reset may fail to return
1149 	 * within the specified time, but we'll still be able to bring up the
1150 	 * driver normally after that failure.  This occurs most commonly in
1151 	 * a cold boot situation (where then firmware takes longer to come up
1152 	 * than from a warm boot) and the reset_delay_ms in the platform data
1153 	 * has been set too short to accommodate that.  Since the sensor will
1154 	 * eventually come up and be usable, we don't want to just fail here
1155 	 * and leave the customer's device unusable.  So we warn them, and
1156 	 * continue processing.
1157 	 */
1158 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1159 	if (retval < 0)
1160 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1161 
1162 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1163 	if (retval < 0) {
1164 		/*
1165 		 * we'll print out a warning and continue since
1166 		 * failure to get the PDT properties is not a cause to fail
1167 		 */
1168 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1169 			 PDT_PROPERTIES_LOCATION, retval);
1170 	}
1171 
1172 	mutex_init(&data->irq_mutex);
1173 	mutex_init(&data->enabled_mutex);
1174 
1175 	retval = rmi_probe_interrupts(data);
1176 	if (retval)
1177 		goto err;
1178 
1179 	if (rmi_dev->xport->input) {
1180 		/*
1181 		 * The transport driver already has an input device.
1182 		 * In some cases it is preferable to reuse the transport
1183 		 * devices input device instead of creating a new one here.
1184 		 * One example is some HID touchpads report "pass-through"
1185 		 * button events are not reported by rmi registers.
1186 		 */
1187 		data->input = rmi_dev->xport->input;
1188 	} else {
1189 		data->input = devm_input_allocate_device(dev);
1190 		if (!data->input) {
1191 			dev_err(dev, "%s: Failed to allocate input device.\n",
1192 				__func__);
1193 			retval = -ENOMEM;
1194 			goto err;
1195 		}
1196 		rmi_driver_set_input_params(rmi_dev, data->input);
1197 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1198 						"%s/input0", dev_name(dev));
1199 	}
1200 
1201 	retval = rmi_init_functions(data);
1202 	if (retval)
1203 		goto err;
1204 
1205 	retval = rmi_f34_create_sysfs(rmi_dev);
1206 	if (retval)
1207 		goto err;
1208 
1209 	if (data->input) {
1210 		rmi_driver_set_input_name(rmi_dev, data->input);
1211 		if (!rmi_dev->xport->input) {
1212 			if (input_register_device(data->input)) {
1213 				dev_err(dev, "%s: Failed to register input device.\n",
1214 					__func__);
1215 				goto err_destroy_functions;
1216 			}
1217 		}
1218 	}
1219 
1220 	retval = rmi_irq_init(rmi_dev);
1221 	if (retval < 0)
1222 		goto err_destroy_functions;
1223 
1224 	if (data->f01_container->dev.driver)
1225 		/* Driver already bound, so enable ATTN now. */
1226 		return rmi_enable_sensor(rmi_dev);
1227 
1228 	return 0;
1229 
1230 err_destroy_functions:
1231 	rmi_free_function_list(rmi_dev);
1232 err:
1233 	return retval < 0 ? retval : 0;
1234 }
1235 
1236 static struct rmi_driver rmi_physical_driver = {
1237 	.driver = {
1238 		.owner	= THIS_MODULE,
1239 		.name	= "rmi4_physical",
1240 		.bus	= &rmi_bus_type,
1241 		.probe = rmi_driver_probe,
1242 		.remove = rmi_driver_remove,
1243 	},
1244 	.reset_handler = rmi_driver_reset_handler,
1245 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1246 	.set_irq_bits = rmi_driver_set_irq_bits,
1247 	.set_input_params = rmi_driver_set_input_params,
1248 };
1249 
1250 bool rmi_is_physical_driver(struct device_driver *drv)
1251 {
1252 	return drv == &rmi_physical_driver.driver;
1253 }
1254 
1255 int __init rmi_register_physical_driver(void)
1256 {
1257 	int error;
1258 
1259 	error = driver_register(&rmi_physical_driver.driver);
1260 	if (error) {
1261 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1262 		       error);
1263 		return error;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 void __exit rmi_unregister_physical_driver(void)
1270 {
1271 	driver_unregister(&rmi_physical_driver.driver);
1272 }
1273