xref: /openbmc/linux/drivers/input/rmi4/rmi_driver.c (revision 09b35b41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2016 Synaptics Incorporated
4  * Copyright (c) 2011 Unixphere
5  *
6  * This driver provides the core support for a single RMI4-based device.
7  *
8  * The RMI4 specification can be found here (URL split for line length):
9  *
10  * http://www.synaptics.com/sites/default/files/
11  *      511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
12  */
13 
14 #include <linux/bitmap.h>
15 #include <linux/delay.h>
16 #include <linux/fs.h>
17 #include <linux/irq.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/irqdomain.h>
22 #include <uapi/linux/input.h>
23 #include <linux/rmi.h>
24 #include "rmi_bus.h"
25 #include "rmi_driver.h"
26 
27 #define HAS_NONSTANDARD_PDT_MASK 0x40
28 #define RMI4_MAX_PAGE 0xff
29 #define RMI4_PAGE_SIZE 0x100
30 #define RMI4_PAGE_MASK 0xFF00
31 
32 #define RMI_DEVICE_RESET_CMD	0x01
33 #define DEFAULT_RESET_DELAY_MS	100
34 
35 void rmi_free_function_list(struct rmi_device *rmi_dev)
36 {
37 	struct rmi_function *fn, *tmp;
38 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
39 
40 	rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
41 
42 	/* Doing it in the reverse order so F01 will be removed last */
43 	list_for_each_entry_safe_reverse(fn, tmp,
44 					 &data->function_list, node) {
45 		list_del(&fn->node);
46 		rmi_unregister_function(fn);
47 	}
48 
49 	devm_kfree(&rmi_dev->dev, data->irq_memory);
50 	data->irq_memory = NULL;
51 	data->irq_status = NULL;
52 	data->fn_irq_bits = NULL;
53 	data->current_irq_mask = NULL;
54 	data->new_irq_mask = NULL;
55 
56 	data->f01_container = NULL;
57 	data->f34_container = NULL;
58 }
59 
60 static int reset_one_function(struct rmi_function *fn)
61 {
62 	struct rmi_function_handler *fh;
63 	int retval = 0;
64 
65 	if (!fn || !fn->dev.driver)
66 		return 0;
67 
68 	fh = to_rmi_function_handler(fn->dev.driver);
69 	if (fh->reset) {
70 		retval = fh->reset(fn);
71 		if (retval < 0)
72 			dev_err(&fn->dev, "Reset failed with code %d.\n",
73 				retval);
74 	}
75 
76 	return retval;
77 }
78 
79 static int configure_one_function(struct rmi_function *fn)
80 {
81 	struct rmi_function_handler *fh;
82 	int retval = 0;
83 
84 	if (!fn || !fn->dev.driver)
85 		return 0;
86 
87 	fh = to_rmi_function_handler(fn->dev.driver);
88 	if (fh->config) {
89 		retval = fh->config(fn);
90 		if (retval < 0)
91 			dev_err(&fn->dev, "Config failed with code %d.\n",
92 				retval);
93 	}
94 
95 	return retval;
96 }
97 
98 static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
99 {
100 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
101 	struct rmi_function *entry;
102 	int retval;
103 
104 	list_for_each_entry(entry, &data->function_list, node) {
105 		retval = reset_one_function(entry);
106 		if (retval < 0)
107 			return retval;
108 	}
109 
110 	return 0;
111 }
112 
113 static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
114 {
115 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
116 	struct rmi_function *entry;
117 	int retval;
118 
119 	list_for_each_entry(entry, &data->function_list, node) {
120 		retval = configure_one_function(entry);
121 		if (retval < 0)
122 			return retval;
123 	}
124 
125 	return 0;
126 }
127 
128 static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
129 {
130 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
131 	struct device *dev = &rmi_dev->dev;
132 	int i;
133 	int error;
134 
135 	if (!data)
136 		return 0;
137 
138 	if (!data->attn_data.data) {
139 		error = rmi_read_block(rmi_dev,
140 				data->f01_container->fd.data_base_addr + 1,
141 				data->irq_status, data->num_of_irq_regs);
142 		if (error < 0) {
143 			dev_err(dev, "Failed to read irqs, code=%d\n", error);
144 			return error;
145 		}
146 	}
147 
148 	mutex_lock(&data->irq_mutex);
149 	bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
150 	       data->irq_count);
151 	/*
152 	 * At this point, irq_status has all bits that are set in the
153 	 * interrupt status register and are enabled.
