xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision 6c7c3245)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/kconfig.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <uapi/linux/input.h>
25 #include <linux/rmi.h>
26 #include "rmi_bus.h"
27 #include "rmi_driver.h"
28 
29 #define HAS_NONSTANDARD_PDT_MASK 0x40
30 #define RMI4_MAX_PAGE 0xff
31 #define RMI4_PAGE_SIZE 0x100
32 #define RMI4_PAGE_MASK 0xFF00
33 
34 #define RMI_DEVICE_RESET_CMD	0x01
35 #define DEFAULT_RESET_DELAY_MS	100
36 
37 static void rmi_free_function_list(struct rmi_device *rmi_dev)
38 {
39 	struct rmi_function *fn, *tmp;
40 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
41 
42 	data->f01_container = NULL;
43 
44 	/* Doing it in the reverse order so F01 will be removed last */
45 	list_for_each_entry_safe_reverse(fn, tmp,
46 					 &data->function_list, node) {
47 		list_del(&fn->node);
48 		rmi_unregister_function(fn);
49 	}
50 }
51 
52 static int reset_one_function(struct rmi_function *fn)
53 {
54 	struct rmi_function_handler *fh;
55 	int retval = 0;
56 
57 	if (!fn || !fn->dev.driver)
58 		return 0;
59 
60 	fh = to_rmi_function_handler(fn->dev.driver);
61 	if (fh->reset) {
62 		retval = fh->reset(fn);
63 		if (retval < 0)
64 			dev_err(&fn->dev, "Reset failed with code %d.\n",
65 				retval);
66 	}
67 
68 	return retval;
69 }
70 
71 static int configure_one_function(struct rmi_function *fn)
72 {
73 	struct rmi_function_handler *fh;
74 	int retval = 0;
75 
76 	if (!fn || !fn->dev.driver)
77 		return 0;
78 
79 	fh = to_rmi_function_handler(fn->dev.driver);
80 	if (fh->config) {
81 		retval = fh->config(fn);
82 		if (retval < 0)
83 			dev_err(&fn->dev, "Config failed with code %d.\n",
84 				retval);
85 	}
86 
87 	return retval;
88 }
89 
90 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
91 {
92 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
93 	struct rmi_function *entry;
94 	int retval;
95 
96 	list_for_each_entry(entry, &data->function_list, node) {
97 		retval = reset_one_function(entry);
98 		if (retval < 0)
99 			return retval;
100 	}
101 
102 	return 0;
103 }
104 
105 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
106 {
107 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
108 	struct rmi_function *entry;
109 	int retval;
110 
111 	list_for_each_entry(entry, &data->function_list, node) {
112 		retval = configure_one_function(entry);
113 		if (retval < 0)
114 			return retval;
115 	}
116 
117 	return 0;
118 }
119 
120 static void process_one_interrupt(struct rmi_driver_data *data,
121 				  struct rmi_function *fn)
122 {
123 	struct rmi_function_handler *fh;
124 
125 	if (!fn || !fn->dev.driver)
126 		return;
127 
128 	fh = to_rmi_function_handler(fn->dev.driver);
129 	if (fh->attention) {
130 		bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
131 				data->irq_count);
132 		if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
133 			fh->attention(fn, data->fn_irq_bits);
134 	}
135 }
136 
137 int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
138 {
139 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
140 	struct device *dev = &rmi_dev->dev;
141 	struct rmi_function *entry;
142 	int error;
143 
144 	if (!data)
145 		return 0;
146 
147 	if (!rmi_dev->xport->attn_data) {
148 		error = rmi_read_block(rmi_dev,
149 				data->f01_container->fd.data_base_addr + 1,
150 				data->irq_status, data->num_of_irq_regs);
151 		if (error < 0) {
152 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
153 			return error;
154 		}
155 	}
156 
157 	mutex_lock(&data->irq_mutex);
158 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
159 	       data->irq_count);
160 	/*
161 	 * At this point, irq_status has all bits that are set in the
162 	 * interrupt status register and are enabled.
163 	 */
164 	mutex_unlock(&data->irq_mutex);
165 
166 	/*
167 	 * It would be nice to be able to use irq_chip to handle these
168 	 * nested IRQs.  Unfortunately, most of the current customers for
169 	 * this driver are using older kernels (3.0.x) that don't support
170 	 * the features required for that.  Once they've shifted to more
171 	 * recent kernels (say, 3.3 and higher), this should be switched to
172 	 * use irq_chip.
