xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision 09bae3b6)
1 /*
2  * Copyright (c) 2011-2016 Synaptics Incorporated
3  * Copyright (c) 2011 Unixphere
4  *
5  * This driver provides the core support for a single RMI4-based device.
6  *
7  * The RMI4 specification can be found here (URL split for line length):
8  *
9  * http://www.synaptics.com/sites/default/files/
10  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/delay.h>
19 #include <linux/fs.h>
20 #include <linux/irq.h>
21 #include <linux/pm.h>
22 #include <linux/slab.h>
23 #include <linux/of.h>
24 #include <linux/irqdomain.h>
25 #include <uapi/linux/input.h>
26 #include <linux/rmi.h>
27 #include "rmi_bus.h"
28 #include "rmi_driver.h"
29 
30 #define HAS_NONSTANDARD_PDT_MASK 0x40
31 #define RMI4_MAX_PAGE 0xff
32 #define RMI4_PAGE_SIZE 0x100
33 #define RMI4_PAGE_MASK 0xFF00
34 
35 #define RMI_DEVICE_RESET_CMD	0x01
36 #define DEFAULT_RESET_DELAY_MS	100
37 
38 void rmi_free_function_list(struct rmi_device *rmi_dev)
39 {
40 	struct rmi_function *fn, *tmp;
41 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
42 
43 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
44 
45 	/* Doing it in the reverse order so F01 will be removed last */
46 	list_for_each_entry_safe_reverse(fn, tmp,
47 					 &data->function_list, node) {
48 		list_del(&fn->node);
49 		rmi_unregister_function(fn);
50 	}
51 
52 	devm_kfree(&rmi_dev->dev, data->irq_memory);
53 	data->irq_memory = NULL;
54 	data->irq_status = NULL;
55 	data->fn_irq_bits = NULL;
56 	data->current_irq_mask = NULL;
57 	data->new_irq_mask = NULL;
58 
59 	data->f01_container = NULL;
60 	data->f34_container = NULL;
61 }
62 
63 static int reset_one_function(struct rmi_function *fn)
64 {
65 	struct rmi_function_handler *fh;
66 	int retval = 0;
67 
68 	if (!fn || !fn->dev.driver)
69 		return 0;
70 
71 	fh = to_rmi_function_handler(fn->dev.driver);
72 	if (fh->reset) {
73 		retval = fh->reset(fn);
74 		if (retval < 0)
75 			dev_err(&fn->dev, "Reset failed with code %d.\n",
76 				retval);
77 	}
78 
79 	return retval;
80 }
81 
82 static int configure_one_function(struct rmi_function *fn)
83 {
84 	struct rmi_function_handler *fh;
85 	int retval = 0;
86 
87 	if (!fn || !fn->dev.driver)
88 		return 0;
89 
90 	fh = to_rmi_function_handler(fn->dev.driver);
91 	if (fh->config) {
92 		retval = fh->config(fn);
93 		if (retval < 0)
94 			dev_err(&fn->dev, "Config failed with code %d.\n",
95 				retval);
96 	}
97 
98 	return retval;
99 }
100 
101 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
102 {
103 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
104 	struct rmi_function *entry;
105 	int retval;
106 
107 	list_for_each_entry(entry, &data->function_list, node) {
108 		retval = reset_one_function(entry);
109 		if (retval < 0)
110 			return retval;
111 	}
112 
113 	return 0;
114 }
115 
116 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
117 {
118 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
119 	struct rmi_function *entry;
120 	int retval;
121 
122 	list_for_each_entry(entry, &data->function_list, node) {
123 		retval = configure_one_function(entry);
124 		if (retval < 0)
125 			return retval;
126 	}
127 
128 	return 0;
129 }
130 
131 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
132 {
133 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
134 	struct device *dev = &rmi_dev->dev;
135 	int i;
136 	int error;
137 
138 	if (!data)
139 		return 0;
140 
141 	if (!data->attn_data.data) {
142 		error = rmi_read_block(rmi_dev,
143 				data->f01_container->fd.data_base_addr + 1,
144 				data->irq_status, data->num_of_irq_regs);
145 		if (error < 0) {
146 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
147 			return error;
148 		}
149 	}
150 
151 	mutex_lock(&data->irq_mutex);
152 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
153 	       data->irq_count);
154 	/*
155 	 * At this point, irq_status has all bits that are set in the
156 	 * interrupt status register and are enabled.