154 	 */
155 	mutex_unlock(&data->irq_mutex);
156 
157 	for_each_set_bit(i, data->irq_status, data->irq_count)
158 		handle_nested_irq(irq_find_mapping(data->irqdomain, i));
159 
160 	if (data->input)
161 		input_sync(data->input);
162 
163 	return 0;
164 }
165 
166 void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
167 		       void *data, size_t size)
168 {
169 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
170 	struct rmi4_attn_data attn_data;
171 	void *fifo_data;
172 
173 	if (!drvdata->enabled)
174 		return;
175 
176 	fifo_data = kmemdup(data, size, GFP_ATOMIC);
177 	if (!fifo_data)
178 		return;
179 
180 	attn_data.irq_status = irq_status;
181 	attn_data.size = size;
182 	attn_data.data = fifo_data;
183 
184 	kfifo_put(&drvdata->attn_fifo, attn_data);
185 }
186 EXPORT_SYMBOL_GPL(rmi_set_attn_data);
187 
188 static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
189 {
190 	struct rmi_device *rmi_dev = dev_id;
191 	struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
192 	struct rmi4_attn_data attn_data = {0};
193 	int ret, count;
194 
195 	count = kfifo_get(&drvdata->attn_fifo, &attn_data);
196 	if (count) {
197 		*(drvdata->irq_status) = attn_data.irq_status;
198 		drvdata->attn_data = attn_data;
199 	}
200 
201 	ret = rmi_process_interrupt_requests(rmi_dev);
202 	if (ret)
203 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
204 			"Failed to process interrupt request: %d\n", ret);
205 
206 	if (count) {
207 		kfree(attn_data.data);
208 		attn_data.data = NULL;
209 	}
210 
211 	if (!kfifo_is_empty(&drvdata->attn_fifo))
212 		return rmi_irq_fn(irq, dev_id);
213 
214 	return IRQ_HANDLED;
215 }
216 
217 static int rmi_irq_init(struct rmi_device *rmi_dev)
218 {
219 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
220 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
221 	int irq_flags = irq_get_trigger_type(pdata->irq);
222 	int ret;
223 
224 	if (!irq_flags)
225 		irq_flags = IRQF_TRIGGER_LOW;
226 
227 	ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
228 					rmi_irq_fn, irq_flags | IRQF_ONESHOT,
229 					dev_driver_string(rmi_dev->xport->dev),
230 					rmi_dev);
231 	if (ret < 0) {
232 		dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
233 			pdata->irq);
234 
235 		return ret;
236 	}
237 
238 	data->enabled = true;
239 
240 	return 0;
241 }
242 
243 struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number)
244 {
245 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
246 	struct rmi_function *entry;
247 
248 	list_for_each_entry(entry, &data->function_list, node) {
249 		if (entry->fd.function_number == number)
250 			return entry;
251 	}
252 
253 	return NULL;
254 }
255 
256 static int suspend_one_function(struct rmi_function *fn)
257 {
258 	struct rmi_function_handler *fh;
259 	int retval = 0;
260 
261 	if (!fn || !fn->dev.driver)
262 		return 0;
263 
264 	fh = to_rmi_function_handler(fn->dev.driver);
265 	if (fh->suspend) {
266 		retval = fh->suspend(fn);
267 		if (retval < 0)
268 			dev_err(&fn->dev, "Suspend failed with code %d.\n",
269 				retval);
270 	}
271 
272 	return retval;
273 }
274 
275 static int rmi_suspend_functions(struct rmi_device *rmi_dev)
276 {
277 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
278 	struct rmi_function *entry;
279 	int retval;
280 
281 	list_for_each_entry(entry, &data->function_list, node) {
282 		retval = suspend_one_function(entry);
283 		if (retval < 0)
284 			return retval;
285 	}
286 
287 	return 0;
288 }
289 
290 static int resume_one_function(struct rmi_function *fn)
291 {
292 	struct rmi_function_handler *fh;
293 	int retval = 0;
294 
295 	if (!fn || !fn->dev.driver)
296 		return 0;
297 
298 	fh = to_rmi_function_handler(fn->dev.driver);
299 	if (fh->resume) {
300 		retval = fh->resume(fn);
301 		if (retval < 0)
302 			dev_err(&fn->dev, "Resume failed with code %d.\n",
303 				retval);
304 	}
305 
306 	return retval;
307 }
308 
309 static int rmi_resume_functions(struct rmi_device *rmi_dev)
310 {
311 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
312 	struct rmi_function *entry;
313 	int retval;
314 
315 	list_for_each_entry(entry, &data->function_list, node) {
316 		retval = resume_one_function(entry);
317 		if (retval < 0)
318 			return retval;
319 	}
320 
321 	return 0;
322 }
323 
324 int rmi_enable_sensor(struct rmi_device *rmi_dev)
325 {
326 	int retval = 0;
327 
328 	retval = rmi_driver_process_config_requests(rmi_dev);
329 	if (retval < 0)
330 		return retval;
331 
332 	return rmi_process_interrupt_requests(rmi_dev);
333 }
334 
335 /**
336  * rmi_driver_set_input_params - set input device id and other data.
