xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28 
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33 
34 #define RMI_DEVICE_RESET_CMD	0x01
35 #define DEFAULT_RESET_DELAY_MS	100
36 
37 void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 	struct rmi_function *fn, *tmp;
40 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41 
42 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
43 
44 	/* Doing it in the reverse order so F01 will be removed last */
45 	list_for_each_entry_safe_reverse(fn, tmp,
46 					 &data->function_list, node) {
47 		list_del(&fn->node);
48 		rmi_unregister_function(fn);
49 	}
50 
51 	devm_kfree(&rmi_dev->dev, data->irq_memory);
52 	data->irq_memory = NULL;
53 	data->irq_status = NULL;
54 	data->fn_irq_bits = NULL;
55 	data->current_irq_mask = NULL;
56 	data->new_irq_mask = NULL;
57 
58 	data->f01_container = NULL;
59 	data->f34_container = NULL;
60 }
61 
62 static int reset_one_function(struct rmi_function *fn)
63 {
64 	struct rmi_function_handler *fh;
65 	int retval = 0;
66 
67 	if (!fn || !fn->dev.driver)
68 		return 0;
69 
70 	fh = to_rmi_function_handler(fn->dev.driver);
71 	if (fh->reset) {
72 		retval = fh->reset(fn);
73 		if (retval < 0)
74 			dev_err(&fn->dev, "Reset failed with code %d.\n",
75 				retval);
76 	}
77 
78 	return retval;
79 }
80 
81 static int configure_one_function(struct rmi_function *fn)
82 {
83 	struct rmi_function_handler *fh;
84 	int retval = 0;
85 
86 	if (!fn || !fn->dev.driver)
87 		return 0;
88 
89 	fh = to_rmi_function_handler(fn->dev.driver);
90 	if (fh->config) {
91 		retval = fh->config(fn);
92 		if (retval < 0)
93 			dev_err(&fn->dev, "Config failed with code %d.\n",
94 				retval);
95 	}
96 
97 	return retval;
98 }
99 
100 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
101 {
102 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
103 	struct rmi_function *entry;
104 	int retval;
105 
106 	list_for_each_entry(entry, &data->function_list, node) {
107 		retval = reset_one_function(entry);
108 		if (retval < 0)
109 			return retval;
110 	}
111 
112 	return 0;
113 }
114 
115 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
116 {
117 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
118 	struct rmi_function *entry;
119 	int retval;
120 
121 	list_for_each_entry(entry, &data->function_list, node) {
122 		retval = configure_one_function(entry);
123 		if (retval < 0)
124 			return retval;
125 	}
126 
127 	return 0;
128 }
129 
130 static void process_one_interrupt(struct rmi_driver_data *data,
131 				  struct rmi_function *fn)
132 {
133 	struct rmi_function_handler *fh;
134 
135 	if (!fn || !fn->dev.driver)
136 		return;
137 
138 	fh = to_rmi_function_handler(fn->dev.driver);
139 	if (fh->attention) {
140 		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
141 				data->irq_count);
142 		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
143 			fh->attention(fn, data->fn_irq_bits);
144 	}
145 }
146 
147 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
148 {
149 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
150 	struct device *dev = &rmi_dev->dev;
151 	struct rmi_function *entry;
152 	int error;
153 
154 	if (!data)
155 		return 0;
156 
157 	if (!data->attn_data.data) {
158 		error = rmi_read_block(rmi_dev,
159 				data->f01_container->fd.data_base_addr + 1,
160 				data->irq_status, data->num_of_irq_regs);
161 		if (error < 0) {
162 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
163 			return error;
164 		}
165 	}
166 
167 	mutex_lock(&data->irq_mutex);
168 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
169 	       data->irq_count);
170 	/*
171 	 * At this point, irq_status has all bits that are set in the
172 	 * interrupt status register and are enabled.
173 	 */
174 	mutex_unlock(&data->irq_mutex);
175 
176 	/*
177 	 * It would be nice to be able to use irq_chip to handle these
178 	 * nested IRQs.  Unfortunately, most of the current customers for
179 	 * this driver are using older kernels (3.0.x) that don't support
180 	 * the features required for that.  Once they've shifted to more
181 	 * recent kernels (say, 3.3 and higher), this should be switched to
182 	 * use irq_chip.
