1 /* 2 * A driver for the Griffin Technology, Inc. "PowerMate" USB controller dial. 3 * 4 * v1.1, (c)2002 William R Sowerbutts <will@sowerbutts.com> 5 * 6 * This device is a anodised aluminium knob which connects over USB. It can measure 7 * clockwise and anticlockwise rotation. The dial also acts as a pushbutton with 8 * a spring for automatic release. The base contains a pair of LEDs which illuminate 9 * the translucent base. It rotates without limit and reports its relative rotation 10 * back to the host when polled by the USB controller. 11 * 12 * Testing with the knob I have has shown that it measures approximately 94 "clicks" 13 * for one full rotation. Testing with my High Speed Rotation Actuator (ok, it was 14 * a variable speed cordless electric drill) has shown that the device can measure 15 * speeds of up to 7 clicks either clockwise or anticlockwise between pollings from 16 * the host. If it counts more than 7 clicks before it is polled, it will wrap back 17 * to zero and start counting again. This was at quite high speed, however, almost 18 * certainly faster than the human hand could turn it. Griffin say that it loses a 19 * pulse or two on a direction change; the granularity is so fine that I never 20 * noticed this in practice. 21 * 22 * The device's microcontroller can be programmed to set the LED to either a constant 23 * intensity, or to a rhythmic pulsing. Several patterns and speeds are available. 24 * 25 * Griffin were very happy to provide documentation and free hardware for development. 26 * 27 * Some userspace tools are available on the web: http://sowerbutts.com/powermate/ 28 * 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/slab.h> 33 #include <linux/module.h> 34 #include <linux/init.h> 35 #include <linux/spinlock.h> 36 #include <linux/usb/input.h> 37 38 #define POWERMATE_VENDOR 0x077d /* Griffin Technology, Inc. */ 39 #define POWERMATE_PRODUCT_NEW 0x0410 /* Griffin PowerMate */ 40 #define POWERMATE_PRODUCT_OLD 0x04AA /* Griffin soundKnob */ 41 42 #define CONTOUR_VENDOR 0x05f3 /* Contour Design, Inc. */ 43 #define CONTOUR_JOG 0x0240 /* Jog and Shuttle */ 44 45 /* these are the command codes we send to the device */ 46 #define SET_STATIC_BRIGHTNESS 0x01 47 #define SET_PULSE_ASLEEP 0x02 48 #define SET_PULSE_AWAKE 0x03 49 #define SET_PULSE_MODE 0x04 50 51 /* these refer to bits in the powermate_device's requires_update field. */ 52 #define UPDATE_STATIC_BRIGHTNESS (1<<0) 53 #define UPDATE_PULSE_ASLEEP (1<<1) 54 #define UPDATE_PULSE_AWAKE (1<<2) 55 #define UPDATE_PULSE_MODE (1<<3) 56 57 /* at least two versions of the hardware exist, with differing payload 58 sizes. the first three bytes always contain the "interesting" data in 59 the relevant format. */ 60 #define POWERMATE_PAYLOAD_SIZE_MAX 6 61 #define POWERMATE_PAYLOAD_SIZE_MIN 3 62 struct powermate_device { 63 signed char *data; 64 dma_addr_t data_dma; 65 struct urb *irq, *config; 66 struct usb_ctrlrequest *configcr; 67 dma_addr_t configcr_dma; 68 struct usb_device *udev; 69 struct input_dev *input; 70 spinlock_t lock; 71 int static_brightness; 72 int pulse_speed; 73 int pulse_table; 74 int pulse_asleep; 75 int pulse_awake; 76 int requires_update; // physical settings which are out of sync 77 char