337  *
338  * @rmi_dev: Pointer to an RMI device
339  * @input: Pointer to input device
340  *
341  */
342 static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
343 				struct input_dev *input)
344 {
345 	input->name = SYNAPTICS_INPUT_DEVICE_NAME;
346 	input->id.vendor  = SYNAPTICS_VENDOR_ID;
347 	input->id.bustype = BUS_RMI;
348 	return 0;
349 }
350 
351 static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
352 				struct input_dev *input)
353 {
354 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
355 	const char *device_name = rmi_f01_get_product_ID(data->f01_container);
356 	char *name;
357 
358 	name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
359 			      "Synaptics %s", device_name);
360 	if (!name)
361 		return;
362 
363 	input->name = name;
364 }
365 
366 static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
367 				   unsigned long *mask)
368 {
369 	int error = 0;
370 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
371 	struct device *dev = &rmi_dev->dev;
372 
373 	mutex_lock(&data->irq_mutex);
374 	bitmap_or(data->new_irq_mask,
375 		  data->current_irq_mask, mask, data->irq_count);
376 
377 	error = rmi_write_block(rmi_dev,
378 			data->f01_container->fd.control_base_addr + 1,
379 			data->new_irq_mask, data->num_of_irq_regs);
380 	if (error < 0) {
381 		dev_err(dev, "%s: Failed to change enabled interrupts!",
382 							__func__);
383 		goto error_unlock;
384 	}
385 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
386 		    data->num_of_irq_regs);
387 
388 error_unlock:
389 	mutex_unlock(&data->irq_mutex);
390 	return error;
391 }
392 
393 static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
394 				     unsigned long *mask)
395 {
396 	int error = 0;
397 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
398 	struct device *dev = &rmi_dev->dev;
399 
400 	mutex_lock(&data->irq_mutex);
401 	bitmap_andnot(data->new_irq_mask,
402 		  data->current_irq_mask, mask, data->irq_count);
403 
404 	error = rmi_write_block(rmi_dev,
405 			data->f01_container->fd.control_base_addr + 1,
406 			data->new_irq_mask, data->num_of_irq_regs);
407 	if (error < 0) {
408 		dev_err(dev, "%s: Failed to change enabled interrupts!",
409 							__func__);
410 		goto error_unlock;
411 	}
412 	bitmap_copy(data->current_irq_mask, data->new_irq_mask,
413 		    data->num_of_irq_regs);
414 
415 error_unlock:
416 	mutex_unlock(&data->irq_mutex);
417 	return error;
418 }
419 
420 static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
421 {
422 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
423 	int error;
424 
425 	/*
426 	 * Can get called before the driver is fully ready to deal with
427 	 * this situation.
428 	 */
429 	if (!data || !data->f01_container) {
430 		dev_warn(&rmi_dev->dev,
431 			 "Not ready to handle reset yet!\n");
432 		return 0;
433 	}
434 
435 	error = rmi_read_block(rmi_dev,
436 			       data->f01_container->fd.control_base_addr + 1,
437 			       data->current_irq_mask, data->num_of_irq_regs);
438 	if (error < 0) {
439 		dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
440 			__func__);
441 		return error;
442 	}
443 
444 	error = rmi_driver_process_reset_requests(rmi_dev);
445 	if (error < 0)
446 		return error;
447 
448 	error = rmi_driver_process_config_requests(rmi_dev);
449 	if (error < 0)
450 		return error;
451 
452 	return 0;
453 }
454 
455 static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
456 			      struct pdt_entry *entry, u16 pdt_address)
457 {
458 	u8 buf[RMI_PDT_ENTRY_SIZE];
459 	int error;
460 
461 	error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
462 	if (error) {
463 		dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
464 				pdt_address, error);
465 		return error;
466 	}
467 
468 	entry->page_start = pdt_address & RMI4_PAGE_MASK;
469 	entry->query_base_addr = buf[0];
470 	entry->command_base_addr = buf[1];
471 	entry->control_base_addr = buf[2];
472 	entry->data_base_addr = buf[3];
473 	entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
474 	entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
475 	entry->function_number = buf[5];
476 
477 	return 0;
478 }
479 
480 static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
481 				      struct rmi_function_descriptor *fd)
482 {
483 	fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
484 	fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
485 	fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
486 	fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
487 	fd->function_number = pdt->function_number;
488 	fd->interrupt_source_count = pdt->interrupt_source_count;
489 	fd->function_version = pdt->function_version;
490 }
491 
492 #define RMI_SCAN_CONTINUE	0
493 #define RMI_SCAN_DONE		1
494 
495 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
496 			     int page,
497 			     int *empty_pages,
498 			     void *ctx,
499 			     int (*callback)(struct rmi_device *rmi_dev,
500 					     void *ctx,
501 					     const struct pdt_entry *entry))
502 {
503 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
504 	struct pdt_entry pdt_entry;
505 	u16 page_start = RMI4_PAGE_SIZE * page;
506 	u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
507 	u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
508 	u16 addr;
509 	int error;
510 	int retval;
511 
512 	for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
513 		error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
514 		if (error)
515 			return error;
516 
517 		if (RMI4_END_OF_PDT(pdt_entry.function_number))
518 			break;
519 
520 		retval = callback(rmi_dev, ctx, &pdt_entry);
521 		if (retval != RMI_SCAN_CONTINUE)
522 			return retval;
523 	}
524 
525 	/*
526 	 * Count number of empty PDT pages. If a gap of two pages
527 	 * or more is found, stop scanning.