157 	 */
158 	mutex_unlock(&data->irq_mutex);
159 
160 	for_each_set_bit(i, data->irq_status, data->irq_count)
161 		handle_nested_irq(irq_find_mapping(data->irqdomain, i));
162 
163 	if (data->input)
164 		input_sync(data->input);
165 
166 	return 0;
167 }
168 
169 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
170 		       void *data, size_t size)
171 {
172 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
173 	struct rmi4_attn_data attn_data;
174 	void *fifo_data;
175 
176 	if (!drvdata->enabled)
177 		return;
178 
179 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
180 	if (!fifo_data)
181 		return;
182 
183 	attn_data.irq_status = irq_status;
184 	attn_data.size = size;
185 	attn_data.data = fifo_data;
186 
187 	kfifo_put(&drvdata->attn_fifo, attn_data);
188 }
189 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
190 
191 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
192 {
193 	struct rmi_device *rmi_dev = dev_id;
194 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
195 	struct rmi4_attn_data attn_data = {0};
196 	int ret, count;
197 
198 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
199 	if (count) {
200 		*(drvdata->irq_status) = attn_data.irq_status;
201 		drvdata->attn_data = attn_data;
202 	}
203 
204 	ret = rmi_process_interrupt_requests(rmi_dev);
205 	if (ret)
206 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
207 			"Failed to process interrupt request: %d\n", ret);
208 
209 	if (count) {
210 		kfree(attn_data.data);
211 		attn_data.data = NULL;
212 	}
213 
214 	if (!kfifo_is_empty(&drvdata->attn_fifo))
215 		return rmi_irq_fn(irq, dev_id);
216 
217 	return IRQ_HANDLED;
218 }
219 
220 static int rmi_irq_init(struct rmi_device *rmi_dev)
221 {
222 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
223 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
224 	int irq_flags = irq_get_trigger_type(pdata->irq);
225 	int ret;
226 
227 	if (!irq_flags)
228 		irq_flags = IRQF_TRIGGER_LOW;
229 
230 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
231 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
232 					dev_driver_string(rmi_dev->xport->dev),
233 					rmi_dev);
234 	if (ret < 0) {
235 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
236 			pdata->irq);
237 
238 		return ret;
239 	}
240 
241 	data->enabled = true;
242 
243 	return 0;
244 }
245 
246 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
247 {
248 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
249 	struct rmi_function *entry;
250 
251 	list_for_each_entry(entry, &data->function_list, node) {
252 		if (entry->fd.function_number == number)
253 			return entry;
254 	}
255 
256 	return NULL;
257 }
258 
259 static int suspend_one_function(struct rmi_function *fn)
260 {
261 	struct rmi_function_handler *fh;
262 	int retval = 0;
263 
264 	if (!fn || !fn->dev.driver)
265 		return 0;
266 
267 	fh = to_rmi_function_handler(fn->dev.driver);
268 	if (fh->suspend) {
269 		retval = fh->suspend(fn);
270 		if (retval < 0)
271 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
272 				retval);
273 	}
274 
275 	return retval;
276 }
277 
278 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
279 {
280 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
281 	struct rmi_function *entry;
282 	int retval;
283 
284 	list_for_each_entry(entry, &data->function_list, node) {
285 		retval = suspend_one_function(entry);
286 		if (retval < 0)
287 			return retval;
288 	}
289 
290 	return 0;
291 }
292 
293 static int resume_one_function(struct rmi_function *fn)
294 {
295 	struct rmi_function_handler *fh;
296 	int retval = 0;
297 
298 	if (!fn || !fn->dev.driver)
299 		return 0;
300 
301 	fh = to_rmi_function_handler(fn->dev.driver);
302 	if (fh->resume) {
303 		retval = fh->resume(fn);
304 		if (retval < 0)
305 			dev_err(&fn->dev, "Resume failed with code %d.\n",
306 				retval);
307 	}
308 
309 	return retval;
310 }
311 
312 static int rmi_resume_functions(struct rmi_device *rmi_dev)
313 {
314 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
315 	struct rmi_function *entry;
316 	int retval;
317 
318 	list_for_each_entry(entry, &data->function_list, node) {
319 		retval = resume_one_function(entry);
320 		if (retval < 0)
321 			return retval;
322 	}
323 
324 	return 0;
325 }
326 
327 int rmi_enable_sensor(struct rmi_device *rmi_dev)
328 {
329 	int retval = 0;
330 
331 	retval = rmi_driver_process_config_requests(rmi_dev);
332 	if (retval < 0)
333 		return retval;
334 
335 	return rmi_process_interrupt_requests(rmi_dev);
336 }
337 
338 /**
339  * rmi_driver_set_input_params - set input device id and other data.