183 	 */
184 	list_for_each_entry(entry, &data->function_list, node)
185 		process_one_interrupt(data, entry);
186 
187 	if (data->input)
188 		input_sync(data->input);
189 
190 	return 0;
191 }
192 
193 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
194 		       void *data, size_t size)
195 {
196 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
197 	struct rmi4_attn_data attn_data;
198 	void *fifo_data;
199 
200 	if (!drvdata->enabled)
201 		return;
202 
203 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
204 	if (!fifo_data)
205 		return;
206 
207 	attn_data.irq_status = irq_status;
208 	attn_data.size = size;
209 	attn_data.data = fifo_data;
210 
211 	kfifo_put(&drvdata->attn_fifo, attn_data);
212 }
213 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
214 
215 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
216 {
217 	struct rmi_device *rmi_dev = dev_id;
218 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
219 	struct rmi4_attn_data attn_data = {0};
220 	int ret, count;
221 
222 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
223 	if (count) {
224 		*(drvdata->irq_status) = attn_data.irq_status;
225 		drvdata->attn_data = attn_data;
226 	}
227 
228 	ret = rmi_process_interrupt_requests(rmi_dev);
229 	if (ret)
230 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
231 			"Failed to process interrupt request: %d\n", ret);
232 
233 	if (count) {
234 		kfree(attn_data.data);
235 		attn_data.data = NULL;
236 	}
237 
238 	if (!kfifo_is_empty(&drvdata->attn_fifo))
239 		return rmi_irq_fn(irq, dev_id);
240 
241 	return IRQ_HANDLED;
242 }
243 
244 static int rmi_irq_init(struct rmi_device *rmi_dev)
245 {
246 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
247 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
248 	int irq_flags = irq_get_trigger_type(pdata->irq);
249 	int ret;
250 
251 	if (!irq_flags)
252 		irq_flags = IRQF_TRIGGER_LOW;
253 
254 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
255 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
256 					dev_driver_string(rmi_dev->xport->dev),
257 					rmi_dev);
258 	if (ret < 0) {
259 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
260 			pdata->irq);
261 
262 		return ret;
263 	}
264 
265 	data->enabled = true;
266 
267 	return 0;
268 }
269 
270 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
271 {
272 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
273 	struct rmi_function *entry;
274 
275 	list_for_each_entry(entry, &data->function_list, node) {
276 		if (entry->fd.function_number == number)
277 			return entry;
278 	}
279 
280 	return NULL;
281 }
282 
283 static int suspend_one_function(struct rmi_function *fn)
284 {
285 	struct rmi_function_handler *fh;
286 	int retval = 0;
287 
288 	if (!fn || !fn->dev.driver)
289 		return 0;
290 
291 	fh = to_rmi_function_handler(fn->dev.driver);
292 	if (fh->suspend) {
293 		retval = fh->suspend(fn);
294 		if (retval < 0)
295 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
296 				retval);
297 	}
298 
299 	return retval;
300 }
301 
302 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
303 {
304 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
305 	struct rmi_function *entry;
306 	int retval;
307 
308 	list_for_each_entry(entry, &data->function_list, node) {
309 		retval = suspend_one_function(entry);
310 		if (retval < 0)
311 			return retval;
312 	}
313 
314 	return 0;
315 }
316 
317 static int resume_one_function(struct rmi_function *fn)
318 {
319 	struct rmi_function_handler *fh;
320 	int retval = 0;
321 
322 	if (!fn || !fn->dev.driver)
323 		return 0;
324 
325 	fh = to_rmi_function_handler(fn->dev.driver);
326 	if (fh->resume) {
327 		retval = fh->resume(fn);
328 		if (retval < 0)
329 			dev_err(&fn->dev, "Resume failed with code %d.\n",
330 				retval);
331 	}
332 
333 	return retval;
334 }
335 
336 static int rmi_resume_functions(struct rmi_device *rmi_dev)
337 {
338 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
339 	struct rmi_function *entry;
340 	int retval;
341 
342 	list_for_each_entry(entry, &data->function_list, node) {
343 		retval = resume_one_function(entry);
344 		if (retval < 0)
345 			return retval;
346 	}
347 
348 	return 0;
349 }
350 
351 int rmi_enable_sensor(struct rmi_device *rmi_dev)
352 {
353 	int retval = 0;
354 
355 	retval = rmi_driver_process_config_requests(rmi_dev);
356 	if (retval < 0)
357 		return retval;
358 
359 	return rmi_process_interrupt_requests(rmi_dev);
360 }
361 
362 /**
363  * rmi_driver_set_input_params - set input device id and other data.
