1 /* 2 * HP i8042 SDC + MSM-58321 BBRTC driver. 3 * 4 * Copyright (c) 2001 Brian S. Julin 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions, and the following disclaimer, 12 * without modification. 13 * 2. The name of the author may not be used to endorse or promote products 14 * derived from this software without specific prior written permission. 15 * 16 * Alternatively, this software may be distributed under the terms of the 17 * GNU General Public License ("GPL"). 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * 29 * References: 30 * System Device Controller Microprocessor Firmware Theory of Operation 31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2 32 * efirtc.c by Stephane Eranian/Hewlett Packard 33 * 34 */ 35 36 #include <linux/hp_sdc.h> 37 #include <linux/errno.h> 38 #include <linux/types.h> 39 #include <linux/init.h> 40 #include <linux/module.h> 41 #include <linux/time.h> 42 #include <linux/miscdevice.h> 43 #include <linux/proc_fs.h> 44 #include <linux/poll.h> 45 #include <linux/rtc.h> 46 47 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>"); 48 MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver"); 49 MODULE_LICENSE("Dual BSD/GPL"); 50 51 #define RTC_VERSION "1.10d" 52 53 static unsigned long epoch = 2000; 54 55 static struct semaphore i8042tregs; 56 57 static hp_sdc_irqhook hp_sdc_rtc_isr; 58 59 static struct fasync_struct *hp_sdc_rtc_async_queue; 60 61 static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait); 62 63 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, 64 size_t count, loff_t *ppos); 65 66 static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, 67 unsigned int cmd, unsigned long arg); 68 69 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait); 70 71 static int hp_sdc_rtc_open(struct inode *inode, struct file *file); 72 static int hp_sdc_rtc_release(struct inode *inode, struct file *file); 73 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on); 74 75 static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off, 76 int count, int *eof, void *data); 77 78 static void hp_sdc_rtc_isr (int irq, void *dev_id, 79 uint8_t status, uint8_t data) 80 { 81 return; 82 } 83 84 static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm) 85 { 86 struct semaphore tsem; 87 hp_sdc_transaction t; 88 uint8_t tseq[91]; 89 int i; 90 91 i = 0; 92 while (i < 91) { 93 tseq[i++] = HP_SDC_ACT_DATAREG | 94 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN; 95 tseq[i++] = 0x01; /* write i8042[0x70] */ 96 tseq[i] = i / 7; /* BBRTC reg address */ 97 i++; 98 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */ 99 tseq[i++] = 2; /* expect 1 stat/dat pair back. */ 100 i++; i++; /* buffer for stat/dat pair */ 101 } 102 tseq[84] |= HP_SDC_ACT_SEMAPHORE; 103 t.endidx = 91; 104 t.seq = tseq; 105 t.act.semaphore = &tsem; 106 init_MUTEX_LOCKED(&tsem); 107 108 if (hp_sdc_enqueue_transaction(&t)) return -1; 109 110 down_interruptible(&tsem); /* Put ourselves to sleep for results. */ 111 112 /* Check for nonpresence of BBRTC */ 113 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] | 114 tseq[55] | tseq[62] | tseq[34] | tseq[41] | 115 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f)) 116 return -1; 117 118 memset(rtctm, 0, sizeof(struct rtc_time)); 119 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10; 120 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10; 121 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10; 122 rtctm->tm_wday = (tseq[48] & 0x0f); 123 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10; 124 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10; 125 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10; 126 127 return 0; 128 } 129 130 static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm) 131 { 132 struct rtc_time tm, tm_last; 133 int i = 0; 134 135 /* MSM-58321 has no read latch, so must read twice and compare. */ 136 137 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1; 138 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; 139 140 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) { 141 if (i++ > 4) return -1; 142 memcpy(&tm_last, &tm, sizeof(struct rtc_time)); 143 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1; 144 } 145 146 memcpy(rtctm, &tm, sizeof(struct rtc_time)); 147 148 return 0; 149 } 150 151 152 static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg) 153 { 154 