173 	 */
174 	list_for_each_entry(entry, &data->function_list, node)
175 		process_one_interrupt(data, entry);
176 
177 	if (data->input)
178 		input_sync(data->input);
179 
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(rmi_process_interrupt_requests);
183 
184 static int suspend_one_function(struct rmi_function *fn)
185 {
186 	struct rmi_function_handler *fh;
187 	int retval = 0;
188 
189 	if (!fn || !fn->dev.driver)
190 		return 0;
191 
192 	fh = to_rmi_function_handler(fn->dev.driver);
193 	if (fh->suspend) {
194 		retval = fh->suspend(fn);
195 		if (retval < 0)
196 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
197 				retval);
198 	}
199 
200 	return retval;
201 }
202 
203 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
204 {
205 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
206 	struct rmi_function *entry;
207 	int retval;
208 
209 	list_for_each_entry(entry, &data->function_list, node) {
210 		retval = suspend_one_function(entry);
211 		if (retval < 0)
212 			return retval;
213 	}
214 
215 	return 0;
216 }
217 
218 static int resume_one_function(struct rmi_function *fn)
219 {
220 	struct rmi_function_handler *fh;
221 	int retval = 0;
222 
223 	if (!fn || !fn->dev.driver)
224 		return 0;
225 
226 	fh = to_rmi_function_handler(fn->dev.driver);
227 	if (fh->resume) {
228 		retval = fh->resume(fn);
229 		if (retval < 0)
230 			dev_err(&fn->dev, "Resume failed with code %d.\n",
231 				retval);
232 	}
233 
234 	return retval;
235 }
236 
237 static int rmi_resume_functions(struct rmi_device *rmi_dev)
238 {
239 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
240 	struct rmi_function *entry;
241 	int retval;
242 
243 	list_for_each_entry(entry, &data->function_list, node) {
244 		retval = resume_one_function(entry);
245 		if (retval < 0)
246 			return retval;
247 	}
248 
249 	return 0;
250 }
251 
252 static int enable_sensor(struct rmi_device *rmi_dev)
253 {
254 	int retval = 0;
255 
256 	retval = rmi_driver_process_config_requests(rmi_dev);
257 	if (retval < 0)
258 		return retval;
259 
260 	return rmi_process_interrupt_requests(rmi_dev);
261 }
262 
263 /**
264  * rmi_driver_set_input_params - set input device id and other data.
265  *
266  * @rmi_dev: Pointer to an RMI device
267  * @input: Pointer to input device
268  *
269  */
270 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
271 				struct input_dev *input)
272 {
273 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
274 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
275 	input->id.bustype = BUS_RMI;
276 	return 0;
277 }
278 
279 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
280 				struct input_dev *input)
281 {
282 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
283 	char *device_name = rmi_f01_get_product_ID(data->f01_container);
284 	char *name;
285 
286 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
287 			      "Synaptics %s", device_name);
288 	if (!name)
289 		return;
290 
291 	input->name = name;
292 }
293 
294 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
295 				   unsigned long *mask)
296 {
297 	int error = 0;
298 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
299 	struct device *dev = &rmi_dev->dev;
300 
301 	mutex_lock(&data->irq_mutex);
302 	bitmap_or(data->new_irq_mask,
303 		  data->current_irq_mask, mask, data->irq_count);
304 
305 	error = rmi_write_block(rmi_dev,
306 			data->f01_container->fd.control_base_addr + 1,
307 			data->new_irq_mask, data->num_of_irq_regs);
308 	if (error < 0) {
309 		dev_err(dev, "%s: Failed to change enabled interrupts!",
310 							__func__);
311 		goto error_unlock;
312 	}
313 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
314 		    data->num_of_irq_regs);
315 
316 error_unlock:
317 	mutex_unlock(&data->irq_mutex);
318 	return error;
319 }
320 
321 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
322 				     unsigned long *mask)
323 {
324 	int error = 0;
325 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
326 	struct device *dev = &rmi_dev->dev;
327 
328 	mutex_lock(&data->irq_mutex);
329 	bitmap_andnot(data->new_irq_mask,
330 		  data->current_irq_mask, mask, data->irq_count);
331 
332 	error = rmi_write_block(rmi_dev,
333 			data->f01_container->fd.control_base_addr + 1,
334 			data->new_irq_mask, data->num_of_irq_regs);
335 	if (error < 0) {
336 		dev_err(dev, "%s: Failed to change enabled interrupts!",
337 							__func__);
338 		goto error_unlock;
339 	}
340 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
341 		    data->num_of_irq_regs);
342 
343 error_unlock:
344 	mutex_unlock(&data->irq_mutex);
345 	return error;
346 }
347 
348 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
349 {
350 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
351 	int error;
352 
353 	/*
354 	 * Can get called before the driver is fully ready to deal with
355 	 * this situation.