364  *
365  * @rmi_dev: Pointer to an RMI device
366  * @input: Pointer to input device
367  *
368  */
369 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
370 				struct input_dev *input)
371 {
372 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
373 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
374 	input->id.bustype = BUS_RMI;
375 	return 0;
376 }
377 
378 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
379 				struct input_dev *input)
380 {
381 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
382 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
383 	char *name;
384 
385 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
386 			      "Synaptics %s", device_name);
387 	if (!name)
388 		return;
389 
390 	input->name = name;
391 }
392 
393 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
394 				   unsigned long *mask)
395 {
396 	int error = 0;
397 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
398 	struct device *dev = &rmi_dev->dev;
399 
400 	mutex_lock(&data->irq_mutex);
401 	bitmap_or(data->new_irq_mask,
402 		  data->current_irq_mask, mask, data->irq_count);
403 
404 	error = rmi_write_block(rmi_dev,
405 			data->f01_container->fd.control_base_addr + 1,
406 			data->new_irq_mask, data->num_of_irq_regs);
407 	if (error < 0) {
408 		dev_err(dev, "%s: Failed to change enabled interrupts!",
409 							__func__);
410 		goto error_unlock;
411 	}
412 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
413 		    data->num_of_irq_regs);
414 
415 error_unlock:
416 	mutex_unlock(&data->irq_mutex);
417 	return error;
418 }
419 
420 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
421 				     unsigned long *mask)
422 {
423 	int error = 0;
424 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
425 	struct device *dev = &rmi_dev->dev;
426 
427 	mutex_lock(&data->irq_mutex);
428 	bitmap_andnot(data->new_irq_mask,
429 		  data->current_irq_mask, mask, data->irq_count);
430 
431 	error = rmi_write_block(rmi_dev,
432 			data->f01_container->fd.control_base_addr + 1,
433 			data->new_irq_mask, data->num_of_irq_regs);
434 	if (error < 0) {
435 		dev_err(dev, "%s: Failed to change enabled interrupts!",
436 							__func__);
437 		goto error_unlock;
438 	}
439 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
440 		    data->num_of_irq_regs);
441 
442 error_unlock:
443 	mutex_unlock(&data->irq_mutex);
444 	return error;
445 }
446 
447 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
448 {
449 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
450 	int error;
451 
452 	/*
453 	 * Can get called before the driver is fully ready to deal with
454 	 * this situation.
455 	 */
456 	if (!data || !data->f01_container) {
457 		dev_warn(&rmi_dev->dev,
458 			 "Not ready to handle reset yet!\n");
459 		return 0;
460 	}
461 
462 	error = rmi_read_block(rmi_dev,
463 			       data->f01_container->fd.control_base_addr + 1,
464 			       data->current_irq_mask, data->num_of_irq_regs);
465 	if (error < 0) {
466 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
467 			__func__);
468 		return error;
469 	}
470 
471 	error = rmi_driver_process_reset_requests(rmi_dev);
472 	if (error < 0)
473 		return error;
474 
475 	error = rmi_driver_process_config_requests(rmi_dev);
476 	if (error < 0)
477 		return error;
478 
479 	return 0;
480 }
481 
482 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
483 			      struct pdt_entry *entry, u16 pdt_address)
484 {
485 	u8 buf[RMI_PDT_ENTRY_SIZE];
486 	int error;
487 
488 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
489 	if (error) {
490 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
491 				pdt_address, error);
492 		return error;
493 	}
494 
495 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
496 	entry->query_base_addr = buf[0];
497 	entry->command_base_addr = buf[1];
498 	entry->control_base_addr = buf[2];
499 	entry->data_base_addr = buf[3];
500 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
501 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
502 	entry->function_number = buf[5];
503 
504 	return 0;
505 }
506 
507 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
508 				      struct rmi_function_descriptor *fd)
509 {
510 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
511 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
512 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
513 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
514 	fd->function_number = pdt->function_number;
515 	fd->interrupt_source_count = pdt->interrupt_source_count;
516 	fd->function_version = pdt->function_version;
517 }
518 
519 #define RMI_SCAN_CONTINUE	0
520 #define RMI_SCAN_DONE		1
521 
522 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
523 			     int page,
524 			     int *empty_pages,
525 			     void *ctx,
526 			     int (*callback)(struct rmi_device *rmi_dev,
527 					     void *ctx,
528 					     const struct pdt_entry *entry))
529 {
530 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
531 	struct pdt_entry pdt_entry;
532 	u16 page_start = RMI4_PAGE_SIZE * page;
533 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
534 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
535 	u16 addr;
536 	int error;
537 	int retval;
538 
539 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
540 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
541 		if (error)
542 			return error;
543 
544 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
545 			break;
546 
547 		retval = callback(rmi_dev, ctx, &pdt_entry);
548 		if (retval != RMI_SCAN_CONTINUE)
549 			return retval;
550 	}
551 
552 	/*
553 	 * Count number of empty PDT pages. If a gap of two pages
554 	 * or more is found, stop scanning.
