1 /* 2 * HP i8042 SDC + MSM-58321 BBRTC driver. 3 * 4 * Copyright (c) 2001 Brian S. Julin 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * Alternatively, this software may be distributed under the terms of the 17 * GNU General Public License ("GPL"). 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * 29 * References: 30 * System Device Controller Microprocessor Firmware Theory of Operation 31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2 32 * efirtc.c by Stephane Eranian/Hewlett Packard 33 * 34 */ 35 36 #include <linux/hp_sdc.h> 37 #include <linux/errno.h> 38 #include <linux/types.h> 39 #include <linux/init.h> 40 #include <linux/module.h> 41 #include <linux/time.h> 42 #include <linux/miscdevice.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/poll.h> 46 #include <linux/rtc.h> 47 #include <linux/mutex.h> 48 #include <linux/semaphore.h> 49 50 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>"); 51 MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver"); 52 MODULE_LICENSE("Dual BSD/GPL"); 53 54 #define RTC_VERSION "1.10d" 55 56 static DEFINE_MUTEX(hp_sdc_rtc_mutex); 57 static unsigned long epoch = 2000; 58 59 static struct semaphore i8042tregs; 60 61 static hp_sdc_irqhook hp_sdc_rtc_isr; 62 63 static struct fasync_struct *hp_sdc_rtc_async_queue; 64 65 static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait); 66 67 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, 68 size_t count, loff_t *ppos); 69 70 static long hp_sdc_rtc_unlocked_ioctl(struct file *file, 71 unsigned int cmd, unsigned long arg); 72 73 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait); 74 75 static int hp_sdc_rtc_open(struct inode *inode, struct file *file); 76 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on); 77 78 static void hp_sdc_rtc_isr (int irq, void *dev_id, 79 uint8_t status, uint8_t data) 80 { 81 return; 82 } 83 84 static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm) 85 { 86 struct semaphore tsem; 87 hp_sdc_transaction t; 88 uint8_t tseq[91]; 89 int i; 90 91 i = 0; 92 while (i < 91) { 93 tseq[i++] = HP_SDC_ACT_DATAREG | 94 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN; 95 tseq[i++] = 0x01; /* write i8042[0x70] */ 96 tseq[i] = i / 7; /* BBRTC reg address */ 97 i++; 98 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */ 99 tseq[i++] = 2; /* expect 1 stat/dat pair back. */ 100 i++; i++; /* buffer for stat/dat pair */ 101 } 102 tseq[84] |= HP_SDC_ACT_SEMAPHORE; 103 t.endidx = 91; 104 t.seq = tseq; 105 t.act.semaphore = &tsem; 106 sema_init(&tsem, 0); 107 108 if (hp_sdc_enqueue_transaction(&t)) return -1; 109 110 /* Put ourselves to sleep for results. */ 111 if (WARN_ON(down_interruptible(&tsem))) 112 return -1; 113 114 /* Check for nonpresence of BBRTC */ 115 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] | 116 tseq[55] | tseq[62] | tseq[34] | tseq[41] | 117 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f)) 118 return -1; 119 120 memset(rtctm, 0, sizeof(struct rtc_time)); 121 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10; 122 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10; 123 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10; 124 rtctm->tm_wday = (tseq[48] & 0x0f); 125 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10; 126 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10; 127 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10; 128 129 return 0; 130 } 131 132 static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm) 133 { 134 struct rtc_time tm, tm_last; 135 int i = 0; 136 137 /* MSM-58321 has no read latch, so must read twice and compare. */ 138 139 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1; 140 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; 141 142 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) { 143 if (i++ > 4) return -1; 144 