528 	 */
529 	if (addr == pdt_start)
530 		++*empty_pages;
531 	else
532 		*empty_pages = 0;
533 
534 	return (data->bootloader_mode || *empty_pages >= 2) ?
535 					RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
536 }
537 
538 int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
539 		 int (*callback)(struct rmi_device *rmi_dev,
540 		 void *ctx, const struct pdt_entry *entry))
541 {
542 	int page;
543 	int empty_pages = 0;
544 	int retval = RMI_SCAN_DONE;
545 
546 	for (page = 0; page <= RMI4_MAX_PAGE; page++) {
547 		retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
548 					   ctx, callback);
549 		if (retval != RMI_SCAN_CONTINUE)
550 			break;
551 	}
552 
553 	return retval < 0 ? retval : 0;
554 }
555 
556 int rmi_read_register_desc(struct rmi_device *d, u16 addr,
557 				struct rmi_register_descriptor *rdesc)
558 {
559 	int ret;
560 	u8 size_presence_reg;
561 	u8 buf[35];
562 	int presense_offset = 1;
563 	u8 *struct_buf;
564 	int reg;
565 	int offset = 0;
566 	int map_offset = 0;
567 	int i;
568 	int b;
569 
570 	/*
571 	 * The first register of the register descriptor is the size of
572 	 * the register descriptor's presense register.
573 	 */
574 	ret = rmi_read(d, addr, &size_presence_reg);
575 	if (ret)
576 		return ret;
577 	++addr;
578 
579 	if (size_presence_reg < 0 || size_presence_reg > 35)
580 		return -EIO;
581 
582 	memset(buf, 0, sizeof(buf));
583 
584 	/*
585 	 * The presence register contains the size of the register structure
586 	 * and a bitmap which identified which packet registers are present
587 	 * for this particular register type (ie query, control, or data).
588 	 */
589 	ret = rmi_read_block(d, addr, buf, size_presence_reg);
590 	if (ret)
591 		return ret;
592 	++addr;
593 
594 	if (buf[0] == 0) {
595 		presense_offset = 3;
596 		rdesc->struct_size = buf[1] | (buf[2] << 8);
597 	} else {
598 		rdesc->struct_size = buf[0];
599 	}
600 
601 	for (i = presense_offset; i < size_presence_reg; i++) {
602 		for (b = 0; b < 8; b++) {
603 			if (buf[i] & (0x1 << b))
604 				bitmap_set(rdesc->presense_map, map_offset, 1);
605 			++map_offset;
606 		}
607 	}
608 
609 	rdesc->num_registers = bitmap_weight(rdesc->presense_map,
610 						RMI_REG_DESC_PRESENSE_BITS);
611 
612 	rdesc->registers = devm_kcalloc(&d->dev,
613 					rdesc->num_registers,
614 					sizeof(struct rmi_register_desc_item),
615 					GFP_KERNEL);
616 	if (!rdesc->registers)
617 		return -ENOMEM;
618 
619 	/*
620 	 * Allocate a temporary buffer to hold the register structure.
621 	 * I'm not using devm_kzalloc here since it will not be retained
622 	 * after exiting this function
623 	 */
624 	struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
625 	if (!struct_buf)
626 		return -ENOMEM;
627 
628 	/*
629 	 * The register structure contains information about every packet
630 	 * register of this type. This includes the size of the packet
631 	 * register and a bitmap of all subpackets contained in the packet
632 	 * register.
