1 /*
2  * rotary_encoder.c
3  *
4  * (c) 2009 Daniel Mack <daniel@caiaq.de>
5  * Copyright (C) 2011 Johan Hovold <jhovold@gmail.com>
6  *
7  * state machine code inspired by code from Tim Ruetz
8  *
9  * A generic driver for rotary encoders connected to GPIO lines.
10  * See file:Documentation/input/rotary-encoder.txt for more information
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/interrupt.h>
20 #include <linux/input.h>
21 #include <linux/device.h>
22 #include <linux/platform_device.h>
23 #include <linux/gpio.h>
24 #include <linux/rotary_encoder.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_platform.h>
28 #include <linux/of_gpio.h>
29 #include <linux/pm.h>
30 
31 #define DRV_NAME "rotary-encoder"
32 
33 struct rotary_encoder {
34 	struct input_dev *input;
35 	const struct rotary_encoder_platform_data *pdata;
36 
37 	unsigned int axis;
38 	unsigned int pos;
39 
40 	unsigned int irq_a;
41 	unsigned int irq_b;
42 
43 	bool armed;
44 	unsigned char dir;	/* 0 - clockwise, 1 - CCW */
45 
46 	char last_stable;
47 };
48 
49 static int rotary_encoder_get_state(const struct rotary_encoder_platform_data *pdata)
50 {
51 	int a = !!gpio_get_value(pdata->gpio_a);
52 	int b = !!gpio_get_value(pdata->gpio_b);
53 
54 	a ^= pdata->inverted_a;
55 	b ^= pdata->inverted_b;
56 
57 	return ((a << 1) | b);
58 }
59 
60 static void rotary_encoder_report_event(struct rotary_encoder *encoder)
61 {
62 	const struct rotary_encoder_platform_data *pdata = encoder->pdata;
63 
64 	if (pdata->relative_axis) {
65 		input_report_rel(encoder->input,
66 				 pdata->axis, encoder->dir ? -1 : 1);
67 	} else {
68 		unsigned int pos = encoder->pos;
69 
70 		if (encoder->dir) {
71 			/* turning counter-clockwise */
72 			if (pdata->rollover)
73 				pos += pdata->steps;
74 			if (pos)
75 				pos--;
76 		} else {
77 			/* turning clockwise */
78 			if (pdata->rollover || pos < pdata->steps)
79 				pos++;
80 		}
81 
82 		if (pdata->rollover)
83 			pos %= pdata->steps;
84 
85 		encoder->pos = pos;
86 		input_report_abs(encoder->input, pdata->axis, encoder->pos);
87 	}
88 
89 	input_sync(encoder->input);
90 }
91 
92 static irqreturn_t rotary_encoder_irq(int irq, void *dev_id)
93 {
94 	struct rotary_encoder *encoder = dev_id;
95 	int state;
96 
97 	state = rotary_encoder_get_state(encoder->pdata);
98 
99 	switch (state) {
100 	case 0x0:
101 		if (encoder->armed) {
102 			rotary_encoder_report_event(encoder);
103 			encoder->armed = false;
104 		}
105 		break;
106 
107 	case 0x1:
108 	case 0x2:
109 		if (encoder->armed)
110 			encoder->dir = state - 1;
111 		break;
112 
113 	case 0x3:
114 		encoder->armed = true;
115 		break;
116 	}
117 
118 	return IRQ_HANDLED;
119 }
120 
121 static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id)
122 {
123 	struct rotary_encoder *encoder = dev_id;
124 	int state;
125 
126 	state = rotary_encoder_get_state(encoder->pdata);
127 
128 	switch (state) {
129 	case 0x00:
130 	case 0x03:
131 		if (state != encoder->last_stable) {
132 			rotary_encoder_report_event(encoder);
133 			encoder->last_stable = state;
134 		}
135 		break;
136 
137 	case 0x01:
138 	case 0x02:
139 		encoder->dir = (encoder->last_stable + state) & 0x01;
140 		break;
141 	}
142 
143 	return IRQ_HANDLED;
144 }
145 
146 static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id)
147 {
148 	struct rotary_encoder *encoder = dev_id;
149 	unsigned char sum;
150 	int state;
151 
152 	state = rotary_encoder_get_state(encoder->pdata);
153 
154 	/*
155 	 * We encode the previous and the current state using a byte.
156 	 * The previous state in the MSB nibble, the current state in the LSB
157 	 * nibble. Then use a table to decide the direction of the turn.
158 	 */
159 	sum = (encoder->last_stable << 4) + state;
160 	switch (sum) {
161 	case 0x31:
162 	case 0x10:
163 	case 0x02:
164 	case 0x23:
165 		encoder->dir = 0; /* clockwise */
166 		break;
167 
168 	case 0x13:
169 	case 0x01:
170 	case 0x20:
171 	case 0x32:
172 		encoder->dir = 1; /* counter-clockwise */
173 		break;
174 
175 	default:
176 		/*
177 		 * Ignore all other values. This covers the case when the
178 		 * state didn't change (a spurious interrupt) and the
179 		 * cases where the state changed by two steps, making it
180 		 * impossible to tell the direction.