340  *
341  * @rmi_dev: Pointer to an RMI device
342  * @input: Pointer to input device
343  *
344  */
345 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
346 				struct input_dev *input)
347 {
348 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
349 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
350 	input->id.bustype = BUS_RMI;
351 	return 0;
352 }
353 
354 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
355 				struct input_dev *input)
356 {
357 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
358 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
359 	char *name;
360 
361 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
362 			      "Synaptics %s", device_name);
363 	if (!name)
364 		return;
365 
366 	input->name = name;
367 }
368 
369 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
370 				   unsigned long *mask)
371 {
372 	int error = 0;
373 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
374 	struct device *dev = &rmi_dev->dev;
375 
376 	mutex_lock(&data->irq_mutex);
377 	bitmap_or(data->new_irq_mask,
378 		  data->current_irq_mask, mask, data->irq_count);
379 
380 	error = rmi_write_block(rmi_dev,
381 			data->f01_container->fd.control_base_addr + 1,
382 			data->new_irq_mask, data->num_of_irq_regs);
383 	if (error < 0) {
384 		dev_err(dev, "%s: Failed to change enabled interrupts!",
385 							__func__);
386 		goto error_unlock;
387 	}
388 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
389 		    data->num_of_irq_regs);
390 
391 error_unlock:
392 	mutex_unlock(&data->irq_mutex);
393 	return error;
394 }
395 
396 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
397 				     unsigned long *mask)
398 {
399 	int error = 0;
400 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
401 	struct device *dev = &rmi_dev->dev;
402 
403 	mutex_lock(&data->irq_mutex);
404 	bitmap_andnot(data->new_irq_mask,
405 		  data->current_irq_mask, mask, data->irq_count);
406 
407 	error = rmi_write_block(rmi_dev,
408 			data->f01_container->fd.control_base_addr + 1,
409 			data->new_irq_mask, data->num_of_irq_regs);
410 	if (error < 0) {
411 		dev_err(dev, "%s: Failed to change enabled interrupts!",
412 							__func__);
413 		goto error_unlock;
414 	}
415 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
416 		    data->num_of_irq_regs);
417 
418 error_unlock:
419 	mutex_unlock(&data->irq_mutex);
420 	return error;
421 }
422 
423 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
424 {
425 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
426 	int error;
427 
428 	/*
429 	 * Can get called before the driver is fully ready to deal with
430 	 * this situation.
431 	 */
432 	if (!data || !data->f01_container) {
433 		dev_warn(&rmi_dev->dev,
434 			 "Not ready to handle reset yet!\n");
435 		return 0;
436 	}
437 
438 	error = rmi_read_block(rmi_dev,
439 			       data->f01_container->fd.control_base_addr + 1,
440 			       data->current_irq_mask, data->num_of_irq_regs);
441 	if (error < 0) {
442 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
443 			__func__);
444 		return error;
445 	}
446 
447 	error = rmi_driver_process_reset_requests(rmi_dev);
448 	if (error < 0)
449 		return error;
450 
451 	error = rmi_driver_process_config_requests(rmi_dev);
452 	if (error < 0)
453 		return error;
454 
455 	return 0;
456 }
457 
458 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
459 			      struct pdt_entry *entry, u16 pdt_address)
460 {
461 	u8 buf[RMI_PDT_ENTRY_SIZE];
462 	int error;
463 
464 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
465 	if (error) {
466 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
467 				pdt_address, error);
468 		return error;
469 	}
470 
471 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
472 	entry->query_base_addr = buf[0];
473 	entry->command_base_addr = buf[1];
474 	entry->control_base_addr = buf[2];
475 	entry->data_base_addr = buf[3];
476 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
477 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
478 	entry->function_number = buf[5];
479 
480 	return 0;
481 }
482 
483 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
484 				      struct rmi_function_descriptor *fd)
485 {
486 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
487 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
488 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
489 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
490 	fd->function_number = pdt->function_number;
491 	fd->interrupt_source_count = pdt->interrupt_source_count;
492 	fd->function_version = pdt->function_version;
493 }
494 
495 #define RMI_SCAN_CONTINUE	0
496 #define RMI_SCAN_DONE		1
497 
498 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
499 			     int page,
500 			     int *empty_pages,
501 			     void *ctx,
502 			     int (*callback)(struct rmi_device *rmi_dev,
503 					     void *ctx,
504 					     const struct pdt_entry *entry))
505 {
506 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
507 	struct pdt_entry pdt_entry;
508 	u16 page_start = RMI4_PAGE_SIZE * page;
509 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
510 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
511 	u16 addr;
512 	int error;
513 	int retval;
514 
515 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
516 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
517 		if (error)
518 			return error;
519 
520 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
521 			break;
522 
523 		retval = callback(rmi_dev, ctx, &pdt_entry);
524 		if (retval != RMI_SCAN_CONTINUE)
525 			return retval;
526 	}
527 
528 	/*
529 	 * Count number of empty PDT pages. If a gap of two pages
530 	 * or more is found, stop scanning.