633 	 */
634 	ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
635 	if (ret)
636 		goto free_struct_buff;
637 
638 	reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
639 	for (i = 0; i < rdesc->num_registers; i++) {
640 		struct rmi_register_desc_item *item = &rdesc->registers[i];
641 		int reg_size = struct_buf[offset];
642 
643 		++offset;
644 		if (reg_size == 0) {
645 			reg_size = struct_buf[offset] |
646 					(struct_buf[offset + 1] << 8);
647 			offset += 2;
648 		}
649 
650 		if (reg_size == 0) {
651 			reg_size = struct_buf[offset] |
652 					(struct_buf[offset + 1] << 8) |
653 					(struct_buf[offset + 2] << 16) |
654 					(struct_buf[offset + 3] << 24);
655 			offset += 4;
656 		}
657 
658 		item->reg = reg;
659 		item->reg_size = reg_size;
660 
661 		map_offset = 0;
662 
663 		do {
664 			for (b = 0; b < 7; b++) {
665 				if (struct_buf[offset] & (0x1 << b))
666 					bitmap_set(item->subpacket_map,
667 						map_offset, 1);
668 				++map_offset;
669 			}
670 		} while (struct_buf[offset++] & 0x80);
671 
672 		item->num_subpackets = bitmap_weight(item->subpacket_map,
673 						RMI_REG_DESC_SUBPACKET_BITS);
674 
675 		rmi_dbg(RMI_DEBUG_CORE, &d->dev,
676 			"%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
677 			item->reg, item->reg_size, item->num_subpackets);
678 
679 		reg = find_next_bit(rdesc->presense_map,
680 				RMI_REG_DESC_PRESENSE_BITS, reg + 1);
681 	}
682 
683 free_struct_buff:
684 	kfree(struct_buf);
685 	return ret;
686 }
687 
688 const struct rmi_register_desc_item *rmi_get_register_desc_item(
689 				struct rmi_register_descriptor *rdesc, u16 reg)
690 {
691 	const struct rmi_register_desc_item *item;
692 	int i;
693 
694 	for (i = 0; i < rdesc->num_registers; i++) {
695 		item = &rdesc->registers[i];
696 		if (item->reg == reg)
697 			return item;
698 	}
699 
700 	return NULL;
701 }
702 
703 size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
704 {
705 	const struct rmi_register_desc_item *item;
706 	int i;
707 	size_t size = 0;
708 
709 	for (i = 0; i < rdesc->num_registers; i++) {
710 		item = &rdesc->registers[i];
711 		size += item->reg_size;
712 	}
713 	return size;
714 }
715 
716 /* Compute the register offset relative to the base address */
717 int rmi_register_desc_calc_reg_offset(
718 		struct rmi_register_descriptor *rdesc, u16 reg)
719 {
720 	const struct rmi_register_desc_item *item;
721 	int offset = 0;
722 	int i;
723 
724 	for (i = 0; i < rdesc->num_registers; i++) {
725 		item = &rdesc->registers[i];
726 		if (item->reg == reg)
727 			return offset;
728 		++offset;
729 	}
730 	return -1;
731 }
732 
733 bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
734 	u8 subpacket)
735 {
736 	return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
737 				subpacket) == subpacket;
738 }
739 
740 static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
741 				     const struct pdt_entry *pdt)
742 {
743 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
744 	int ret;
745 	u8 status;
746 
747 	if (pdt->function_number == 0x34 && pdt->function_version > 1) {
748 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
749 		if (ret) {
750 			dev_err(&rmi_dev->dev,
751 				"Failed to read F34 status: %d.\n", ret);
752 			return ret;
753 		}
754 
755 		if (status & BIT(7))
756 			data->bootloader_mode = true;
757 	} else if (pdt->function_number == 0x01) {
758 		ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
759 		if (ret) {
760 			dev_err(&rmi_dev->dev,
761 				"Failed to read F01 status: %d.\n", ret);
762 			return ret;
763 		}
764 
765 		if (status & BIT(6))
766 			data->bootloader_mode = true;
767 	}
768 
769 	return 0;
770 }
771 
772 static int rmi_count_irqs(struct rmi_device *rmi_dev,
773 			 void *ctx, const struct pdt_entry *pdt)
774 {
775 	int *irq_count = ctx;
776 	int ret;
777 
778 	*irq_count += pdt->interrupt_source_count;
779 
780 	ret = rmi_check_bootloader_mode(rmi_dev, pdt);
781 	if (ret < 0)
782 		return ret;
783 
784 	return RMI_SCAN_CONTINUE;
785 }
786 
787 int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
788 		      const struct pdt_entry *pdt)
789 {
790 	int error;
791 
792 	if (pdt->function_number == 0x01) {
793 		u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
794 		u8 cmd_buf = RMI_DEVICE_RESET_CMD;
795 		const struct rmi_device_platform_data *pdata =
796 				rmi_get_platform_data(rmi_dev);
797 
798 		if (rmi_dev->xport->ops->reset) {
799 			error = rmi_dev->xport->ops->reset(rmi_dev->xport,
800 								cmd_addr);
801 			if (error)
802 				return error;
803 
804 			return RMI_SCAN_DONE;
805 		}
806 
807 		rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
808 		error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
809 		if (error) {
810 			dev_err(&rmi_dev->dev,
811 				"Initial reset failed. Code = %d.\n", error);
812 			return error;
813 		}
814 
815 		mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
816 
817 		return RMI_SCAN_DONE;
818 	}
819 
820 	/* F01 should always be on page 0. If we don't find it there, fail. */
821 	return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
822 }
823 
824 static int rmi_create_function(struct rmi_device *rmi_dev,
825 			       void *ctx, const struct pdt_entry *pdt)
826 {
827 	struct device *dev = &rmi_dev->dev;