181 		 *
182 		 * In either case, don't report any event and save the
183 		 * state for later.
184 		 */
185 		goto out;
186 	}
187 
188 	rotary_encoder_report_event(encoder);
189 
190 out:
191 	encoder->last_stable = state;
192 	return IRQ_HANDLED;
193 }
194 
195 #ifdef CONFIG_OF
196 static const struct of_device_id rotary_encoder_of_match[] = {
197 	{ .compatible = "rotary-encoder", },
198 	{ },
199 };
200 MODULE_DEVICE_TABLE(of, rotary_encoder_of_match);
201 
202 static struct rotary_encoder_platform_data *rotary_encoder_parse_dt(struct device *dev)
203 {
204 	const struct of_device_id *of_id =
205 				of_match_device(rotary_encoder_of_match, dev);
206 	struct device_node *np = dev->of_node;
207 	struct rotary_encoder_platform_data *pdata;
208 	enum of_gpio_flags flags;
209 	int error;
210 
211 	if (!of_id || !np)
212 		return NULL;
213 
214 	pdata = kzalloc(sizeof(struct rotary_encoder_platform_data),
215 			GFP_KERNEL);
216 	if (!pdata)
217 		return ERR_PTR(-ENOMEM);
218 
219 	of_property_read_u32(np, "rotary-encoder,steps", &pdata->steps);
220 	of_property_read_u32(np, "linux,axis", &pdata->axis);
221 
222 	pdata->gpio_a = of_get_gpio_flags(np, 0, &flags);
223 	pdata->inverted_a = flags & OF_GPIO_ACTIVE_LOW;
224 
225 	pdata->gpio_b = of_get_gpio_flags(np, 1, &flags);
226 	pdata->inverted_b = flags & OF_GPIO_ACTIVE_LOW;
227 
228 	pdata->relative_axis =
229 		of_property_read_bool(np, "rotary-encoder,relative-axis");
230 	pdata->rollover = of_property_read_bool(np, "rotary-encoder,rollover");
231 
232 	error = of_property_read_u32(np, "rotary-encoder,steps-per-period",
233 				     &pdata->steps_per_period);
234 	if (error) {
235 		/*
236 		 * The 'half-period' property has been deprecated, you must use
237 		 * 'steps-per-period' and set an appropriate value, but we still
238 		 * need to parse it to maintain compatibility.
239 		 */
240 		if (of_property_read_bool(np, "rotary-encoder,half-period")) {
241 			pdata->steps_per_period = 2;
242 		} else {
243 			/* Fallback to one step per period behavior */
244 			pdata->steps_per_period = 1;
245 		}
246 	}
247 
248 	pdata->wakeup_source = of_property_read_bool(np, "wakeup-source");
249 
250 	return pdata;
251 }
252 #else
253 static inline struct rotary_encoder_platform_data *
254 rotary_encoder_parse_dt(struct device *dev)
255 {
256 	return NULL;
257 }
258 #endif
259 
260 static int rotary_encoder_probe(struct platform_device *pdev)
261 {
262 	struct device *dev = &pdev->dev;
263 	const struct rotary_encoder_platform_data *pdata = dev_get_platdata(dev);
264 	struct rotary_encoder *encoder;
265 	struct input_dev *input;
266 	irq_handler_t handler;
267 	int err;
268 
269 	if (!pdata) {
270 		pdata = rotary_encoder_parse_dt(dev);
271 		if (IS_ERR(pdata))
272 			return PTR_ERR(pdata);
273 
274 		if (!pdata) {
275 			dev_err(dev, "missing platform data\n");
276 			return -EINVAL;
277 		}
278 	}
279 
280 	encoder = kzalloc(sizeof(struct rotary_encoder), GFP_KERNEL);
281 	input = input_allocate_device();
282 	if (!encoder || !input) {
283 		err = -ENOMEM;
284 		goto exit_free_mem;
285 	}
286 
287 	encoder->input = input;
288 	encoder->pdata = pdata;
289 
290 	input->name = pdev->name;
291 	input->id.bustype = BUS_HOST;
292 	input->dev.parent = dev;
293 
294 	if (pdata->relative_axis) {
295 		input->evbit[0] = BIT_MASK(EV_REL);
296 		input->relbit[0] = BIT_MASK(pdata->axis);
297 	} else {
298 		input->evbit[0] = BIT_MASK(EV_ABS);
299 		input_set_abs_params(encoder->input,
300 				     pdata->axis, 0, pdata->steps, 0, 1);
301 	}
302 
303 	/* request the GPIOs */
304 	err = gpio_request_one(pdata->gpio_a, GPIOF_IN, dev_name(dev));
305 	if (err) {
306 		dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_a);
307 		goto exit_free_mem;
308 	}
309 
310 	err = gpio_request_one(pdata->gpio_b, GPIOF_IN, dev_name(dev));