531 	 */
532 	if (addr == pdt_start)
533 		++*empty_pages;
534 	else
535 		*empty_pages = 0;
536 
537 	return (data->bootloader_mode || *empty_pages >= 2) ?
538 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
539 }
540 
541 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
542 		 int (*callback)(struct rmi_device *rmi_dev,
543 		 void *ctx, const struct pdt_entry *entry))
544 {
545 	int page;
546 	int empty_pages = 0;
547 	int retval = RMI_SCAN_DONE;
548 
549 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
550 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
551 					   ctx, callback);
552 		if (retval != RMI_SCAN_CONTINUE)
553 			break;
554 	}
555 
556 	return retval < 0 ? retval : 0;
557 }
558 
559 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
560 				struct rmi_register_descriptor *rdesc)
561 {
562 	int ret;
563 	u8 size_presence_reg;
564 	u8 buf[35];
565 	int presense_offset = 1;
566 	u8 *struct_buf;
567 	int reg;
568 	int offset = 0;
569 	int map_offset = 0;
570 	int i;
571 	int b;
572 
573 	/*
574 	 * The first register of the register descriptor is the size of
575 	 * the register descriptor's presense register.
576 	 */
577 	ret = rmi_read(d, addr, &size_presence_reg);
578 	if (ret)
579 		return ret;
580 	++addr;
581 
582 	if (size_presence_reg < 0 || size_presence_reg > 35)
583 		return -EIO;
584 
585 	memset(buf, 0, sizeof(buf));
586 
587 	/*
588 	 * The presence register contains the size of the register structure
589 	 * and a bitmap which identified which packet registers are present
590 	 * for this particular register type (ie query, control, or data).
591 	 */
592 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
593 	if (ret)
594 		return ret;
595 	++addr;
596 
597 	if (buf[0] == 0) {
598 		presense_offset = 3;
599 		rdesc->struct_size = buf[1] | (buf[2] << 8);
600 	} else {
601 		rdesc->struct_size = buf[0];
602 	}
603 
604 	for (i = presense_offset; i < size_presence_reg; i++) {
605 		for (b = 0; b < 8; b++) {
606 			if (buf[i] & (0x1 << b))
607 				bitmap_set(rdesc->presense_map, map_offset, 1);
608 			++map_offset;
609 		}
610 	}
611 
612 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
613 						RMI_REG_DESC_PRESENSE_BITS);
614 
615 	rdesc->registers = devm_kcalloc(&d->dev,
616 					rdesc->num_registers,
617 					sizeof(struct rmi_register_desc_item),
618 					GFP_KERNEL);
619 	if (!rdesc->registers)
620 		return -ENOMEM;
621 
622 	/*
623 	 * Allocate a temporary buffer to hold the register structure.
624 	 * I'm not using devm_kzalloc here since it will not be retained
625 	 * after exiting this function
626 	 */
627 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
628 	if (!struct_buf)
629 		return -ENOMEM;
630 
631 	/*
632 	 * The register structure contains information about every packet
633 	 * register of this type. This includes the size of the packet
634 	 * register and a bitmap of all subpackets contained in the packet
635 	 * register.