555 	 */
556 	if (addr == pdt_start)
557 		++*empty_pages;
558 	else
559 		*empty_pages = 0;
560 
561 	return (data->bootloader_mode || *empty_pages >= 2) ?
562 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
563 }
564 
565 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
566 		 int (*callback)(struct rmi_device *rmi_dev,
567 		 void *ctx, const struct pdt_entry *entry))
568 {
569 	int page;
570 	int empty_pages = 0;
571 	int retval = RMI_SCAN_DONE;
572 
573 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
574 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
575 					   ctx, callback);
576 		if (retval != RMI_SCAN_CONTINUE)
577 			break;
578 	}
579 
580 	return retval < 0 ? retval : 0;
581 }
582 
583 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
584 				struct rmi_register_descriptor *rdesc)
585 {
586 	int ret;
587 	u8 size_presence_reg;
588 	u8 buf[35];
589 	int presense_offset = 1;
590 	u8 *struct_buf;
591 	int reg;
592 	int offset = 0;
593 	int map_offset = 0;
594 	int i;
595 	int b;
596 
597 	/*
598 	 * The first register of the register descriptor is the size of
599 	 * the register descriptor's presense register.
600 	 */
601 	ret = rmi_read(d, addr, &size_presence_reg);
602 	if (ret)
603 		return ret;
604 	++addr;
605 
606 	if (size_presence_reg < 0 || size_presence_reg > 35)
607 		return -EIO;
608 
609 	memset(buf, 0, sizeof(buf));
610 
611 	/*
612 	 * The presence register contains the size of the register structure
613 	 * and a bitmap which identified which packet registers are present
614 	 * for this particular register type (ie query, control, or data).
615 	 */
616 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
617 	if (ret)
618 		return ret;
619 	++addr;
620 
621 	if (buf[0] == 0) {
622 		presense_offset = 3;
623 		rdesc->struct_size = buf[1] | (buf[2] << 8);
624 	} else {
625 		rdesc->struct_size = buf[0];
626 	}
627 
628 	for (i = presense_offset; i < size_presence_reg; i++) {
629 		for (b = 0; b < 8; b++) {
630 			if (buf[i] & (0x1 << b))
631 				bitmap_set(rdesc->presense_map, map_offset, 1);
632 			++map_offset;
633 		}
634 	}
635 
636 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
637 						RMI_REG_DESC_PRESENSE_BITS);
638 
639 	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
640 				sizeof(struct rmi_register_desc_item),
641 				GFP_KERNEL);
642 	if (!rdesc->registers)
643 		return -ENOMEM;
644 
645 	/*
646 	 * Allocate a temporary buffer to hold the register structure.
647 	 * I'm not using devm_kzalloc here since it will not be retained
648 	 * after exiting this function
649 	 */
650 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
651 	if (!struct_buf)
652 		return -ENOMEM;
653 
654 	/*
655 	 * The register structure contains information about every packet
656 	 * register of this type. This includes the size of the packet
657 	 * register and a bitmap of all subpackets contained in the packet
658 	 * register.