356 	 */
357 	if (!data || !data->f01_container) {
358 		dev_warn(&rmi_dev->dev,
359 			 "Not ready to handle reset yet!\n");
360 		return 0;
361 	}
362 
363 	error = rmi_read_block(rmi_dev,
364 			       data->f01_container->fd.control_base_addr + 1,
365 			       data->current_irq_mask, data->num_of_irq_regs);
366 	if (error < 0) {
367 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
368 			__func__);
369 		return error;
370 	}
371 
372 	error = rmi_driver_process_reset_requests(rmi_dev);
373 	if (error < 0)
374 		return error;
375 
376 	error = rmi_driver_process_config_requests(rmi_dev);
377 	if (error < 0)
378 		return error;
379 
380 	return 0;
381 }
382 
383 int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry,
384 			u16 pdt_address)
385 {
386 	u8 buf[RMI_PDT_ENTRY_SIZE];
387 	int error;
388 
389 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
390 	if (error) {
391 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
392 				pdt_address, error);
393 		return error;
394 	}
395 
396 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
397 	entry->query_base_addr = buf[0];
398 	entry->command_base_addr = buf[1];
399 	entry->control_base_addr = buf[2];
400 	entry->data_base_addr = buf[3];
401 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
402 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
403 	entry->function_number = buf[5];
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(rmi_read_pdt_entry);
408 
409 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
410 				      struct rmi_function_descriptor *fd)
411 {
412 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
413 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
414 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
415 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
416 	fd->function_number = pdt->function_number;
417 	fd->interrupt_source_count = pdt->interrupt_source_count;
418 	fd->function_version = pdt->function_version;
419 }
420 
421 #define RMI_SCAN_CONTINUE	0
422 #define RMI_SCAN_DONE		1
423 
424 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
425 			     int page,
426 			     void *ctx,
427 			     int (*callback)(struct rmi_device *rmi_dev,
428 					     void *ctx,
429 					     const struct pdt_entry *entry))
430 {
431 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
432 	struct pdt_entry pdt_entry;
433 	u16 page_start = RMI4_PAGE_SIZE * page;
434 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
435 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
436 	u16 addr;
437 	int error;
438 	int retval;
439 
440 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
441 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
442 		if (error)
443 			return error;
444 
445 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
446 			break;
447 
448 		retval = callback(rmi_dev, ctx, &pdt_entry);
449 		if (retval != RMI_SCAN_CONTINUE)
450 			return retval;
451 	}
452 
453 	return (data->f01_bootloader_mode || addr == pdt_start) ?
454 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
455 }
456 
457 static int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
458 			int (*callback)(struct rmi_device *rmi_dev,
459 					void *ctx,
460 					const struct pdt_entry *entry))
461 {
462 	int page;
463 	int retval = RMI_SCAN_DONE;
464 
465 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
466 		retval = rmi_scan_pdt_page(rmi_dev, page, ctx, callback);
467 		if (retval != RMI_SCAN_CONTINUE)
468 			break;
469 	}
470 
471 	return retval < 0 ? retval : 0;
472 }
473 
474 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
475 				struct rmi_register_descriptor *rdesc)
476 {
477 	int ret;
478 	u8 size_presence_reg;
479 	u8 buf[35];
480 	int presense_offset = 1;
481 	u8 *struct_buf;
482 	int reg;
483 	int offset = 0;
484 	int map_offset = 0;
485 	int i;
486 	int b;
487 
488 	/*
489 	 * The first register of the register descriptor is the size of
490 	 * the register descriptor's presense register.