828 	struct rmi_driver_data *data = dev_get_drvdata(dev);
829 	int *current_irq_count = ctx;
830 	struct rmi_function *fn;
831 	int i;
832 	int error;
833 
834 	rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
835 			pdt->function_number);
836 
837 	fn = kzalloc(sizeof(struct rmi_function) +
838 			BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
839 		     GFP_KERNEL);
840 	if (!fn) {
841 		dev_err(dev, "Failed to allocate memory for F%02X\n",
842 			pdt->function_number);
843 		return -ENOMEM;
844 	}
845 
846 	INIT_LIST_HEAD(&fn->node);
847 	rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
848 
849 	fn->rmi_dev = rmi_dev;
850 
851 	fn->num_of_irqs = pdt->interrupt_source_count;
852 	fn->irq_pos = *current_irq_count;
853 	*current_irq_count += fn->num_of_irqs;
854 
855 	for (i = 0; i < fn->num_of_irqs; i++)
856 		set_bit(fn->irq_pos + i, fn->irq_mask);
857 
858 	error = rmi_register_function(fn);
859 	if (error)
860 		return error;
861 
862 	if (pdt->function_number == 0x01)
863 		data->f01_container = fn;
864 	else if (pdt->function_number == 0x34)
865 		data->f34_container = fn;
866 
867 	list_add_tail(&fn->node, &data->function_list);
868 
869 	return RMI_SCAN_CONTINUE;
870 }
871 
872 void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
873 {
874 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
875 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
876 	int irq = pdata->irq;
877 	int irq_flags;
878 	int retval;
879 
880 	mutex_lock(&data->enabled_mutex);
881 
882 	if (data->enabled)
883 		goto out;
884 
885 	enable_irq(irq);
886 	data->enabled = true;
887 	if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
888 		retval = disable_irq_wake(irq);
889 		if (retval)
890 			dev_warn(&rmi_dev->dev,
891 				 "Failed to disable irq for wake: %d\n",
892 				 retval);
893 	}
894 
895 	/*
896 	 * Call rmi_process_interrupt_requests() after enabling irq,
897 	 * otherwise we may lose interrupt on edge-triggered systems.
898 	 */
899 	irq_flags = irq_get_trigger_type(pdata->irq);
900 	if (irq_flags & IRQ_TYPE_EDGE_BOTH)
901 		rmi_process_interrupt_requests(rmi_dev);
902 
903 out:
904 	mutex_unlock(&data->enabled_mutex);
905 }
906 
907 void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
908 {
909 	struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
910 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
911 	struct rmi4_attn_data attn_data = {0};
912 	int irq = pdata->irq;
913 	int retval, count;
914 
915 	mutex_lock(&data->enabled_mutex);
916 
917 	if (!data->enabled)
918 		goto out;
919 
920 	data->enabled = false;
921 	disable_irq(irq);
922 	if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
923 		retval = enable_irq_wake(irq);
924 		if (retval)
925 			dev_warn(&rmi_dev->dev,
926 				 "Failed to enable irq for wake: %d\n",
927 				 retval);
928 	}
929 
930 	/* make sure the fifo is clean */
931 	while (!kfifo_is_empty(&data->attn_fifo)) {
932 		count = kfifo_get(&data->attn_fifo, &attn_data);
933 		if (count)
934 			kfree(attn_data.data);
935 	}
936 
937 out:
938 	mutex_unlock(&data->enabled_mutex);
939 }
940 
941 int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
942 {
943 	int retval;
944 
945 	retval = rmi_suspend_functions(rmi_dev);
946 	if (retval)
947 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
948 			retval);
949 
950 	rmi_disable_irq(rmi_dev, enable_wake);
951 	return retval;
952 }
953 EXPORT_SYMBOL_GPL(rmi_driver_suspend);
954 
955 int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
956 {
957 	int retval;
958 
959 	rmi_enable_irq(rmi_dev, clear_wake);
960 
961 	retval = rmi_resume_functions(rmi_dev);
962 	if (retval)
963 		dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
964 			retval);
965 
966 	return retval;
967 }
968 EXPORT_SYMBOL_GPL(rmi_driver_resume);
969 
970 static int rmi_driver_remove(struct device *dev)
971 {
972 	struct rmi_device *rmi_dev = to_rmi_device(dev);
973 	struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
974 
975 	rmi_disable_irq(rmi_dev, false);
976 
977 	irq_domain_remove(data->irqdomain);
978 	data->irqdomain = NULL;
979 
980 	rmi_f34_remove_sysfs(rmi_dev);
981 	rmi_free_function_list(rmi_dev);
982 
983 	return 0;
984 }
985 
986 #ifdef CONFIG_OF
987 static int rmi_driver_of_probe(struct device *dev,
988 				struct rmi_device_platform_data *pdata)
989 {
990 	int retval;
991 
992 	retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
993 					"syna,reset-delay-ms", 1);
994 	if (retval)
995 		return retval;
996 
997 	return 0;
998 }
999 #else
1000 static inline int rmi_driver_of_probe(struct device *dev,
1001 					struct rmi_device_platform_data *pdata)
1002 {
1003 	return -ENODEV;
1004 }
1005 #endif
1006 
1007 int rmi_probe_interrupts(struct rmi_driver_data *data)
1008 {
1009 	struct rmi_device *rmi_dev = data->rmi_dev;
1010 	struct device *dev = &rmi_dev->dev;
1011 	struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode;
1012 	int irq_count = 0;
1013 	size_t size;
1014 	int retval;
1015 
1016 	/*
1017 	 * We need to count the IRQs and allocate their storage before scanning
1018 	 * the PDT and creating the function entries, because adding a new
1019 	 * function can trigger events that result in the IRQ related storage
1020 	 * being accessed.