311 	if (err) {
312 		dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_b);
313 		goto exit_free_gpio_a;
314 	}
315 
316 	encoder->irq_a = gpio_to_irq(pdata->gpio_a);
317 	encoder->irq_b = gpio_to_irq(pdata->gpio_b);
318 
319 	switch (pdata->steps_per_period) {
320 	case 4:
321 		handler = &rotary_encoder_quarter_period_irq;
322 		encoder->last_stable = rotary_encoder_get_state(pdata);
323 		break;
324 	case 2:
325 		handler = &rotary_encoder_half_period_irq;
326 		encoder->last_stable = rotary_encoder_get_state(pdata);
327 		break;
328 	case 1:
329 		handler = &rotary_encoder_irq;
330 		break;
331 	default:
332 		dev_err(dev, "'%d' is not a valid steps-per-period value\n",
333 			pdata->steps_per_period);
334 		err = -EINVAL;
335 		goto exit_free_gpio_b;
336 	}
337 
338 	err = request_irq(encoder->irq_a, handler,
339 			  IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
340 			  DRV_NAME, encoder);
341 	if (err) {
342 		dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a);
343 		goto exit_free_gpio_b;
344 	}
345 
346 	err = request_irq(encoder->irq_b, handler,
347 			  IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
348 			  DRV_NAME, encoder);
349 	if (err) {
350 		dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b);
351 		goto exit_free_irq_a;
352 	}
353 
354 	err = input_register_device(input);
355 	if (err) {
356 		dev_err(dev, "failed to register input device\n");
357 		goto exit_free_irq_b;
358 	}
359 
360 	device_init_wakeup(&pdev->dev, pdata->wakeup_source);
361 
362 	platform_set_drvdata(pdev, encoder);
363 
364 	return 0;
365 
366 exit_free_irq_b:
367 	free_irq(encoder->irq_b, encoder);
368 exit_free_irq_a:
369 	free_irq(encoder->irq_a, encoder);
370 exit_free_gpio_b:
371 	gpio_free(pdata->gpio_b);
372 exit_free_gpio_a:
373 	gpio_free(pdata->gpio_a);
374 exit_free_mem:
375 	input_free_device(input);
376 	kfree(encoder);
377 	if (!dev_get_platdata(&pdev->dev))
378 		kfree(pdata);
379 
380 	return err;
381 }
382 
383 static int rotary_encoder_remove(struct platform_device *pdev)
384 {
385 	struct rotary_encoder *encoder = platform_get_drvdata(pdev);
386 	const struct rotary_encoder_platform_data *pdata = encoder->pdata;
387 
388 	device_init_wakeup(&pdev->dev, false);
389 
390 	free_irq(encoder->irq_a, encoder);
391 	free_irq(encoder->irq_b, encoder);
392 	gpio_free(pdata->gpio_a);
393 	gpio_free(pdata->gpio_b);
394 
395 	input_unregister_device(encoder->input);
396 	kfree(encoder);
397 
398 	if (!dev_get_platdata(&pdev->dev))
399 		kfree(pdata);
400 
401 	return 0;
402 }
403 
404 #ifdef CONFIG_PM_SLEEP
405 static int rotary_encoder_suspend(struct device *dev)
406 {
407 	struct rotary_encoder *encoder = dev_get_drvdata(dev);
408 
409 	if (device_may_wakeup(dev)) {
410 		enable_irq_wake(encoder->irq_a);
411 		enable_irq_wake(encoder->irq_b);
412 	}
413 
414 	return 0;
415 }
416 
417 static int rotary_encoder_resume(struct device *dev)
418 {
419 	struct rotary_encoder *encoder = dev_get_drvdata(dev);
420 
421 	if (device_may_wakeup(dev)) {
422 		disable_irq_wake(encoder->irq_a);
423 		disable_irq_wake(encoder->irq_b);
424 	}
425 
426 	return 0;
427 }
428 #endif
429 
430 static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops,
431 		 rotary_encoder_suspend, rotary_encoder_resume);
432 
433 static struct platform_driver rotary_encoder_driver = {
434 	.probe		= rotary_encoder_probe,
435 	.remove		= rotary_encoder_remove,
436 	.driver		= {
437 		.name	= DRV_NAME,
438 		.pm	= &rotary_encoder_pm_ops,
439 		.of_match_table = of_match_ptr(rotary_encoder_of_match),
440 	}
441 };
442 module_platform_driver(rotary_encoder_driver);
443 
444 MODULE_ALIAS("platform:" DRV_NAME);
445 MODULE_DESCRIPTION("GPIO rotary encoder driver");
446 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>, Johan Hovold");
447 MODULE_LICENSE("GPL v2");
448