636 	 */
637 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
638 	if (ret)
639 		goto free_struct_buff;
640 
641 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
642 	for (i = 0; i < rdesc->num_registers; i++) {
643 		struct rmi_register_desc_item *item = &rdesc->registers[i];
644 		int reg_size = struct_buf[offset];
645 
646 		++offset;
647 		if (reg_size == 0) {
648 			reg_size = struct_buf[offset] |
649 					(struct_buf[offset + 1] << 8);
650 			offset += 2;
651 		}
652 
653 		if (reg_size == 0) {
654 			reg_size = struct_buf[offset] |
655 					(struct_buf[offset + 1] << 8) |
656 					(struct_buf[offset + 2] << 16) |
657 					(struct_buf[offset + 3] << 24);
658 			offset += 4;
659 		}
660 
661 		item->reg = reg;
662 		item->reg_size = reg_size;
663 
664 		map_offset = 0;
665 
666 		do {
667 			for (b = 0; b < 7; b++) {
668 				if (struct_buf[offset] & (0x1 << b))
669 					bitmap_set(item->subpacket_map,
670 						map_offset, 1);
671 				++map_offset;
672 			}
673 		} while (struct_buf[offset++] & 0x80);
674 
675 		item->num_subpackets = bitmap_weight(item->subpacket_map,
676 						RMI_REG_DESC_SUBPACKET_BITS);
677 
678 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
679 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
680 			item->reg, item->reg_size, item->num_subpackets);
681 
682 		reg = find_next_bit(rdesc->presense_map,
683 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
684 	}
685 
686 free_struct_buff:
687 	kfree(struct_buf);
688 	return ret;
689 }
690 
691 const struct rmi_register_desc_item *rmi_get_register_desc_item(
692 				struct rmi_register_descriptor *rdesc, u16 reg)
693 {
694 	const struct rmi_register_desc_item *item;
695 	int i;
696 
697 	for (i = 0; i < rdesc->num_registers; i++) {
698 		item = &rdesc->registers[i];
699 		if (item->reg == reg)
700 			return item;
701 	}
702 
703 	return NULL;
704 }
705 
706 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
707 {
708 	const struct rmi_register_desc_item *item;
709 	int i;
710 	size_t size = 0;
711 
712 	for (i = 0; i < rdesc->num_registers; i++) {
713 		item = &rdesc->registers[i];
714 		size += item->reg_size;
715 	}
716 	return size;
717 }
718 
719 /* Compute the register offset relative to the base address */
720 int rmi_register_desc_calc_reg_offset(
721 		struct rmi_register_descriptor *rdesc, u16 reg)
722 {
723 	const struct rmi_register_desc_item *item;
724 	int offset = 0;
725 	int i;
726 
727 	for (i = 0; i < rdesc->num_registers; i++) {
728 		item = &rdesc->registers[i];
729 		if (item->reg == reg)
730 			return offset;
731 		++offset;
732 	}
733 	return -1;
734 }
735 
736 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
737 	u8 subpacket)
738 {
739 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
740 				subpacket) == subpacket;
741 }
742 
743 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
744 				     const struct pdt_entry *pdt)
745 {
746 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
747 	int ret;
748 	u8 status;
749 
750 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
751 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
752 		if (ret) {
753 			dev_err(&rmi_dev->dev,
754 				"Failed to read F34 status: %d.\n", ret);
755 			return ret;
756 		}
757 
758 		if (status & BIT(7))
759 			data->bootloader_mode = true;
760 	} else if (pdt->function_number == 0x01) {
761 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
762 		if (ret) {
763 			dev_err(&rmi_dev->dev,
764 				"Failed to read F01 status: %d.\n", ret);
765 			return ret;
766 		}
767 
768 		if (status & BIT(6))
769 			data->bootloader_mode = true;
770 	}
771 
772 	return 0;
773 }
774 
775 static int rmi_count_irqs(struct rmi_device *rmi_dev,
776 			 void *ctx, const struct pdt_entry *pdt)
777 {
778 	int *irq_count = ctx;
779 	int ret;
780 
781 	*irq_count += pdt->interrupt_source_count;
782 
783 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
784 	if (ret < 0)
785 		return ret;
786 
787 	return RMI_SCAN_CONTINUE;
788 }
789 
790 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
791 		      const struct pdt_entry *pdt)
792 {
793 	int error;
794 
795 	if (pdt->function_number == 0x01) {
796 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
797 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
798 		const struct rmi_device_platform_data *pdata =
799 				rmi_get_platform_data(rmi_dev);
800 
801 		if (rmi_dev->xport->ops->reset) {
802 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
803 								cmd_addr);
804 			if (error)
805 				return error;
806 
807 			return RMI_SCAN_DONE;
808 		}
809 
810 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
811 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
812 		if (error) {
813 			dev_err(&rmi_dev->dev,
814 				"Initial reset failed. Code = %d.\n", error);
815 			return error;
816 		}
817 
818 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
819 
820 		return RMI_SCAN_DONE;
821 	}
822 
823 	/* F01 should always be on page 0. If we don't find it there, fail. */
824 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
825 }
826 
827 static int rmi_create_function(struct rmi_device *rmi_dev,
828 			       void *ctx, const struct pdt_entry *pdt)
829 {
830 	struct device *dev = &rmi_dev->dev;
831 	struct rmi_driver_data *data = dev_get_drvdata(dev);