659 	 */
660 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
661 	if (ret)
662 		goto free_struct_buff;
663 
664 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
665 	for (i = 0; i < rdesc->num_registers; i++) {
666 		struct rmi_register_desc_item *item = &rdesc->registers[i];
667 		int reg_size = struct_buf[offset];
668 
669 		++offset;
670 		if (reg_size == 0) {
671 			reg_size = struct_buf[offset] |
672 					(struct_buf[offset + 1] << 8);
673 			offset += 2;
674 		}
675 
676 		if (reg_size == 0) {
677 			reg_size = struct_buf[offset] |
678 					(struct_buf[offset + 1] << 8) |
679 					(struct_buf[offset + 2] << 16) |
680 					(struct_buf[offset + 3] << 24);
681 			offset += 4;
682 		}
683 
684 		item->reg = reg;
685 		item->reg_size = reg_size;
686 
687 		map_offset = 0;
688 
689 		do {
690 			for (b = 0; b < 7; b++) {
691 				if (struct_buf[offset] & (0x1 << b))
692 					bitmap_set(item->subpacket_map,
693 						map_offset, 1);
694 				++map_offset;
695 			}
696 		} while (struct_buf[offset++] & 0x80);
697 
698 		item->num_subpackets = bitmap_weight(item->subpacket_map,
699 						RMI_REG_DESC_SUBPACKET_BITS);
700 
701 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
702 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
703 			item->reg, item->reg_size, item->num_subpackets);
704 
705 		reg = find_next_bit(rdesc->presense_map,
706 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
707 	}
708 
709 free_struct_buff:
710 	kfree(struct_buf);
711 	return ret;
712 }
713 
714 const struct rmi_register_desc_item *rmi_get_register_desc_item(
715 				struct rmi_register_descriptor *rdesc, u16 reg)
716 {
717 	const struct rmi_register_desc_item *item;
718 	int i;
719 
720 	for (i = 0; i < rdesc->num_registers; i++) {
721 		item = &rdesc->registers[i];
722 		if (item->reg == reg)
723 			return item;
724 	}
725 
726 	return NULL;
727 }
728 
729 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
730 {
731 	const struct rmi_register_desc_item *item;
732 	int i;
733 	size_t size = 0;
734 
735 	for (i = 0; i < rdesc->num_registers; i++) {
736 		item = &rdesc->registers[i];
737 		size += item->reg_size;
738 	}
739 	return size;
740 }
741 
742 /* Compute the register offset relative to the base address */
743 int rmi_register_desc_calc_reg_offset(
744 		struct rmi_register_descriptor *rdesc, u16 reg)
745 {
746 	const struct rmi_register_desc_item *item;
747 	int offset = 0;
748 	int i;
749 
750 	for (i = 0; i < rdesc->num_registers; i++) {
751 		item = &rdesc->registers[i];
752 		if (item->reg == reg)
753 			return offset;
754 		++offset;
755 	}
756 	return -1;
757 }
758 
759 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
760 	u8 subpacket)
761 {
762 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
763 				subpacket) == subpacket;
764 }
765 
766 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
767 				     const struct pdt_entry *pdt)
768 {
769 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
770 	int ret;
771 	u8 status;
772 
773 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
774 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
775 		if (ret) {
776 			dev_err(&rmi_dev->dev,
777 				"Failed to read F34 status: %d.\n", ret);
778 			return ret;
779 		}
780 
781 		if (status & BIT(7))
782 			data->bootloader_mode = true;
783 	} else if (pdt->function_number == 0x01) {
784 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
785 		if (ret) {
786 			dev_err(&rmi_dev->dev,
787 				"Failed to read F01 status: %d.\n", ret);
788 			return ret;
789 		}
790 
791 		if (status & BIT(6))
792 			data->bootloader_mode = true;
793 	}
794 
795 	return 0;
796 }
797 
798 static int rmi_count_irqs(struct rmi_device *rmi_dev,
799 			 void *ctx, const struct pdt_entry *pdt)
800 {
801 	int *irq_count = ctx;
802 	int ret;
803 
804 	*irq_count += pdt->interrupt_source_count;
805 
806 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
807 	if (ret < 0)
808 		return ret;
809 
810 	return RMI_SCAN_CONTINUE;
811 }
812 
813 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
814 		      const struct pdt_entry *pdt)
815 {
816 	int error;
817 
818 	if (pdt->function_number == 0x01) {
819 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
820 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
821 		const struct rmi_device_platform_data *pdata =
822 				rmi_get_platform_data(rmi_dev);
823 
824 		if (rmi_dev->xport->ops->reset) {
825 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
826 								cmd_addr);
827 			if (error)
828 				return error;
829 
830 			return RMI_SCAN_DONE;
831 		}
832 
833 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
834 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
835 		if (error) {
836 			dev_err(&rmi_dev->dev,
837 				"Initial reset failed. Code = %d.\n", error);
838 			return error;
839 		}
840 
841 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
842 
843 		return RMI_SCAN_DONE;
844 	}
845 
846 	/* F01 should always be on page 0. If we don't find it there, fail. */
847 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
848 }
849 
850 static int rmi_create_function(struct rmi_device *rmi_dev,
851 			       void *ctx, const struct pdt_entry *pdt)