phys[64]; 78 }; 79 80 static char pm_name_powermate[] = "Griffin PowerMate"; 81 static char pm_name_soundknob[] = "Griffin SoundKnob"; 82 83 static void powermate_config_complete(struct urb *urb); 84 85 /* Callback for data arriving from the PowerMate over the USB interrupt pipe */ 86 static void powermate_irq(struct urb *urb) 87 { 88 struct powermate_device *pm = urb->context; 89 int retval; 90 91 switch (urb->status) { 92 case 0: 93 /* success */ 94 break; 95 case -ECONNRESET: 96 case -ENOENT: 97 case -ESHUTDOWN: 98 /* this urb is terminated, clean up */ 99 dbg("%s - urb shutting down with status: %d", __func__, urb->status); 100 return; 101 default: 102 dbg("%s - nonzero urb status received: %d", __func__, urb->status); 103 goto exit; 104 } 105 106 /* handle updates to device state */ 107 input_report_key(pm->input, BTN_0, pm->data[0] & 0x01); 108 input_report_rel(pm->input, REL_DIAL, pm->data[1]); 109 input_sync(pm->input); 110 111 exit: 112 retval = usb_submit_urb (urb, GFP_ATOMIC); 113 if (retval) 114 err ("%s - usb_submit_urb failed with result %d", 115 __func__, retval); 116 } 117 118 /* Decide if we need to issue a control message and do so. Must be called with pm->lock taken */ 119 static void powermate_sync_state(struct powermate_device *pm) 120 { 121 if (pm->requires_update == 0) 122 return; /* no updates are required */ 123 if (pm->config->status == -EINPROGRESS) 124 return; /* an update is already in progress; it'll issue this update when it completes */ 125 126 if (pm->requires_update & UPDATE_PULSE_ASLEEP){ 127 pm->configcr->wValue = cpu_to_le16( SET_PULSE_ASLEEP ); 128 pm->configcr->wIndex = cpu_to_le16( pm->pulse_asleep ? 1 : 0 ); 129 pm->requires_update &= ~UPDATE_PULSE_ASLEEP; 130 }else if (pm->requires_update & UPDATE_PULSE_AWAKE){ 131 pm->configcr->wValue = cpu_to_le16( SET_PULSE_AWAKE ); 132 pm->configcr->wIndex = cpu_to_le16( pm->pulse_awake ? 1 : 0 ); 133 pm->requires_update &= ~UPDATE_PULSE_AWAKE; 134 }else if (pm->requires_update & UPDATE_PULSE_MODE){ 135 int op, arg; 136 /* the powermate takes an operation and an argument for its pulse algorithm. 137 the operation can be: 138 0: divide the speed 139 1: pulse at normal speed 140 2: multiply the speed 141 the argument only has an effect for operations 0 and 2, and ranges between 142 1 (least effect) to 255 (maximum effect). 143 144 thus, several states are equivalent and are coalesced into one state. 145 146 we map this onto a range from 0 to 510, with: 147 0 -- 254 -- use divide (0 = slowest) 148 255 -- use normal speed 149 256 -- 510 -- use multiple (510 = fastest). 150 151 Only values of 'arg' quite close to 255 are particularly useful/spectacular. 152 */ 153 if (pm->pulse_speed < 255) { 154 op = 0; // divide 155 arg = 255 - pm->pulse_speed; 156 } else if (pm->pulse_speed > 255) { 157 op = 2; // multiply 158 arg = pm->pulse_speed - 255; 159 } else { 160 op = 1; // normal speed 161 arg = 0; // can be any value 162 } 163 pm->configcr->wValue = cpu_to_le16( (pm->pulse_table << 8) | SET_PULSE_MODE ); 164 pm->configcr->wIndex = cpu_to_le16( (arg << 8) | op ); 165 pm->requires_update &= ~UPDATE_PULSE_MODE; 166 } else if (pm->requires_update & UPDATE_STATIC_BRIGHTNESS) { 167 pm->configcr->wValue = cpu_to_le16( SET_STATIC_BRIGHTNESS ); 168 pm->configcr->wIndex = cpu_to_le16( pm->static_brightness ); 169 pm->requires_update &= ~UPDATE_STATIC_BRIGHTNESS; 170 } else { 171 printk(KERN_ERR "powermate: unknown update required"); 172 pm->requires_update = 0; /* fudge the bug */ 173 return; 174 } 175 176 /* printk("powermate: %04x %04x\n", pm->configcr->wValue, pm->configcr->wIndex); */ 177 178 pm->configcr->bRequestType = 0x41; /* vendor request */ 179 pm->configcr->bRequest = 0x01; 180 pm->configcr->wLength = 0; 181 182 usb_fill_control_urb(pm->config, pm->udev, usb_sndctrlpipe(pm->udev, 0), 183 (void *) pm->configcr, NULL, 0, 184 powermate_config_complete, pm); 185 pm->config->setup_dma = pm->configcr_dma; 186 pm->config->transfer_flags |= URB_NO_SETUP_DMA_MAP; 187 188 if (usb_submit_urb(pm->config, GFP_ATOMIC)) 189 printk(KERN_ERR "powermate: usb_submit_urb(config) failed"); 190 } 191 192 /* Called when our asynchronous control message completes. We may need to issue another immediately */ 193 static void powermate_config_complete(struct urb *urb) 194 { 195 struct powermate_device *pm = urb->context; 196 unsigned long flags; 197 198 if (urb->status) 199 printk(KERN_ERR "powermate: config urb returned %d\n", urb->status); 200 201 spin_lock_irqsave(&pm->lock, flags); 202 powermate_sync_state(pm); 203 spin_unlock_irqrestore(&pm->lock, flags); 204 } 205 206 /* Set the LED up as described and begin the sync with the hardware if required */ 207 static void powermate_pulse_led(struct powermate_device *pm, int static_brightness, int pulse_speed, 208 int pulse_table, int pulse_asleep, int pulse_awake) 209 { 210 unsigned long flags; 211 212 if (pulse_speed < 0) 213 pulse_speed = 0; 214 if (pulse_table < 0) 215 pulse_table = 0; 216 if (pulse_speed > 510) 217 pulse_speed = 510; 218 if (pulse_table > 2) 219 pulse_table = 2; 220 221 pulse_asleep = !!pulse_asleep; 222 pulse_awake = !!pulse_awake; 223 224 225 spin_lock_irqsave(&pm->lock, flags); 226 227 /* mark state updates which are required */ 228 if (static_brightness != pm->static_brightness) { 229 pm->static_brightness = static_brightness; 230 pm->requires_update |= UPDATE_STATIC_BRIGHTNESS; 231 } 232 if (pulse_asleep != pm->pulse_asleep) { 233 pm->pulse_asleep = pulse_asleep; 234 pm->requires_update |= (UPDATE_PULSE_ASLEEP | UPDATE_STATIC_BRIGHTNESS); 235 } 236 if (pulse_awake != pm->pulse_awake) { 237 pm->pulse_awake = pulse_awake; 238 pm->requires_update |= (UPDATE_PULSE_AWAKE | UPDATE_STATIC_BRIGHTNESS); 239 } 240 if (pulse_speed != pm->pulse_speed || pulse_table != pm->pulse_table) { 241 pm->pulse_speed = pulse_speed; 242 pm->pulse_table = pulse_table; 243 pm->requires_update |= UPDATE_PULSE_MODE; 244 } 245 246 powermate_sync_state(pm); 247 248 spin_unlock_irqrestore(&pm->lock, flags); 249 } 250 251 /* Callback from the Input layer when an event arrives from userspace to configure the LED */ 252 static int powermate_input_event(struct input_dev *dev, unsigned int type, unsigned int code, int _value) 253 { 254 unsigned int command = (unsigned int)_value; 255 struct powermate_device *pm = input_get_drvdata(dev); 256 257 if (type == EV_MSC && code == MSC_PULSELED){ 258 /* 259 bits 0- 7: 8 bits: LED brightness 260 bits 8-16: 9 bits: pulsing speed modifier (0 ... 