memcpy(&tm_last, &tm, sizeof(struct rtc_time)); 145 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; 146 } 147 148 memcpy(rtctm, &tm, sizeof(struct rtc_time)); 149 150 return 0; 151 } 152 153 154 static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg) 155 { 156 hp_sdc_transaction t; 157 uint8_t tseq[26] = { 158 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 159 0, 160 HP_SDC_CMD_READ_T1, 2, 0, 0, 161 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 162 HP_SDC_CMD_READ_T2, 2, 0, 0, 163 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 164 HP_SDC_CMD_READ_T3, 2, 0, 0, 165 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 166 HP_SDC_CMD_READ_T4, 2, 0, 0, 167 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 168 HP_SDC_CMD_READ_T5, 2, 0, 0 169 }; 170 171 t.endidx = numreg * 5; 172 173 tseq[1] = loadcmd; 174 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */ 175 176 t.seq = tseq; 177 t.act.semaphore = &i8042tregs; 178 179 /* Sleep if output regs in use. */ 180 if (WARN_ON(down_interruptible(&i8042tregs))) 181 return -1; 182 183 if (hp_sdc_enqueue_transaction(&t)) { 184 up(&i8042tregs); 185 return -1; 186 } 187 188 /* Sleep until results come back. */ 189 if (WARN_ON(down_interruptible(&i8042tregs))) 190 return -1; 191 192 up(&i8042tregs); 193 194 return (tseq[5] | 195 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) | 196 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32)); 197 } 198 199 200 /* Read the i8042 real-time clock */ 201 static inline int hp_sdc_rtc_read_rt(struct timespec64 *res) { 202 int64_t raw; 203 uint32_t tenms; 204 unsigned int days; 205 206 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5); 207 if (raw < 0) return -1; 208 209 tenms = (uint32_t)raw & 0xffffff; 210 days = (unsigned int)(raw >> 24) & 0xffff; 211 212 res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; 213 res->tv_sec = (tenms / 100) + (time64_t)days * 86400; 214 215 return 0; 216 } 217 218 219 /* Read the i8042 fast handshake timer */ 220 static inline int hp_sdc_rtc_read_fhs(struct timespec64 *res) { 221 int64_t raw; 222 unsigned int tenms; 223 224 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2); 225 if (raw < 0) return -1; 226 227 tenms = (unsigned int)raw & 0xffff; 228 229 res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; 230 res->tv_sec = (time64_t)(tenms / 100); 231 232 return 0; 233 } 234 235 236 /* Read the i8042 match timer (a.k.a. alarm) */ 237 static inline int hp_sdc_rtc_read_mt(struct timespec64 *res) { 238 int64_t raw; 239 uint32_t tenms; 240 241 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3); 242 if (raw < 0) return -1; 243 244 tenms = (uint32_t)raw & 0xffffff; 245 246 res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; 247 res->tv_sec = (time64_t)(tenms / 100); 248 249 return 0; 250 } 251 252 253 /* Read the i8042 delay timer */ 254 static inline int hp_sdc_rtc_read_dt(struct timespec64 *res) { 255 int64_t raw; 256 uint32_t tenms; 257 258 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3); 259 if (raw < 0) return -1; 260 261 tenms = (uint32_t)raw & 0xffffff; 262 263 res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; 264 res->tv_sec = (time64_t)(tenms / 100); 265 266 return 0; 267 } 268 269 270 /* Read the i8042 cycle timer (a.k.a. periodic) */ 271 static inline int hp_sdc_rtc_read_ct(struct timespec64 *res) { 272 int64_t raw; 273 uint32_t tenms; 274 275 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3); 276 if (raw < 0) return -1; 277 278 tenms = (uint32_t)raw & 0xffffff; 279 280 res->tv_nsec = (long)(tenms % 100) * 10000 * 1000; 281 res->tv_sec = (time64_t)(tenms / 100); 282 283 return 0; 284 } 285 286 287 #if 0 /* not used yet */ 288 /* Set the i8042 real-time clock */ 289 static int hp_sdc_rtc_set_rt (struct timeval *setto) 290 { 291 uint32_t tenms; 292 unsigned int