832 	int *current_irq_count = ctx;
833 	struct rmi_function *fn;
834 	int i;
835 	int error;
836 
837 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
838 			pdt->function_number);
839 
840 	fn = kzalloc(sizeof(struct rmi_function) +
841 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
842 		     GFP_KERNEL);
843 	if (!fn) {
844 		dev_err(dev, "Failed to allocate memory for F%02X\n",
845 			pdt->function_number);
846 		return -ENOMEM;
847 	}
848 
849 	INIT_LIST_HEAD(&fn->node);
850 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
851 
852 	fn->rmi_dev = rmi_dev;
853 
854 	fn->num_of_irqs = pdt->interrupt_source_count;
855 	fn->irq_pos = *current_irq_count;
856 	*current_irq_count += fn->num_of_irqs;
857 
858 	for (i = 0; i < fn->num_of_irqs; i++)
859 		set_bit(fn->irq_pos + i, fn->irq_mask);
860 
861 	error = rmi_register_function(fn);
862 	if (error)
863 		goto err_put_fn;
864 
865 	if (pdt->function_number == 0x01)
866 		data->f01_container = fn;
867 	else if (pdt->function_number == 0x34)
868 		data->f34_container = fn;
869 
870 	list_add_tail(&fn->node, &data->function_list);
871 
872 	return RMI_SCAN_CONTINUE;
873 
874 err_put_fn:
875 	put_device(&fn->dev);
876 	return error;
877 }
878 
879 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
880 {
881 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
882 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
883 	int irq = pdata->irq;
884 	int irq_flags;
885 	int retval;
886 
887 	mutex_lock(&data->enabled_mutex);
888 
889 	if (data->enabled)
890 		goto out;
891 
892 	enable_irq(irq);
893 	data->enabled = true;
894 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
895 		retval = disable_irq_wake(irq);
896 		if (retval)
897 			dev_warn(&rmi_dev->dev,
898 				 "Failed to disable irq for wake: %d\n",
899 				 retval);
900 	}
901 
902 	/*
903 	 * Call rmi_process_interrupt_requests() after enabling irq,
904 	 * otherwise we may lose interrupt on edge-triggered systems.
905 	 */
906 	irq_flags = irq_get_trigger_type(pdata->irq);
907 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
908 		rmi_process_interrupt_requests(rmi_dev);
909 
910 out:
911 	mutex_unlock(&data->enabled_mutex);
912 }
913 
914 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
915 {
916 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
917 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
918 	struct rmi4_attn_data attn_data = {0};
919 	int irq = pdata->irq;
920 	int retval, count;
921 
922 	mutex_lock(&data->enabled_mutex);
923 
924 	if (!data->enabled)
925 		goto out;
926 
927 	data->enabled = false;
928 	disable_irq(irq);
929 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
930 		retval = enable_irq_wake(irq);
931 		if (retval)
932 			dev_warn(&rmi_dev->dev,
933 				 "Failed to enable irq for wake: %d\n",
934 				 retval);
935 	}
936 
937 	/* make sure the fifo is clean */
938 	while (!kfifo_is_empty(&data->attn_fifo)) {
939 		count = kfifo_get(&data->attn_fifo, &attn_data);
940 		if (count)
941 			kfree(attn_data.data);
942 	}
943 
944 out:
945 	mutex_unlock(&data->enabled_mutex);
946 }
947 
948 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
949 {
950 	int retval;
951 
952 	retval = rmi_suspend_functions(rmi_dev);
953 	if (retval)
954 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
955 			retval);
956 
957 	rmi_disable_irq(rmi_dev, enable_wake);
958 	return retval;
959 }
960 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
961 
962 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
963 {
964 	int retval;
965 
966 	rmi_enable_irq(rmi_dev, clear_wake);
967 
968 	retval = rmi_resume_functions(rmi_dev);
969 	if (retval)
970 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
971 			retval);
972 
973 	return retval;
974 }
975 EXPORT_SYMBOL_GPL(rmi_driver_resume);
976 
977 static int rmi_driver_remove(struct device *dev)
978 {
979 	struct rmi_device *rmi_dev = to_rmi_device(dev);
980 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
981 
982 	rmi_disable_irq(rmi_dev, false);
983 
984 	irq_domain_remove(data->irqdomain);
985 	data->irqdomain = NULL;
986 
987 	rmi_f34_remove_sysfs(rmi_dev);
988 	rmi_free_function_list(rmi_dev);
989 
990 	return 0;
991 }
992 
993 #ifdef CONFIG_OF
994 static int rmi_driver_of_probe(struct device *dev,
995 				struct rmi_device_platform_data *pdata)
996 {
997 	int retval;
998 
999 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
1000 					"syna,reset-delay-ms", 1);
1001 	if (retval)
1002 		return retval;
1003 
1004 	return 0;
1005 }
1006 #else
1007 static inline int rmi_driver_of_probe(struct device *dev,
1008 					struct rmi_device_platform_data *pdata)
1009 {
1010 	return -ENODEV;
1011 }
1012 #endif
1013 
1014 int rmi_probe_interrupts(struct rmi_driver_data *data)
1015 {
1016 	struct rmi_device *rmi_dev = data->rmi_dev;
1017 	struct device *dev = &rmi_dev->dev;
1018 	struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1019 	int irq_count = 0;
1020 	size_t size;
1021 	int retval;
1022 
1023 	/*
1024 	 * We need to count the IRQs and allocate their storage before scanning
1025 	 * the PDT and creating the function entries, because adding a new
1026 	 * function can trigger events that result in the IRQ related storage
1027 	 * being accessed.