510); 0-254 = slower, 255 = standard, 256-510 = faster. 261 bits 17-18: 2 bits: pulse table (0, 1, 2 valid) 262 bit 19: 1 bit : pulse whilst asleep? 263 bit 20: 1 bit : pulse constantly? 264 */ 265 int static_brightness = command & 0xFF; // bits 0-7 266 int pulse_speed = (command >> 8) & 0x1FF; // bits 8-16 267 int pulse_table = (command >> 17) & 0x3; // bits 17-18 268 int pulse_asleep = (command >> 19) & 0x1; // bit 19 269 int pulse_awake = (command >> 20) & 0x1; // bit 20 270 271 powermate_pulse_led(pm, static_brightness, pulse_speed, pulse_table, pulse_asleep, pulse_awake); 272 } 273 274 return 0; 275 } 276 277 static int powermate_alloc_buffers(struct usb_device *udev, struct powermate_device *pm) 278 { 279 pm->data = usb_buffer_alloc(udev, POWERMATE_PAYLOAD_SIZE_MAX, 280 GFP_ATOMIC, &pm->data_dma); 281 if (!pm->data) 282 return -1; 283 284 pm->configcr = usb_buffer_alloc(udev, sizeof(*(pm->configcr)), 285 GFP_ATOMIC, &pm->configcr_dma); 286 if (!pm->configcr) 287 return -1; 288 289 return 0; 290 } 291 292 static void powermate_free_buffers(struct usb_device *udev, struct powermate_device *pm) 293 { 294 usb_buffer_free(udev, POWERMATE_PAYLOAD_SIZE_MAX, 295 pm->data, pm->data_dma); 296 usb_buffer_free(udev, sizeof(*(pm->configcr)), 297 pm->configcr, pm->configcr_dma); 298 } 299 300 /* Called whenever a USB device matching one in our supported devices table is connected */ 301 static int powermate_probe(struct usb_interface *intf, const struct usb_device_id *id) 302 { 303 struct usb_device *udev = interface_to_usbdev (intf); 304 struct usb_host_interface *interface; 305 struct usb_endpoint_descriptor *endpoint; 306 struct powermate_device *pm; 307 struct input_dev *input_dev; 308 int pipe, maxp; 309 int error = -ENOMEM; 310 311 interface = intf->cur_altsetting; 312 endpoint = &interface->endpoint[0].desc; 313 if (!usb_endpoint_is_int_in(endpoint)) 314 return -EIO; 315 316 usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 317 0x0a, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 318 0, interface->desc.bInterfaceNumber, NULL, 0, 319 USB_CTRL_SET_TIMEOUT); 320 321 pm = kzalloc(sizeof(struct powermate_device), GFP_KERNEL); 322 input_dev = input_allocate_device(); 323 if (!pm || !input_dev) 324 goto fail1; 325 326 if (powermate_alloc_buffers(udev, pm)) 327 goto fail2; 328 329 pm->irq = usb_alloc_urb(0, GFP_KERNEL); 330 if (!pm->irq) 331 goto fail2; 332 333 pm->config = usb_alloc_urb(0, GFP_KERNEL); 334 if (!pm->config) 335 goto fail3; 336 337 pm->udev = udev; 338 pm->input = input_dev; 339 340 usb_make_path(udev, pm->phys, sizeof(pm->phys)); 341 strlcat(pm->phys, "/input0", sizeof(pm->phys)); 342 343 spin_lock_init(&pm->lock); 344 345 switch (le16_to_cpu(udev->descriptor.idProduct)) { 346 case POWERMATE_PRODUCT_NEW: 347 input_dev->name = pm_name_powermate; 348 break; 349 case POWERMATE_PRODUCT_OLD: 350 input_dev->name = pm_name_soundknob; 351 break; 352 default: 353 input_dev->name = pm_name_soundknob; 354 printk(KERN_WARNING "powermate: unknown product id %04x\n", 355 le16_to_cpu(udev->descriptor.idProduct)); 356 } 357 358 input_dev->phys = pm->phys; 359 usb_to_input_id(udev, &input_dev->id); 360 input_dev->dev.parent = &intf->dev; 361 362 input_set_drvdata(input_dev, pm); 