days; 293 hp_sdc_transaction t; 294 uint8_t tseq[11] = { 295 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 296 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0, 297 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 298 HP_SDC_CMD_SET_RTD, 2, 0, 0 299 }; 300 301 t.endidx = 10; 302 303 if (0xffff < setto->tv_sec / 86400) return -1; 304 days = setto->tv_sec / 86400; 305 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1; 306 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400; 307 if (days > 0xffff) return -1; 308 309 if (0xffffff < setto->tv_sec) return -1; 310 tenms = setto->tv_sec * 100; 311 if (0xffffff < setto->tv_usec / 10000) return -1; 312 tenms += setto->tv_usec / 10000; 313 if (tenms > 0xffffff) return -1; 314 315 tseq[3] = (uint8_t)(tenms & 0xff); 316 tseq[4] = (uint8_t)((tenms >> 8) & 0xff); 317 tseq[5] = (uint8_t)((tenms >> 16) & 0xff); 318 319 tseq[9] = (uint8_t)(days & 0xff); 320 tseq[10] = (uint8_t)((days >> 8) & 0xff); 321 322 t.seq = tseq; 323 324 if (hp_sdc_enqueue_transaction(&t)) return -1; 325 return 0; 326 } 327 328 /* Set the i8042 fast handshake timer */ 329 static int hp_sdc_rtc_set_fhs (struct timeval *setto) 330 { 331 uint32_t tenms; 332 hp_sdc_transaction t; 333 uint8_t tseq[5] = { 334 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 335 HP_SDC_CMD_SET_FHS, 2, 0, 0 336 }; 337 338 t.endidx = 4; 339 340 if (0xffff < setto->tv_sec) return -1; 341 tenms = setto->tv_sec * 100; 342 if (0xffff < setto->tv_usec / 10000) return -1; 343 tenms += setto->tv_usec / 10000; 344 if (tenms > 0xffff) return -1; 345 346 tseq[3] = (uint8_t)(tenms & 0xff); 347 tseq[4] = (uint8_t)((tenms >> 8) & 0xff); 348 349 t.seq = tseq; 350 351 if (hp_sdc_enqueue_transaction(&t)) return -1; 352 return 0; 353 } 354 355 356 /* Set the i8042 match timer (a.k.a. alarm) */ 357 #define hp_sdc_rtc_set_mt (setto) \ 358 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT) 359 360 /* Set the i8042 delay timer */ 361 #define hp_sdc_rtc_set_dt (setto) \ 362 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT) 363 364 /* Set the i8042 cycle timer (a.k.a. periodic) */ 365 #define hp_sdc_rtc_set_ct (setto) \ 366 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT) 367 368 /* Set one of the i8042 3-byte wide timers */ 369 static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd) 370 { 371 uint32_t tenms; 372 hp_sdc_transaction t; 373 uint8_t tseq[6] = { 374 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 375 0, 3, 0, 0, 0 376 }; 377 378 t.endidx = 6; 379 380 if (0xffffff < setto->tv_sec) return -1; 381 tenms = setto->tv_sec * 100; 382 if (0xffffff < setto->tv_usec / 10000) return -1; 383 tenms += setto->tv_usec / 10000; 384 if (tenms > 0xffffff) return -1; 385 386 tseq[1] = setcmd; 387 tseq[3] = (uint8_t)(tenms & 0xff); 388 tseq[4] = (uint8_t)((tenms >> 8) & 0xff); 389 tseq[5] = (uint8_t)((tenms >> 16) & 0xff); 390 391 t.seq = tseq; 392 393 if (hp_sdc_enqueue_transaction(&t)) { 394 return -1; 395 } 396 return 0; 397 } 398 #endif 399 400 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, 401 size_t count, loff_t *ppos) { 402 ssize_t retval; 403 404 if (count < sizeof(unsigned long)) 405 return -EINVAL; 406 407 retval = put_user(68, (unsigned long __user *)buf); 408 return retval; 409 } 410 411 static __poll_t hp_sdc_rtc_poll(struct file *file, poll_table *wait) 412 { 413 unsigned long l; 414 415 l = 0; 416 if (l != 0) 417 return EPOLLIN | EPOLLRDNORM; 418 return 0; 419 } 420 421 static int hp_sdc_rtc_open(struct inode *inode, struct file *file) 422 { 423 return 0; 424 } 425 426 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on) 427 { 428 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue); 429 } 430 431 static int hp_sdc_rtc_proc_show(struct seq_file *m, void *v) 432 { 433 #define YN(bit) ("no") 434 #define NY(bit) ("yes") 435 struct rtc_time tm; 436 struct timespec64 tv; 437 438 memset(&tm, 0, sizeof(struct rtc_time)); 439 440 if (hp_sdc_rtc_read_bbrtc(&tm)) { 441 seq_puts(m, "BBRTC\t\t: READ FAILED!