1028 	 */
1029 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1030 	data->bootloader_mode = false;
1031 
1032 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1033 	if (retval < 0) {
1034 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1035 		return retval;
1036 	}
1037 
1038 	if (data->bootloader_mode)
1039 		dev_warn(dev, "Device in bootloader mode.\n");
1040 
1041 	/* Allocate and register a linear revmap irq_domain */
1042 	data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1043 						   &irq_domain_simple_ops,
1044 						   data);
1045 	if (!data->irqdomain) {
1046 		dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1047 		return -ENOMEM;
1048 	}
1049 
1050 	data->irq_count = irq_count;
1051 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1052 
1053 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1054 	data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1055 	if (!data->irq_memory) {
1056 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1057 		return -ENOMEM;
1058 	}
1059 
1060 	data->irq_status	= data->irq_memory + size * 0;
1061 	data->fn_irq_bits	= data->irq_memory + size * 1;
1062 	data->current_irq_mask	= data->irq_memory + size * 2;
1063 	data->new_irq_mask	= data->irq_memory + size * 3;
1064 
1065 	return retval;
1066 }
1067 
1068 int rmi_init_functions(struct rmi_driver_data *data)
1069 {
1070 	struct rmi_device *rmi_dev = data->rmi_dev;
1071 	struct device *dev = &rmi_dev->dev;
1072 	int irq_count = 0;
1073 	int retval;
1074 
1075 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1076 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1077 	if (retval < 0) {
1078 		dev_err(dev, "Function creation failed with code %d.\n",
1079 			retval);
1080 		goto err_destroy_functions;
1081 	}
1082 
1083 	if (!data->f01_container) {
1084 		dev_err(dev, "Missing F01 container!\n");
1085 		retval = -EINVAL;
1086 		goto err_destroy_functions;
1087 	}
1088 
1089 	retval = rmi_read_block(rmi_dev,
1090 				data->f01_container->fd.control_base_addr + 1,
1091 				data->current_irq_mask, data->num_of_irq_regs);
1092 	if (retval < 0) {
1093 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1094 			__func__);
1095 		goto err_destroy_functions;
1096 	}
1097 
1098 	return 0;
1099 
1100 err_destroy_functions:
1101 	rmi_free_function_list(rmi_dev);
1102 	return retval;
1103 }
1104 
1105 static int rmi_driver_probe(struct device *dev)
1106 {
1107 	struct rmi_driver *rmi_driver;
1108 	struct rmi_driver_data *data;
1109 	struct rmi_device_platform_data *pdata;
1110 	struct rmi_device *rmi_dev;
1111 	int retval;
1112 
1113 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1114 			__func__);
1115 
1116 	if (!rmi_is_physical_device(dev)) {
1117 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1118 		return -ENODEV;
1119 	}
1120 
1121 	rmi_dev = to_rmi_device(dev);
1122 	rmi_driver = to_rmi_driver(dev->driver);
1123 	rmi_dev->driver = rmi_driver;
1124 
1125 	pdata = rmi_get_platform_data(rmi_dev);
1126 
1127 	if (rmi_dev->xport->dev->of_node) {
1128 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1129 		if (retval)
1130 			return retval;
1131 	}
1132 
1133 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1134 	if (!data)
1135 		return -ENOMEM;
1136 
1137 	INIT_LIST_HEAD(&data->function_list);
1138 	data->rmi_dev = rmi_dev;
1139 	dev_set_drvdata(&rmi_dev->dev, data);
1140 
1141 	/*
1142 	 * Right before a warm boot, the sensor might be in some unusual state,
1143 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1144 	 * or configuration update.  In order to clear the sensor to a known
1145 	 * state and/or apply any updates, we issue a initial reset to clear any
1146 	 * previous settings and force it into normal operation.