491 	 */
492 	ret = rmi_read(d, addr, &size_presence_reg);
493 	if (ret)
494 		return ret;
495 	++addr;
496 
497 	if (size_presence_reg < 0 || size_presence_reg > 35)
498 		return -EIO;
499 
500 	memset(buf, 0, sizeof(buf));
501 
502 	/*
503 	 * The presence register contains the size of the register structure
504 	 * and a bitmap which identified which packet registers are present
505 	 * for this particular register type (ie query, control, or data).
506 	 */
507 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
508 	if (ret)
509 		return ret;
510 	++addr;
511 
512 	if (buf[0] == 0) {
513 		presense_offset = 3;
514 		rdesc->struct_size = buf[1] | (buf[2] << 8);
515 	} else {
516 		rdesc->struct_size = buf[0];
517 	}
518 
519 	for (i = presense_offset; i < size_presence_reg; i++) {
520 		for (b = 0; b < 8; b++) {
521 			if (buf[i] & (0x1 << b))
522 				bitmap_set(rdesc->presense_map, map_offset, 1);
523 			++map_offset;
524 		}
525 	}
526 
527 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
528 						RMI_REG_DESC_PRESENSE_BITS);
529 
530 	rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
531 				sizeof(struct rmi_register_desc_item),
532 				GFP_KERNEL);
533 	if (!rdesc->registers)
534 		return -ENOMEM;
535 
536 	/*
537 	 * Allocate a temporary buffer to hold the register structure.
538 	 * I'm not using devm_kzalloc here since it will not be retained
539 	 * after exiting this function
540 	 */
541 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
542 	if (!struct_buf)
543 		return -ENOMEM;
544 
545 	/*
546 	 * The register structure contains information about every packet
547 	 * register of this type. This includes the size of the packet
548 	 * register and a bitmap of all subpackets contained in the packet
549 	 * register.
550 	 */
551 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
552 	if (ret)
553 		goto free_struct_buff;
554 
555 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
556 	for (i = 0; i < rdesc->num_registers; i++) {
557 		struct rmi_register_desc_item *item = &rdesc->registers[i];
558 		int reg_size = struct_buf[offset];
559 
560 		++offset;
561 		if (reg_size == 0) {
562 			reg_size = struct_buf[offset] |
563 					(struct_buf[offset + 1] << 8);
564 			offset += 2;
565 		}
566 
567 		if (reg_size == 0) {
568 			reg_size = struct_buf[offset] |
569 					(struct_buf[offset + 1] << 8) |
570 					(struct_buf[offset + 2] << 16) |
571 					(struct_buf[offset + 3] << 24);
572 			offset += 4;
573 		}
574 
575 		item->reg = reg;
576 		item->reg_size = reg_size;
577 
578 		map_offset = 0;
579 
580 		do {
581 			for (b = 0; b < 7; b++) {
582 				if (struct_buf[offset] & (0x1 << b))
583 					bitmap_set(item->subpacket_map,
584 						map_offset, 1);
585 				++map_offset;
586 			}
587 		} while (struct_buf[offset++] & 0x80);
588 
589 		item->num_subpackets = bitmap_weight(item->subpacket_map,
590 						RMI_REG_DESC_SUBPACKET_BITS);
591 
592 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
593 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
594 			item->reg, item->reg_size, item->num_subpackets);
595 
596 		reg = find_next_bit(rdesc->presense_map,
597 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
598 	}
599 
600 free_struct_buff:
601 	kfree(struct_buf);
602 	return ret;
603 }
604 EXPORT_SYMBOL_GPL(rmi_read_register_desc);
605 
606 const struct rmi_register_desc_item *rmi_get_register_desc_item(
607 				struct rmi_register_descriptor *rdesc, u16 reg)
608 {
609 	const struct rmi_register_desc_item *item;
610 	int i;
611 
612 	for (i = 0; i < rdesc->num_registers; i++) {
613 		item = &rdesc->registers[i];
614 		if (item->reg == reg)
615 			return item;
616 	}
617 
618 	return NULL;
619 }
620 EXPORT_SYMBOL_GPL(rmi_get_register_desc_item);
621 
622 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
623 {
624 	const struct rmi_register_desc_item *item;
625 	int i;
626 	size_t size = 0;
627 
628 	for (i = 0; i < rdesc->num_registers; i++) {
629 		item = &rdesc->registers[i];
630 		size += item->reg_size;
631 	}
632 	return size;
633 }
634 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_size);
635 
636 /* Compute the register offset relative to the base address */
637 int rmi_register_desc_calc_reg_offset(
638 		struct rmi_register_descriptor *rdesc, u16 reg)
639 {
640 	const struct rmi_register_desc_item *item;
641 	int offset = 0;
642 	int i;
643 
644 	for (i = 0; i < rdesc->num_registers; i++) {
645 		item = &rdesc->registers[i];
646 		if (item->reg == reg)
647 			return offset;
648 		++offset;
649 	}
650 	return -1;
651 }
652 EXPORT_SYMBOL_GPL(rmi_register_desc_calc_reg_offset);
653 
654 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
655 	u8 subpacket)
656 {
657 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
658 				subpacket) == subpacket;
659 }
660 
661 /* Indicates that flash programming is enabled (bootloader mode). */
662 #define RMI_F01_STATUS_BOOTLOADER(status)	(!!((status) & 0x40))
663 
664 /*
665  * Given the PDT entry for F01, read the device status register to determine
666  * if we're stuck in bootloader mode or not.