\n"); 442 } else { 443 seq_printf(m, 444 "rtc_time\t: %02d:%02d:%02d\n" 445 "rtc_date\t: %04d-%02d-%02d\n" 446 "rtc_epoch\t: %04lu\n", 447 tm.tm_hour, tm.tm_min, tm.tm_sec, 448 tm.tm_year + 1900, tm.tm_mon + 1, 449 tm.tm_mday, epoch); 450 } 451 452 if (hp_sdc_rtc_read_rt(&tv)) { 453 seq_puts(m, "i8042 rtc\t: READ FAILED!\n"); 454 } else { 455 seq_printf(m, "i8042 rtc\t: %lld.%02ld seconds\n", 456 (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); 457 } 458 459 if (hp_sdc_rtc_read_fhs(&tv)) { 460 seq_puts(m, "handshake\t: READ FAILED!\n"); 461 } else { 462 seq_printf(m, "handshake\t: %lld.%02ld seconds\n", 463 (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); 464 } 465 466 if (hp_sdc_rtc_read_mt(&tv)) { 467 seq_puts(m, "alarm\t\t: READ FAILED!\n"); 468 } else { 469 seq_printf(m, "alarm\t\t: %lld.%02ld seconds\n", 470 (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); 471 } 472 473 if (hp_sdc_rtc_read_dt(&tv)) { 474 seq_puts(m, "delay\t\t: READ FAILED!\n"); 475 } else { 476 seq_printf(m, "delay\t\t: %lld.%02ld seconds\n", 477 (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); 478 } 479 480 if (hp_sdc_rtc_read_ct(&tv)) { 481 seq_puts(m, "periodic\t: READ FAILED!\n"); 482 } else { 483 seq_printf(m, "periodic\t: %lld.%02ld seconds\n", 484 (s64)tv.tv_sec, (long)tv.tv_nsec/1000000L); 485 } 486 487 seq_printf(m, 488 "DST_enable\t: %s\n" 489 "BCD\t\t: %s\n" 490 "24hr\t\t: %s\n" 491 "square_wave\t: %s\n" 492 "alarm_IRQ\t: %s\n" 493 "update_IRQ\t: %s\n" 494 "periodic_IRQ\t: %s\n" 495 "periodic_freq\t: %ld\n" 496 "batt_status\t: %s\n", 497 YN(RTC_DST_EN), 498 NY(RTC_DM_BINARY), 499 YN(RTC_24H), 500 YN(RTC_SQWE), 501 YN(RTC_AIE), 502 YN(RTC_UIE), 503 YN(RTC_PIE), 504 1UL, 505 1 ? "okay" : "dead"); 506 507 return 0; 508 #undef YN 509 #undef NY 510 } 511 512 static int hp_sdc_rtc_ioctl(struct file *file, 513 unsigned int cmd, unsigned long arg) 514 { 515 #if 1 516 return -EINVAL; 517 #else 518 519 struct rtc_time wtime; 520 struct timeval ttime; 521 int use_wtime = 0; 522 523 /* This needs major work. */ 524 525 switch (cmd) { 526 527 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ 528 case RTC_AIE_ON: /* Allow alarm interrupts. */ 529 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ 530 case RTC_PIE_ON: /* Allow periodic ints */ 531 case RTC_UIE_ON: /* Allow ints for RTC updates. */ 532 case RTC_UIE_OFF: /* Allow ints for RTC updates. */ 533 { 534 /* We cannot mask individual user timers and we 535 cannot tell them apart when they occur, so it 536 would be disingenuous to succeed these IOCTLs */ 537 return -EINVAL; 538 } 539 case RTC_ALM_READ: /* Read the present alarm time */ 540 { 541 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT; 542 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; 543 544 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600; 545 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60; 546 wtime.tm_sec = ttime.tv_sec; 547 548 break; 549 } 550 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ 551 { 552 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg); 553 } 554 case RTC_IRQP_SET: /* Set periodic IRQ rate. */ 555 { 556 /* 557 * The max we can do is 100Hz. 558 */ 559 560 if ((arg < 1) || (arg > 100)) return -EINVAL; 561 ttime.tv_sec = 0; 562 ttime.tv_usec = 1000000 / arg; 563 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT; 564 hp_sdc_rtc_freq = arg; 565 return 0; 566 } 567 case RTC_ALM_SET: /* Store a time into the alarm */ 568 { 569 /* 570 * This expects a struct hp_sdc_rtc_time. Writing 0xff means 571 * "don't care" or "match all" for PC timers. The HP SDC 572 * does not support that perk, but it could be emulated fairly 573 * easily. Only the tm_hour, tm_min and tm_sec are used. 574 * We could do it with 10ms accuracy with the HP SDC, if the 575 * rtc interface left us a way to do that. 576 */ 577 struct hp_sdc_rtc_time alm_tm; 578 579 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg, 580 sizeof(struct hp_sdc_rtc_time))) 581 return -EFAULT; 582 583 if (alm_tm.tm_hour > 23) return -EINVAL; 584 if (alm_tm.tm_min > 59) return -EINVAL; 585 if (alm_tm.tm_sec > 59) return -EINVAL; 586 587 ttime.sec = alm_tm.tm_hour * 3600 + 588 alm_tm.tm_min * 60 + alm_tm.tm_sec; 589 ttime.usec = 0; 590 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT; 591 return 0; 592 } 593 case RTC_RD_TIME: /* Read the time/date from RTC */ 594 { 595 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; 596 break; 597 } 598 case RTC_SET_TIME: /* Set the RTC */ 599 { 600 struct rtc_time hp_sdc_rtc_tm; 601 unsigned char mon, day, hrs, min, sec, leap_yr; 602 unsigned int yrs; 603 604 if (!capable(CAP_SYS_TIME)) 605 return -EACCES; 606 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg, 607 sizeof(struct rtc_time))) 608 return -EFAULT; 609 610 yrs = hp_sdc_rtc_tm.tm_year + 1900; 611 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ 612 day = hp_sdc_rtc_tm.tm_mday; 613 hrs = hp_sdc_rtc_tm.tm_hour; 614 min = hp_sdc_rtc_tm.tm_min; 615 sec = hp_sdc_rtc_tm.tm_sec; 616 617 if (yrs < 1970) 618 return -EINVAL; 619 620 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); 621 622 if ((mon > 12) || (day == 0)) 623 return -EINVAL; 624 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) 625 return -EINVAL; 626 if ((hrs >= 24) || (min >= 60) || (sec >= 60)) 627 return -EINVAL; 628 629 if ((yrs -= eH) > 255) /* They are unsigned */ 630 return -EINVAL; 631 632 633 return 0; 634 } 635 case RTC_EPOCH_READ: /* Read the epoch. */ 636 { 637 return put_user (epoch, (unsigned long *)arg); 638 } 639 case RTC_EPOCH_SET: /* Set the epoch. */ 640 { 641 /* 642 * There were no RTC clocks before 1900. 643 */ 644 if (arg < 1900) 645 return -EINVAL; 646 if (!capable(CAP_SYS_TIME)) 647 return -EACCES; 648 649 epoch = arg; 650 return 0; 651 } 652 default: 653 return -EINVAL; 654 } 655 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; 656 #endif 657 } 658 659 static long hp_sdc_rtc_unlocked_ioctl(struct file *file, 660 unsigned int cmd, unsigned long arg) 661 { 662 int ret; 663 664 mutex_lock(&hp_sdc_rtc_mutex); 665 ret = hp_sdc_rtc_ioctl(file, cmd, arg); 666 mutex_unlock(&hp_sdc_rtc_mutex); 667 668 return ret; 669 } 670 671 672 static const struct file_operations hp_sdc_rtc_fops = { 673 .owner = THIS_MODULE, 674 .llseek = no_llseek, 675 .read = hp_sdc_rtc_read, 676 .poll = hp_sdc_rtc_poll, 677 .unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl, 678 .open = hp_sdc_rtc_open, 679 .fasync = hp_sdc_rtc_fasync, 680 }; 681 682 static struct miscdevice hp_sdc_rtc_dev = { 683 .minor = RTC_MINOR, 684 .name = "rtc_HIL", 685 .fops = &hp_sdc_rtc_fops 686 }; 687 688 static int __init hp_sdc_rtc_init(void) 689 { 690 int ret; 691 692 #ifdef __mc68000__ 693 if (!MACH_IS_HP300) 694 return -ENODEV; 695 #endif 696 697 sema_init(&i8042tregs, 1); 698 699 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr))) 700 return ret; 701 if (misc_register(&hp_sdc_rtc_dev) != 0) 702 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n"); 703 704 proc_create_single("driver/rtc", 0, NULL, hp_sdc_rtc_proc_show); 705 706 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded " 707 "(RTC v " RTC_VERSION ")\n"); 708 709 return 0; 710 } 711 712 static void __exit hp_sdc_rtc_exit(void) 713 { 714 remove_proc_entry ("driver/rtc", NULL); 715 misc_deregister(&hp_sdc_rtc_dev); 716 hp_sdc_release_timer_irq(hp_sdc_rtc_isr); 717 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n"); 718 } 719 720 module_init(hp_sdc_rtc_init); 721 module_exit(hp_sdc_rtc_exit); 722