363 364 input_dev->event = powermate_input_event; 365 366 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL) | 367 BIT_MASK(EV_MSC); 368 input_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0); 369 input_dev->relbit[BIT_WORD(REL_DIAL)] = BIT_MASK(REL_DIAL); 370 input_dev->mscbit[BIT_WORD(MSC_PULSELED)] = BIT_MASK(MSC_PULSELED); 371 372 /* get a handle to the interrupt data pipe */ 373 pipe = usb_rcvintpipe(udev, endpoint->bEndpointAddress); 374 maxp = usb_maxpacket(udev, pipe, usb_pipeout(pipe)); 375 376 if (maxp < POWERMATE_PAYLOAD_SIZE_MIN || maxp > POWERMATE_PAYLOAD_SIZE_MAX) { 377 printk(KERN_WARNING "powermate: Expected payload of %d--%d bytes, found %d bytes!\n", 378 POWERMATE_PAYLOAD_SIZE_MIN, POWERMATE_PAYLOAD_SIZE_MAX, maxp); 379 maxp = POWERMATE_PAYLOAD_SIZE_MAX; 380 } 381 382 usb_fill_int_urb(pm->irq, udev, pipe, pm->data, 383 maxp, powermate_irq, 384 pm, endpoint->bInterval); 385 pm->irq->transfer_dma = pm->data_dma; 386 pm->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; 387 388 /* register our interrupt URB with the USB system */ 389 if (usb_submit_urb(pm->irq, GFP_KERNEL)) { 390 error = -EIO; 391 goto fail4; 392 } 393 394 error = input_register_device(pm->input); 395 if (error) 396 goto fail5; 397 398 399 /* force an update of everything */ 400 pm->requires_update = UPDATE_PULSE_ASLEEP | UPDATE_PULSE_AWAKE | UPDATE_PULSE_MODE | UPDATE_STATIC_BRIGHTNESS; 401 powermate_pulse_led(pm, 0x80, 255, 0, 1, 0); // set default pulse parameters 402 403 usb_set_intfdata(intf, pm); 404 return 0; 405 406 fail5: usb_kill_urb(pm->irq); 407 fail4: usb_free_urb(pm->config); 408 fail3: usb_free_urb(pm->irq); 409 fail2: powermate_free_buffers(udev, pm); 410 fail1: input_free_device(input_dev); 411 kfree(pm); 412 return error; 413 } 414 415 /* Called when a USB device we've accepted ownership of is removed */ 416 static void powermate_disconnect(struct usb_interface *intf) 417 { 418 struct powermate_device *pm = usb_get_intfdata (intf); 419 420 usb_set_intfdata(intf, NULL); 421 if (pm) { 422 pm->requires_update = 0; 423 usb_kill_urb(pm->irq); 424 input_unregister_device(pm->input); 425 usb_free_urb(pm->irq); 426 usb_free_urb(pm->config); 427 powermate_free_buffers(interface_to_usbdev(intf), pm); 428 429 kfree(pm); 430 } 431 } 432 433 static struct usb_device_id powermate_devices [] = { 434 { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_NEW) }, 435 { USB_DEVICE(POWERMATE_VENDOR, POWERMATE_PRODUCT_OLD) }, 436 { USB_DEVICE(CONTOUR_VENDOR, CONTOUR_JOG) }, 437 { } /* Terminating entry */ 438 }; 439 440 MODULE_DEVICE_TABLE (usb, powermate_devices); 441 442 static struct usb_driver powermate_driver = { 443 .name = "powermate", 444 .probe = powermate_probe, 445 .disconnect = powermate_disconnect, 446 .id_table = powermate_devices, 447 }; 448 449 static int __init powermate_init(void) 450 { 451 return usb_register(&powermate_driver); 452 } 453 454 static void __exit powermate_cleanup(void) 455 { 456 usb_deregister(&powermate_driver); 457 } 458 459 module_init(powermate_init); 460 module_exit(powermate_cleanup); 461 462 MODULE_AUTHOR( "William R Sowerbutts" ); 463 MODULE_DESCRIPTION( "Griffin Technology, Inc PowerMate driver" ); 464 MODULE_LICENSE("GPL"); 465