667  *
668  */
669 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
670 				     const struct pdt_entry *pdt)
671 {
672 	int error;
673 	u8 device_status;
674 
675 	error = rmi_read(rmi_dev, pdt->data_base_addr + pdt->page_start,
676 			 &device_status);
677 	if (error) {
678 		dev_err(&rmi_dev->dev,
679 			"Failed to read device status: %d.\n", error);
680 		return error;
681 	}
682 
683 	return RMI_F01_STATUS_BOOTLOADER(device_status);
684 }
685 
686 static int rmi_count_irqs(struct rmi_device *rmi_dev,
687 			 void *ctx, const struct pdt_entry *pdt)
688 {
689 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
690 	int *irq_count = ctx;
691 
692 	*irq_count += pdt->interrupt_source_count;
693 	if (pdt->function_number == 0x01) {
694 		data->f01_bootloader_mode =
695 			rmi_check_bootloader_mode(rmi_dev, pdt);
696 		if (data->f01_bootloader_mode)
697 			dev_warn(&rmi_dev->dev,
698 				"WARNING: RMI4 device is in bootloader mode!\n");
699 	}
700 
701 	return RMI_SCAN_CONTINUE;
702 }
703 
704 static int rmi_initial_reset(struct rmi_device *rmi_dev,
705 			     void *ctx, const struct pdt_entry *pdt)
706 {
707 	int error;
708 
709 	if (pdt->function_number == 0x01) {
710 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
711 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
712 		const struct rmi_device_platform_data *pdata =
713 				rmi_get_platform_data(rmi_dev);
714 
715 		if (rmi_dev->xport->ops->reset) {
716 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
717 								cmd_addr);
718 			if (error)
719 				return error;
720 
721 			return RMI_SCAN_DONE;
722 		}
723 
724 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
725 		if (error) {
726 			dev_err(&rmi_dev->dev,
727 				"Initial reset failed. Code = %d.\n", error);
728 			return error;
729 		}
730 
731 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
732 
733 		return RMI_SCAN_DONE;
734 	}
735 
736 	/* F01 should always be on page 0. If we don't find it there, fail. */
737 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
738 }
739 
740 static int rmi_create_function(struct rmi_device *rmi_dev,
741 			       void *ctx, const struct pdt_entry *pdt)
742 {
743 	struct device *dev = &rmi_dev->dev;
744 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
745 	int *current_irq_count = ctx;
746 	struct rmi_function *fn;
747 	int i;
748 	int error;
749 
750 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
751 			pdt->function_number);
752 
753 	fn = kzalloc(sizeof(struct rmi_function) +
754 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
755 		     GFP_KERNEL);
756 	if (!fn) {
757 		dev_err(dev, "Failed to allocate memory for F%02X\n",
758 			pdt->function_number);
759 		return -ENOMEM;
760 	}
761 
762 	INIT_LIST_HEAD(&fn->node);
763 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
764 
765 	fn->rmi_dev = rmi_dev;
766 
767 	fn->num_of_irqs = pdt->interrupt_source_count;
768 	fn->irq_pos = *current_irq_count;
769 	*current_irq_count += fn->num_of_irqs;
770 
771 	for (i = 0; i < fn->num_of_irqs; i++)
772 		set_bit(fn->irq_pos + i, fn->irq_mask);
773 
774 	error = rmi_register_function(fn);
775 	if (error)
776 		goto err_put_fn;
777 
778 	if (pdt->function_number == 0x01)
779 		data->f01_container = fn;
780 
781 	list_add_tail(&fn->node, &data->function_list);
782 
783 	return RMI_SCAN_CONTINUE;
784 
785 err_put_fn:
786 	put_device(&fn->dev);
787 	return error;
788 }
789 
790 int rmi_driver_suspend(struct rmi_device *rmi_dev)
791 {
792 	int retval = 0;
793 
794 	retval = rmi_suspend_functions(rmi_dev);
795 	if (retval)
796 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
797 			retval);
798 
799 	return retval;
800 }
801 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
802 
803 int rmi_driver_resume(struct rmi_device *rmi_dev)
804 {
805 	int retval;