1021 	 */
1022 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
1023 	data->bootloader_mode = false;
1024 
1025 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
1026 	if (retval < 0) {
1027 		dev_err(dev, "IRQ counting failed with code %d.\n", retval);
1028 		return retval;
1029 	}
1030 
1031 	if (data->bootloader_mode)
1032 		dev_warn(dev, "Device in bootloader mode.\n");
1033 
1034 	/* Allocate and register a linear revmap irq_domain */
1035 	data->irqdomain = irq_domain_create_linear(fwnode, irq_count,
1036 						   &irq_domain_simple_ops,
1037 						   data);
1038 	if (!data->irqdomain) {
1039 		dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n");
1040 		return -ENOMEM;
1041 	}
1042 
1043 	data->irq_count = irq_count;
1044 	data->num_of_irq_regs = (data->irq_count + 7) / 8;
1045 
1046 	size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
1047 	data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL);
1048 	if (!data->irq_memory) {
1049 		dev_err(dev, "Failed to allocate memory for irq masks.\n");
1050 		return -ENOMEM;
1051 	}
1052 
1053 	data->irq_status	= data->irq_memory + size * 0;
1054 	data->fn_irq_bits	= data->irq_memory + size * 1;
1055 	data->current_irq_mask	= data->irq_memory + size * 2;
1056 	data->new_irq_mask	= data->irq_memory + size * 3;
1057 
1058 	return retval;
1059 }
1060 
1061 int rmi_init_functions(struct rmi_driver_data *data)
1062 {
1063 	struct rmi_device *rmi_dev = data->rmi_dev;
1064 	struct device *dev = &rmi_dev->dev;
1065 	int irq_count = 0;
1066 	int retval;
1067 
1068 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
1069 	retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
1070 	if (retval < 0) {
1071 		dev_err(dev, "Function creation failed with code %d.\n",
1072 			retval);
1073 		goto err_destroy_functions;
1074 	}
1075 
1076 	if (!data->f01_container) {
1077 		dev_err(dev, "Missing F01 container!\n");
1078 		retval = -EINVAL;
1079 		goto err_destroy_functions;
1080 	}
1081 
1082 	retval = rmi_read_block(rmi_dev,
1083 				data->f01_container->fd.control_base_addr + 1,
1084 				data->current_irq_mask, data->num_of_irq_regs);
1085 	if (retval < 0) {
1086 		dev_err(dev, "%s: Failed to read current IRQ mask.\n",
1087 			__func__);
1088 		goto err_destroy_functions;
1089 	}
1090 
1091 	return 0;
1092 
1093 err_destroy_functions:
1094 	rmi_free_function_list(rmi_dev);
1095 	return retval;
1096 }
1097 
1098 static int rmi_driver_probe(struct device *dev)
1099 {
1100 	struct rmi_driver *rmi_driver;
1101 	struct rmi_driver_data *data;
1102 	struct rmi_device_platform_data *pdata;
1103 	struct rmi_device *rmi_dev;
1104 	int retval;
1105 
1106 	rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
1107 			__func__);
1108 
1109 	if (!rmi_is_physical_device(dev)) {
1110 		rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
1111 		return -ENODEV;
1112 	}
1113 
1114 	rmi_dev = to_rmi_device(dev);
1115 	rmi_driver = to_rmi_driver(dev->driver);
1116 	rmi_dev->driver = rmi_driver;
1117 
1118 	pdata = rmi_get_platform_data(rmi_dev);
1119 
1120 	if (rmi_dev->xport->dev->of_node) {
1121 		retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
1122 		if (retval)
1123 			return retval;
1124 	}
1125 
1126 	data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
1127 	if (!data)
1128 		return -ENOMEM;
1129 
1130 	INIT_LIST_HEAD(&data->function_list);
1131 	data->rmi_dev = rmi_dev;
1132 	dev_set_drvdata(&rmi_dev->dev, data);
1133 
1134 	/*
1135 	 * Right before a warm boot, the sensor might be in some unusual state,
1136 	 * such as F54 diagnostics, or F34 bootloader mode after a firmware
1137 	 * or configuration update.  In order to clear the sensor to a known
1138 	 * state and/or apply any updates, we issue a initial reset to clear any
1139 	 * previous settings and force it into normal operation.