1147 	 *
1148 	 * We have to do this before actually building the PDT because
1149 	 * the reflash updates (if any) might cause various registers to move
1150 	 * around.
1151 	 *
1152 	 * For a number of reasons, this initial reset may fail to return
1153 	 * within the specified time, but we'll still be able to bring up the
1154 	 * driver normally after that failure.  This occurs most commonly in
1155 	 * a cold boot situation (where then firmware takes longer to come up
1156 	 * than from a warm boot) and the reset_delay_ms in the platform data
1157 	 * has been set too short to accommodate that.  Since the sensor will
1158 	 * eventually come up and be usable, we don't want to just fail here
1159 	 * and leave the customer's device unusable.  So we warn them, and
1160 	 * continue processing.
1161 	 */
1162 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1163 	if (retval < 0)
1164 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1165 
1166 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1167 	if (retval < 0) {
1168 		/*
1169 		 * we'll print out a warning and continue since
1170 		 * failure to get the PDT properties is not a cause to fail
1171 		 */
1172 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1173 			 PDT_PROPERTIES_LOCATION, retval);
1174 	}
1175 
1176 	mutex_init(&data->irq_mutex);
1177 	mutex_init(&data->enabled_mutex);
1178 
1179 	retval = rmi_probe_interrupts(data);
1180 	if (retval)
1181 		goto err;
1182 
1183 	if (rmi_dev->xport->input) {
1184 		/*
1185 		 * The transport driver already has an input device.
1186 		 * In some cases it is preferable to reuse the transport
1187 		 * devices input device instead of creating a new one here.
1188 		 * One example is some HID touchpads report "pass-through"
1189 		 * button events are not reported by rmi registers.
1190 		 */
1191 		data->input = rmi_dev->xport->input;
1192 	} else {
1193 		data->input = devm_input_allocate_device(dev);
1194 		if (!data->input) {
1195 			dev_err(dev, "%s: Failed to allocate input device.\n",
1196 				__func__);
1197 			retval = -ENOMEM;
1198 			goto err;
1199 		}
1200 		rmi_driver_set_input_params(rmi_dev, data->input);
1201 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1202 						"%s/input0", dev_name(dev));
1203 	}
1204 
1205 	retval = rmi_init_functions(data);
1206 	if (retval)
1207 		goto err;
1208 
1209 	retval = rmi_f34_create_sysfs(rmi_dev);
1210 	if (retval)
1211 		goto err;
1212 
1213 	if (data->input) {
1214 		rmi_driver_set_input_name(rmi_dev, data->input);
1215 		if (!rmi_dev->xport->input) {
1216 			if (input_register_device(data->input)) {
1217 				dev_err(dev, "%s: Failed to register input device.\n",
1218 					__func__);
1219 				goto err_destroy_functions;
1220 			}
1221 		}
1222 	}
1223 
1224 	retval = rmi_irq_init(rmi_dev);
1225 	if (retval < 0)
1226 		goto err_destroy_functions;
1227 
1228 	if (data->f01_container->dev.driver) {
1229 		/* Driver already bound, so enable ATTN now. */
1230 		retval = rmi_enable_sensor(rmi_dev);
1231 		if (retval)
1232 			goto err_disable_irq;
1233 	}
1234 
1235 	return 0;
1236 
1237 err_disable_irq:
1238 	rmi_disable_irq(rmi_dev, false);
1239 err_destroy_functions:
1240 	rmi_free_function_list(rmi_dev);
1241 err:
1242 	return retval;
1243 }
1244 
1245 static struct rmi_driver rmi_physical_driver = {
1246 	.driver = {
1247 		.owner	= THIS_MODULE,
1248 		.name	= "rmi4_physical",
1249 		.bus	= &rmi_bus_type,
1250 		.probe = rmi_driver_probe,
1251 		.remove = rmi_driver_remove,
1252 	},
1253 	.reset_handler = rmi_driver_reset_handler,
1254 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1255 	.set_irq_bits = rmi_driver_set_irq_bits,
1256 	.set_input_params = rmi_driver_set_input_params,
1257 };
1258 
1259 bool rmi_is_physical_driver(struct device_driver *drv)
1260 {
1261 	return drv == &rmi_physical_driver.driver;
1262 }
1263 
1264 int __init rmi_register_physical_driver(void)
1265 {
1266 	int error;
1267 
1268 	error = driver_register(&rmi_physical_driver.driver);
1269 	if (error) {
1270 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1271 		       error);
1272 		return error;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 void __exit rmi_unregister_physical_driver(void)
1279 {
1280 	driver_unregister(&rmi_physical_driver.driver);
1281 }
1282