852 {
853 	struct device *dev = &rmi_dev->dev;
854 	struct rmi_driver_data *data = dev_get_drvdata(dev);
855 	int *current_irq_count = ctx;
856 	struct rmi_function *fn;
857 	int i;
858 	int error;
859 
860 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
861 			pdt->function_number);
862 
863 	fn = kzalloc(sizeof(struct rmi_function) +
864 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
865 		     GFP_KERNEL);
866 	if (!fn) {
867 		dev_err(dev, "Failed to allocate memory for F%02X\n",
868 			pdt->function_number);
869 		return -ENOMEM;
870 	}
871 
872 	INIT_LIST_HEAD(&fn->node);
873 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
874 
875 	fn->rmi_dev = rmi_dev;
876 
877 	fn->num_of_irqs = pdt->interrupt_source_count;
878 	fn->irq_pos = *current_irq_count;
879 	*current_irq_count += fn->num_of_irqs;
880 
881 	for (i = 0; i < fn->num_of_irqs; i++)
882 		set_bit(fn->irq_pos + i, fn->irq_mask);
883 
884 	error = rmi_register_function(fn);
885 	if (error)
886 		goto err_put_fn;
887 
888 	if (pdt->function_number == 0x01)
889 		data->f01_container = fn;
890 	else if (pdt->function_number == 0x34)
891 		data->f34_container = fn;
892 
893 	list_add_tail(&fn->node, &data->function_list);
894 
895 	return RMI_SCAN_CONTINUE;
896 
897 err_put_fn:
898 	put_device(&fn->dev);
899 	return error;
900 }
901 
902 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
903 {
904 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
905 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
906 	int irq = pdata->irq;
907 	int irq_flags;
908 	int retval;
909 
910 	mutex_lock(&data->enabled_mutex);
911 
912 	if (data->enabled)
913 		goto out;
914 
915 	enable_irq(irq);
916 	data->enabled = true;
917 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
918 		retval = disable_irq_wake(irq);
919 		if (retval)
920 			dev_warn(&rmi_dev->dev,
921 				 "Failed to disable irq for wake: %d\n",
922 				 retval);
923 	}
924 
925 	/*
926 	 * Call rmi_process_interrupt_requests() after enabling irq,
927 	 * otherwise we may lose interrupt on edge-triggered systems.
928 	 */
929 	irq_flags = irq_get_trigger_type(pdata->irq);
930 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
931 		rmi_process_interrupt_requests(rmi_dev);
932 
933 out:
934 	mutex_unlock(&data->enabled_mutex);
935 }
936 
937 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
938 {
939 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
940 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
941 	struct rmi4_attn_data attn_data = {0};
942 	int irq = pdata->irq;
943 	int retval, count;
944 
945 	mutex_lock(&data->enabled_mutex);
946 
947 	if (!data->enabled)
948 		goto out;
949 
950 	data->enabled = false;
951 	disable_irq(irq);
952 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
953 		retval = enable_irq_wake(irq);
954 		if (retval)
955 			dev_warn(&rmi_dev->dev,
956 				 "Failed to enable irq for wake: %d\n",
957 				 retval);
958 	}
959 
960 	/* make sure the fifo is clean */
961 	while (!kfifo_is_empty(&data->attn_fifo)) {
962 		count = kfifo_get(&data->attn_fifo, &attn_data);
963 		if (count)
964 			kfree(attn_data.data);
965 	}
966 
967 out:
968 	mutex_unlock(&data->enabled_mutex);
969 }
970 
971 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
972 {
973 	int retval;
974 
975 	retval = rmi_suspend_functions(rmi_dev);
976 	if (retval)
977 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
978 			retval);
979 
980 	rmi_disable_irq(rmi_dev, enable_wake);
981 	return retval;
982 }
983 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
984 
985 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
986 {
987 	int retval;
988 
989 	rmi_enable_irq(rmi_dev, clear_wake);
990 
991 	retval = rmi_resume_functions(rmi_dev);
992 	if (retval)
993 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
994 			retval);
995 
996 	return retval;
997 }
998 EXPORT_SYMBOL_GPL(rmi_driver_resume);
999 
1000 static int rmi_driver_remove(struct device *dev)
1001 {
1002 	struct rmi_device *rmi_dev = to_rmi_device(dev);
1003 
1004 	rmi_disable_irq(rmi_dev, false);
1005 
1006 	rmi_f34_remove_sysfs(rmi_dev);
1007 	rmi_free_function_list(rmi_dev);
1008 
1009 	return 0;
1010 }
1011 
1012 #ifdef CONFIG_OF
1013 static int rmi_driver_of_probe(struct device *dev,
1014 				struct rmi_device_platform_data *pdata)
1015 {
1016 	int retval;
1017 
1018 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1019 					"syna,reset-delay-ms", 1);
1020 	if (retval)
1021 		return retval;
1022 
1023 	return 0;
1024 }
1025 #else
1026 static inline int rmi_driver_of_probe(struct device *dev,
1027 					struct rmi_device_platform_data *pdata)
1028 {
1029 	return -ENODEV;
1030 }
1031 #endif
1032 
1033 int rmi_probe_interrupts(struct rmi_driver_data *data)
1034 {
1035 	struct rmi_device *rmi_dev = data->rmi_dev;
1036 	struct device *dev = &rmi_dev->dev;
1037 	int irq_count;
1038 	size_t size;
1039 	int retval;
1040 
1041 	/*
1042 	 * We need to count the IRQs and allocate their storage before scanning
1043 	 * the PDT and creating the function entries, because adding a new
1044 	 * function can trigger events that result in the IRQ related storage
1045 	 * being accessed.