1140 	 *
1141 	 * We have to do this before actually building the PDT because
1142 	 * the reflash updates (if any) might cause various registers to move
1143 	 * around.
1144 	 *
1145 	 * For a number of reasons, this initial reset may fail to return
1146 	 * within the specified time, but we'll still be able to bring up the
1147 	 * driver normally after that failure.  This occurs most commonly in
1148 	 * a cold boot situation (where then firmware takes longer to come up
1149 	 * than from a warm boot) and the reset_delay_ms in the platform data
1150 	 * has been set too short to accommodate that.  Since the sensor will
1151 	 * eventually come up and be usable, we don't want to just fail here
1152 	 * and leave the customer's device unusable.  So we warn them, and
1153 	 * continue processing.
1154 	 */
1155 	retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
1156 	if (retval < 0)
1157 		dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
1158 
1159 	retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
1160 	if (retval < 0) {
1161 		/*
1162 		 * we'll print out a warning and continue since
1163 		 * failure to get the PDT properties is not a cause to fail
1164 		 */
1165 		dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
1166 			 PDT_PROPERTIES_LOCATION, retval);
1167 	}
1168 
1169 	mutex_init(&data->irq_mutex);
1170 	mutex_init(&data->enabled_mutex);
1171 
1172 	retval = rmi_probe_interrupts(data);
1173 	if (retval)
1174 		goto err;
1175 
1176 	if (rmi_dev->xport->input) {
1177 		/*
1178 		 * The transport driver already has an input device.
1179 		 * In some cases it is preferable to reuse the transport
1180 		 * devices input device instead of creating a new one here.
1181 		 * One example is some HID touchpads report "pass-through"
1182 		 * button events are not reported by rmi registers.
1183 		 */
1184 		data->input = rmi_dev->xport->input;
1185 	} else {
1186 		data->input = devm_input_allocate_device(dev);
1187 		if (!data->input) {
1188 			dev_err(dev, "%s: Failed to allocate input device.\n",
1189 				__func__);
1190 			retval = -ENOMEM;
1191 			goto err;
1192 		}
1193 		rmi_driver_set_input_params(rmi_dev, data->input);
1194 		data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
1195 						"%s/input0", dev_name(dev));
1196 	}
1197 
1198 	retval = rmi_init_functions(data);
1199 	if (retval)
1200 		goto err;
1201 
1202 	retval = rmi_f34_create_sysfs(rmi_dev);
1203 	if (retval)
1204 		goto err;
1205 
1206 	if (data->input) {
1207 		rmi_driver_set_input_name(rmi_dev, data->input);
1208 		if (!rmi_dev->xport->input) {
1209 			if (input_register_device(data->input)) {
1210 				dev_err(dev, "%s: Failed to register input device.\n",
1211 					__func__);
1212 				goto err_destroy_functions;
1213 			}
1214 		}
1215 	}
1216 
1217 	retval = rmi_irq_init(rmi_dev);
1218 	if (retval < 0)
1219 		goto err_destroy_functions;
1220 
1221 	if (data->f01_container->dev.driver) {
1222 		/* Driver already bound, so enable ATTN now. */
1223 		retval = rmi_enable_sensor(rmi_dev);
1224 		if (retval)
1225 			goto err_disable_irq;
1226 	}
1227 
1228 	return 0;
1229 
1230 err_disable_irq:
1231 	rmi_disable_irq(rmi_dev, false);
1232 err_destroy_functions:
1233 	rmi_free_function_list(rmi_dev);
1234 err:
1235 	return retval;
1236 }
1237 
1238 static struct rmi_driver rmi_physical_driver = {
1239 	.driver = {
1240 		.owner	= THIS_MODULE,
1241 		.name	= "rmi4_physical",
1242 		.bus	= &rmi_bus_type,
1243 		.probe = rmi_driver_probe,
1244 		.remove = rmi_driver_remove,
1245 	},
1246 	.reset_handler = rmi_driver_reset_handler,
1247 	.clear_irq_bits = rmi_driver_clear_irq_bits,
1248 	.set_irq_bits = rmi_driver_set_irq_bits,
1249 	.set_input_params = rmi_driver_set_input_params,
1250 };
1251 
1252 bool rmi_is_physical_driver(struct device_driver *drv)
1253 {
1254 	return drv == &rmi_physical_driver.driver;
1255 }
1256 
1257 int __init rmi_register_physical_driver(void)
1258 {
1259 	int error;
1260 
1261 	error = driver_register(&rmi_physical_driver.driver);
1262 	if (error) {
1263 		pr_err("%s: driver register failed, code=%d.\n", __func__,
1264 		       error);
1265 		return error;
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 void __exit rmi_unregister_physical_driver(void)
1272 {
1273 	driver_unregister(&rmi_physical_driver.driver);
1274 }
1275