806 
807 	retval = rmi_resume_functions(rmi_dev);
808 	if (retval)
809 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
810 			retval);
811 
812 	return retval;
813 }
814 EXPORT_SYMBOL_GPL(rmi_driver_resume);
815 
816 static int rmi_driver_remove(struct device *dev)
817 {
818 	struct rmi_device *rmi_dev = to_rmi_device(dev);
819 
820 	rmi_free_function_list(rmi_dev);
821 
822 	return 0;
823 }
824 
825 #ifdef CONFIG_OF
826 static int rmi_driver_of_probe(struct device *dev,
827 				struct rmi_device_platform_data *pdata)
828 {
829 	int retval;
830 
831 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
832 					"syna,reset-delay-ms", 1);
833 	if (retval)
834 		return retval;
835 
836 	return 0;
837 }
838 #else
839 static inline int rmi_driver_of_probe(struct device *dev,
840 					struct rmi_device_platform_data *pdata)
841 {
842 	return -ENODEV;
843 }
844 #endif
845 
846 static int rmi_driver_probe(struct device *dev)
847 {
848 	struct rmi_driver *rmi_driver;
849 	struct rmi_driver_data *data;
850 	struct rmi_device_platform_data *pdata;
851 	struct rmi_device *rmi_dev;
852 	size_t size;
853 	void *irq_memory;
854 	int irq_count;
855 	int retval;
856 
857 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
858 			__func__);
859 
860 	if (!rmi_is_physical_device(dev)) {
861 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
862 		return -ENODEV;
863 	}
864 
865 	rmi_dev = to_rmi_device(dev);
866 	rmi_driver = to_rmi_driver(dev->driver);
867 	rmi_dev->driver = rmi_driver;
868 
869 	pdata = rmi_get_platform_data(rmi_dev);
870 
871 	if (rmi_dev->xport->dev->of_node) {
872 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
873 		if (retval)
874 			return retval;
875 	}
876 
877 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
878 	if (!data)
879 		return -ENOMEM;
880 
881 	INIT_LIST_HEAD(&data->function_list);
882 	data->rmi_dev = rmi_dev;
883 	dev_set_drvdata(&rmi_dev->dev, data);
884 
885 	/*
886 	 * Right before a warm boot, the sensor might be in some unusual state,
887 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
888 	 * or configuration update.  In order to clear the sensor to a known
889 	 * state and/or apply any updates, we issue a initial reset to clear any
890 	 * previous settings and force it into normal operation.
891 	 *
892 	 * We have to do this before actually building the PDT because
893 	 * the reflash updates (if any) might cause various registers to move
894 	 * around.
895 	 *
896 	 * For a number of reasons, this initial reset may fail to return
897 	 * within the specified time, but we'll still be able to bring up the
898 	 * driver normally after that failure.  This occurs most commonly in
899 	 * a cold boot situation (where then firmware takes longer to come up
900 	 * than from a warm boot) and the reset_delay_ms in the platform data
901 	 * has been set too short to accommodate that.  Since the sensor will
902 	 * eventually come up and be usable, we don't want to just fail here
903 	 * and leave the customer's device unusable.  So we warn them, and
904 	 * continue processing.
905 	 */
906 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
907 	if (retval < 0)
908 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
909 
910 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
911 	if (retval < 0) {
912 		/*
913 		 * we'll print out a warning and continue since
914 		 * failure to get the PDT properties is not a cause to fail
915 		 */
916 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
917 			 PDT_PROPERTIES_LOCATION, retval);
918 	}
919 
920 	/*
921 	 * We need to count the IRQs and allocate their storage before scanning
922 	 * the PDT and creating the function entries, because adding a new
923 	 * function can trigger events that result in the IRQ related storage
924 	 * being accessed.