1046 	 */
1047 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1048 	irq_count = 0;
1049 	data->bootloader_mode = false;
1050 
1051 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1052 	if (retval < 0) {
1053 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1054 		return retval;
1055 	}
1056 
1057 	if (data->bootloader_mode)
1058 		dev_warn(dev, "Device in bootloader mode.\n");
1059 
1060 	data->irq_count = irq_count;
1061 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1062 
1063 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1064 	data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
1065 	if (!data->irq_memory) {
1066 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1067 		return -ENOMEM;
1068 	}
1069 
1070 	data->irq_status	= data->irq_memory + size * 0;
1071 	data->fn_irq_bits	= data->irq_memory + size * 1;
1072 	data->current_irq_mask	= data->irq_memory + size * 2;
1073 	data->new_irq_mask	= data->irq_memory + size * 3;
1074 
1075 	return retval;
1076 }
1077 
1078 int rmi_init_functions(struct rmi_driver_data *data)
1079 {
1080 	struct rmi_device *rmi_dev = data->rmi_dev;
1081 	struct device *dev = &rmi_dev->dev;
1082 	int irq_count;
1083 	int retval;
1084 
1085 	irq_count = 0;
1086 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1087 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1088 	if (retval < 0) {
1089 		dev_err(dev, "Function creation failed with code %d.\n",
1090 			retval);
1091 		goto err_destroy_functions;
1092 	}
1093 
1094 	if (!data->f01_container) {
1095 		dev_err(dev, "Missing F01 container!\n");
1096 		retval = -EINVAL;
1097 		goto err_destroy_functions;
1098 	}
1099 
1100 	retval = rmi_read_block(rmi_dev,
1101 				data->f01_container->fd.control_base_addr + 1,
1102 				data->current_irq_mask, data->num_of_irq_regs);
1103 	if (retval < 0) {
1104 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1105 			__func__);
1106 		goto err_destroy_functions;
1107 	}
1108 
1109 	return 0;
1110 
1111 err_destroy_functions:
1112 	rmi_free_function_list(rmi_dev);
1113 	return retval;
1114 }
1115 
1116 static int rmi_driver_probe(struct device *dev)
1117 {
1118 	struct rmi_driver *rmi_driver;
1119 	struct rmi_driver_data *data;
1120 	struct rmi_device_platform_data *pdata;
1121 	struct rmi_device *rmi_dev;
1122 	int retval;
1123 
1124 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1125 			__func__);
1126 
1127 	if (!rmi_is_physical_device(dev)) {
1128 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1129 		return -ENODEV;
1130 	}
1131 
1132 	rmi_dev = to_rmi_device(dev);
1133 	rmi_driver = to_rmi_driver(dev->driver);
1134 	rmi_dev->driver = rmi_driver;
1135 
1136 	pdata = rmi_get_platform_data(rmi_dev);
1137 
1138 	if (rmi_dev->xport->dev->of_node) {
1139 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1140 		if (retval)
1141 			return retval;
1142 	}
1143 
1144 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1145 	if (!data)
1146 		return -ENOMEM;
1147 
1148 	INIT_LIST_HEAD(&data->function_list);
1149 	data->rmi_dev = rmi_dev;
1150 	dev_set_drvdata(&rmi_dev->dev, data);
1151 
1152 	/*
1153 	 * Right before a warm boot, the sensor might be in some unusual state,
1154 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1155 	 * or configuration update.  In order to clear the sensor to a known
1156 	 * state and/or apply any updates, we issue a initial reset to clear any
1157 	 * previous settings and force it into normal operation.
1158 	 *
1159 	 * We have to do this before actually building the PDT because
1160 	 * the reflash updates (if any) might cause various registers to move
1161 	 * around.