925 	 */
926 	rmi_dbg(RMI_DEBUG_CORE, dev, "Counting IRQs.\n");
927 	irq_count = 0;
928 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
929 	if (retval < 0) {
930 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
931 		goto err;
932 	}
933 	data->irq_count = irq_count;
934 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
935 
936 	mutex_init(&data->irq_mutex);
937 
938 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
939 	irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
940 	if (!irq_memory) {
941 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
942 		goto err;
943 	}
944 
945 	data->irq_status	= irq_memory + size * 0;
946 	data->fn_irq_bits	= irq_memory + size * 1;
947 	data->current_irq_mask	= irq_memory + size * 2;
948 	data->new_irq_mask	= irq_memory + size * 3;
949 
950 	if (rmi_dev->xport->input) {
951 		/*
952 		 * The transport driver already has an input device.
953 		 * In some cases it is preferable to reuse the transport
954 		 * devices input device instead of creating a new one here.
955 		 * One example is some HID touchpads report "pass-through"
956 		 * button events are not reported by rmi registers.
957 		 */
958 		data->input = rmi_dev->xport->input;
959 	} else {
960 		data->input = devm_input_allocate_device(dev);
961 		if (!data->input) {
962 			dev_err(dev, "%s: Failed to allocate input device.\n",
963 				__func__);
964 			retval = -ENOMEM;
965 			goto err_destroy_functions;
966 		}
967 		rmi_driver_set_input_params(rmi_dev, data->input);
968 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
969 						"%s/input0", dev_name(dev));
970 	}
971 
972 	irq_count = 0;
973 	rmi_dbg(RMI_DEBUG_CORE, dev, "Creating functions.");
974 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
975 	if (retval < 0) {
976 		dev_err(dev, "Function creation failed with code %d.\n",
977 			retval);
978 		goto err_destroy_functions;
979 	}
980 
981 	if (!data->f01_container) {
982 		dev_err(dev, "Missing F01 container!\n");
983 		retval = -EINVAL;
984 		goto err_destroy_functions;
985 	}
986 
987 	retval = rmi_read_block(rmi_dev,
988 				data->f01_container->fd.control_base_addr + 1,
989 				data->current_irq_mask, data->num_of_irq_regs);
990 	if (retval < 0) {
991 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
992 			__func__);
993 		goto err_destroy_functions;
994 	}
995 
996 	if (data->input) {
997 		rmi_driver_set_input_name(rmi_dev, data->input);
998 		if (!rmi_dev->xport->input) {
999 			if (input_register_device(data->input)) {
1000 				dev_err(dev, "%s: Failed to register input device.\n",
1001 					__func__);
1002 				goto err_destroy_functions;
1003 			}
1004 		}
1005 	}
1006 
1007 	if (data->f01_container->dev.driver)
1008 		/* Driver already bound, so enable ATTN now. */
1009 		return enable_sensor(rmi_dev);
1010 
1011 	return 0;
1012 
1013 err_destroy_functions:
1014 	rmi_free_function_list(rmi_dev);
1015 err:
1016 	return retval < 0 ? retval : 0;
1017 }
1018 
1019 static struct rmi_driver rmi_physical_driver = {
1020 	.driver = {
1021 		.owner	= THIS_MODULE,
1022 		.name	= "rmi4_physical",
1023 		.bus	= &rmi_bus_type,
1024 		.probe = rmi_driver_probe,
1025 		.remove = rmi_driver_remove,
1026 	},
1027 	.reset_handler = rmi_driver_reset_handler,
1028 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1029 	.set_irq_bits = rmi_driver_set_irq_bits,
1030 	.set_input_params = rmi_driver_set_input_params,
1031 };
1032 
1033 bool rmi_is_physical_driver(struct device_driver *drv)
1034 {
1035 	return drv == &rmi_physical_driver.driver;
1036 }
1037 
1038 int __init rmi_register_physical_driver(void)
1039 {
1040 	int error;
1041 
1042 	error = driver_register(&rmi_physical_driver.driver);
1043 	if (error) {
1044 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1045 		       error);
1046 		return error;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 void __exit rmi_unregister_physical_driver(void)
1053 {
1054 	driver_unregister(&rmi_physical_driver.driver);
1055 }
1056