1162 	 *
1163 	 * For a number of reasons, this initial reset may fail to return
1164 	 * within the specified time, but we'll still be able to bring up the
1165 	 * driver normally after that failure.  This occurs most commonly in
1166 	 * a cold boot situation (where then firmware takes longer to come up
1167 	 * than from a warm boot) and the reset_delay_ms in the platform data
1168 	 * has been set too short to accommodate that.  Since the sensor will
1169 	 * eventually come up and be usable, we don't want to just fail here
1170 	 * and leave the customer's device unusable.  So we warn them, and
1171 	 * continue processing.
1172 	 */
1173 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1174 	if (retval < 0)
1175 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1176 
1177 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1178 	if (retval < 0) {
1179 		/*
1180 		 * we'll print out a warning and continue since
1181 		 * failure to get the PDT properties is not a cause to fail
1182 		 */
1183 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1184 			 PDT_PROPERTIES_LOCATION, retval);
1185 	}
1186 
1187 	mutex_init(&data->irq_mutex);
1188 	mutex_init(&data->enabled_mutex);
1189 
1190 	retval = rmi_probe_interrupts(data);
1191 	if (retval)
1192 		goto err;
1193 
1194 	if (rmi_dev->xport->input) {
1195 		/*
1196 		 * The transport driver already has an input device.
1197 		 * In some cases it is preferable to reuse the transport
1198 		 * devices input device instead of creating a new one here.
1199 		 * One example is some HID touchpads report "pass-through"
1200 		 * button events are not reported by rmi registers.
1201 		 */
1202 		data->input = rmi_dev->xport->input;
1203 	} else {
1204 		data->input = devm_input_allocate_device(dev);
1205 		if (!data->input) {
1206 			dev_err(dev, "%s: Failed to allocate input device.\n",
1207 				__func__);
1208 			retval = -ENOMEM;
1209 			goto err;
1210 		}
1211 		rmi_driver_set_input_params(rmi_dev, data->input);
1212 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1213 						"%s/input0", dev_name(dev));
1214 	}
1215 
1216 	retval = rmi_init_functions(data);
1217 	if (retval)
1218 		goto err;
1219 
1220 	retval = rmi_f34_create_sysfs(rmi_dev);
1221 	if (retval)
1222 		goto err;
1223 
1224 	if (data->input) {
1225 		rmi_driver_set_input_name(rmi_dev, data->input);
1226 		if (!rmi_dev->xport->input) {
1227 			if (input_register_device(data->input)) {
1228 				dev_err(dev, "%s: Failed to register input device.\n",
1229 					__func__);
1230 				goto err_destroy_functions;
1231 			}
1232 		}
1233 	}
1234 
1235 	retval = rmi_irq_init(rmi_dev);
1236 	if (retval < 0)
1237 		goto err_destroy_functions;
1238 
1239 	if (data->f01_container->dev.driver) {
1240 		/* Driver already bound, so enable ATTN now. */
1241 		retval = rmi_enable_sensor(rmi_dev);
1242 		if (retval)
1243 			goto err_disable_irq;
1244 	}
1245 
1246 	return 0;
1247 
1248 err_disable_irq:
1249 	rmi_disable_irq(rmi_dev, false);
1250 err_destroy_functions:
1251 	rmi_free_function_list(rmi_dev);
1252 err:
1253 	return retval;
1254 }
1255 
1256 static struct rmi_driver rmi_physical_driver = {
1257 	.driver = {
1258 		.owner	= THIS_MODULE,
1259 		.name	= "rmi4_physical",
1260 		.bus	= &rmi_bus_type,
1261 		.probe = rmi_driver_probe,
1262 		.remove = rmi_driver_remove,
1263 	},
1264 	.reset_handler = rmi_driver_reset_handler,
1265 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1266 	.set_irq_bits = rmi_driver_set_irq_bits,
1267 	.set_input_params = rmi_driver_set_input_params,
1268 };
1269 
1270 bool rmi_is_physical_driver(struct device_driver *drv)
1271 {
1272 	return drv == &rmi_physical_driver.driver;
1273 }
1274 
1275 int __init rmi_register_physical_driver(void)
1276 {
1277 	int error;
1278 
1279 	error = driver_register(&rmi_physical_driver.driver);
1280 	if (error) {
1281 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1282 		       error);
1283 		return error;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 void __exit rmi_unregister_physical_driver(void)
1290 {
1291 	driver_unregister(&rmi_physical_driver.driver);
1292 }
1293