hp_sdc_transaction t; 155 uint8_t tseq[26] = { 156 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 157 0, 158 HP_SDC_CMD_READ_T1, 2, 0, 0, 159 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 160 HP_SDC_CMD_READ_T2, 2, 0, 0, 161 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 162 HP_SDC_CMD_READ_T3, 2, 0, 0, 163 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 164 HP_SDC_CMD_READ_T4, 2, 0, 0, 165 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN, 166 HP_SDC_CMD_READ_T5, 2, 0, 0 167 }; 168 169 t.endidx = numreg * 5; 170 171 tseq[1] = loadcmd; 172 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */ 173 174 t.seq = tseq; 175 t.act.semaphore = &i8042tregs; 176 177 down_interruptible(&i8042tregs); /* Sleep if output regs in use. */ 178 179 if (hp_sdc_enqueue_transaction(&t)) return -1; 180 181 down_interruptible(&i8042tregs); /* Sleep until results come back. */ 182 up(&i8042tregs); 183 184 return (tseq[5] | 185 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) | 186 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32)); 187 } 188 189 190 /* Read the i8042 real-time clock */ 191 static inline int hp_sdc_rtc_read_rt(struct timeval *res) { 192 int64_t raw; 193 uint32_t tenms; 194 unsigned int days; 195 196 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5); 197 if (raw < 0) return -1; 198 199 tenms = (uint32_t)raw & 0xffffff; 200 days = (unsigned int)(raw >> 24) & 0xffff; 201 202 res->tv_usec = (suseconds_t)(tenms % 100) * 10000; 203 res->tv_sec = (time_t)(tenms / 100) + days * 86400; 204 205 return 0; 206 } 207 208 209 /* Read the i8042 fast handshake timer */ 210 static inline int hp_sdc_rtc_read_fhs(struct timeval *res) { 211 uint64_t raw; 212 unsigned int tenms; 213 214 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2); 215 if (raw < 0) return -1; 216 217 tenms = (unsigned int)raw & 0xffff; 218 219 res->tv_usec = (suseconds_t)(tenms % 100) * 10000; 220 res->tv_sec = (time_t)(tenms / 100); 221 222 return 0; 223 } 224 225 226 /* Read the i8042 match timer (a.k.a. alarm) */ 227 static inline int hp_sdc_rtc_read_mt(struct timeval *res) { 228 int64_t raw; 229 uint32_t tenms; 230 231 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3); 232 if (raw < 0) return -1; 233 234 tenms = (uint32_t)raw & 0xffffff; 235 236 res->tv_usec = (suseconds_t)(tenms % 100) * 10000; 237 res->tv_sec = (time_t)(tenms / 100); 238 239 return 0; 240 } 241 242 243 /* Read the i8042 delay timer */ 244 static inline int hp_sdc_rtc_read_dt(struct timeval *res) { 245 int64_t raw; 246 uint32_t tenms; 247 248 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3); 249 if (raw < 0) return -1; 250 251 tenms = (uint32_t)raw & 0xffffff; 252 253 res->tv_usec = (suseconds_t)(tenms % 100) * 10000; 254 res->tv_sec = (time_t)(tenms / 100); 255 256 return 0; 257 } 258 259 260 /* Read the i8042 cycle timer (a.k.a. periodic) */ 261 static inline int hp_sdc_rtc_read_ct(struct timeval *res) { 262 int64_t raw; 263 uint32_t tenms; 264 265 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3); 266 if (raw < 0) return -1; 267 268 tenms = (uint32_t)raw & 0xffffff; 269 270 res->tv_usec = (suseconds_t)(tenms % 100) * 10000; 271 res->tv_sec = (time_t)(tenms / 100); 272 273 return 0; 274 } 275 276 277 /* Set the i8042 real-time clock */ 278 static int hp_sdc_rtc_set_rt (struct timeval *setto) 279 { 280 uint32_t tenms; 281 unsigned int days; 282 hp_sdc_transaction t; 283 uint8_t tseq[11] = { 284 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 285 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0, 286 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 287 HP_SDC_CMD_SET_RTD, 2, 0, 0 288 }; 289 290 t.endidx = 10; 291 292 if (0xffff < setto->tv_sec / 86400) return -1; 293 days = setto->tv_sec / 86400; 294 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1; 295 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400; 296 if (days > 0xffff) return -1; 297 298 if (0xffffff < setto->tv_sec) return -1; 299 tenms = setto->tv_sec * 100; 300 if (0xffffff < setto->tv_usec / 10000) return -1; 301 tenms += setto->tv_usec / 10000; 302 if (tenms > 0xffffff) return -1; 303 304 tseq[3] = (uint8_t)(tenms & 0xff); 305 tseq[4] = (uint8_t)((tenms >> 8) & 0xff); 306 tseq[5] = (uint8_t)((tenms >> 16) & 0xff); 307 308 tseq[9] = (uint8_t)(days & 0xff); 309 tseq[10] = (uint8_t)((days >> 8) & 0xff); 310 311 t.seq = tseq; 312 313 if (hp_sdc_enqueue_transaction(&t)) return -1; 314 return 0; 315 } 316 317 /* Set the i8042 fast handshake timer */ 318 static int hp_sdc_rtc_set_fhs (struct timeval *setto) 319 { 320 uint32_t tenms; 321 hp_sdc_transaction t; 322 uint8_t tseq[5] = { 323 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 324 HP_SDC_CMD_SET_FHS, 2, 0, 0 325 }; 326 327 t.endidx = 4; 328 329 if (0xffff < setto->tv_sec) return -1; 330 tenms = setto->tv_sec * 100; 331 if (0xffff < setto->tv_usec / 10000) return -1; 332 tenms += setto->tv_usec / 10000; 333 if (tenms > 0xffff) return -1; 334 335 tseq[3] = (uint8_t)(tenms & 0xff); 336 tseq[4] = (uint8_t)((tenms >> 8) & 0xff); 337 338 t.seq = tseq; 339 340 if (hp_sdc_enqueue_transaction(&t)) return -1; 341 return 0; 342 } 343 344 345 /* Set the i8042 match timer (a.k.a. alarm) */ 346 #define hp_sdc_rtc_set_mt (setto) \ 347 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT) 348 349 /* Set the i8042 delay timer */ 350 #define hp_sdc_rtc_set_dt (setto) \ 351 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT) 352 353 /* Set the i8042 cycle timer (a.k.a. periodic) */ 354 #define hp_sdc_rtc_set_ct (setto) \ 355 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT) 356 357 /* Set one of the i8042 3-byte wide timers */ 358 static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd) 359 { 360 uint32_t tenms; 361 hp_sdc_transaction t; 362 uint8_t tseq[6] = { 363 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT, 364 0, 3, 0, 0, 0 365 }; 366 367 t.endidx = 6; 368 369 if (0xffffff < setto->tv_sec) return -1; 370 tenms = setto->tv_sec * 100; 371 if (0xffffff < setto->tv_usec / 10000) return -1; 372 tenms += setto->tv_usec / 10000; 373 if (tenms > 0xffffff) return -1; 374 375 tseq[1] = setcmd; 376 tseq[3] = (uint8_t)(tenms & 0xff); 377 tseq[4] = (uint8_t)((tenms >> 8) & 0xff); 378 tseq[5] = (uint8_t)((tenms >> 16) & 0xff); 379 380 t.seq = tseq; 381 382 if (hp_sdc_enqueue_transaction(&t)) { 383 return -1; 384 } 385 return 0; 386 } 387 388 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf, 389 size_t count, loff_t *ppos) { 390 ssize_t retval; 391 392 if (count < sizeof(unsigned long)) 393 return -EINVAL; 394 395 retval = put_user(68, (unsigned long __user *)buf); 396 return retval; 397 } 398 399 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait) 400 { 401 unsigned long l; 402 403 l = 0; 404 if (l != 0) 405 return POLLIN | POLLRDNORM; 406 return 0; 407 } 408 409 static int hp_sdc_rtc_open(struct inode *inode, struct file *file) 410 { 411 return 0; 412 } 413 414 static int hp_sdc_rtc_release(struct inode *inode, struct file *file) 415 { 416 /* Turn off interrupts? */ 417 418 if (file->f_flags & FASYNC) { 419 hp_sdc_rtc_fasync (-1, file, 0); 420 } 421 422 return 0; 423 } 424 425 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on) 426 { 427 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue); 428 } 429 430 static int hp_sdc_rtc_proc_output (char *buf) 431 { 432 #define YN(bit) ("no") 433 #define NY(bit) ("yes") 434 char *p; 435 struct rtc_time tm; 436 struct timeval tv; 437 438 memset(&tm, 0, sizeof(struct rtc_time)); 439 440 p = buf; 441 442 if (hp_sdc_rtc_read_bbrtc(&tm)) { 443 p += sprintf(p, "BBRTC\t\t: READ FAILED!\n"); 444 } else { 445 p += sprintf(p, 446 "rtc_time\t: %02d:%02d:%02d\n" 447 "rtc_date\t: %04d-%02d-%02d\n" 448 "rtc_epoch\t: %04lu\n", 449 tm.tm_hour, tm.tm_min, tm.tm_sec, 450 tm.tm_year + 1900, tm.tm_mon + 1, 451 tm.tm_mday, epoch); 452 } 453 454 if (hp_sdc_rtc_read_rt(&tv)) { 455 p += sprintf(p, "i8042 rtc\t: READ FAILED!\n"); 456 } else { 457 p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n", 458 tv.tv_sec, tv.tv_usec/1000); 459 } 460 461 if (hp_sdc_rtc_read_fhs(&tv)) { 462 p += sprintf(p, "handshake\t: READ FAILED!\n"); 463 } else { 464 p += sprintf(p, "handshake\t: %ld.%02d seconds\n", 465 tv.tv_sec, tv.tv_usec/1000); 466 } 467 468 if (hp_sdc_rtc_read_mt(&tv)) { 469 p += sprintf(p, "alarm\t\t: READ FAILED!\n"); 470 } else { 471 p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n", 472 tv.tv_sec, tv.tv_usec/1000); 473 } 474 475 if (hp_sdc_rtc_read_dt(&tv)) { 476 p += sprintf(p, "delay\t\t: READ FAILED!\n"); 477 } else { 478 p += sprintf(p, "delay\t\t: %ld.%02d seconds\n", 479 tv.tv_sec, tv.tv_usec/1000); 480 } 481 482 if (hp_sdc_rtc_read_ct(&tv)) { 483 p += sprintf(p, "periodic\t: READ FAILED!\n"); 484 } else { 485 p += sprintf(p, "periodic\t: %ld.%02d seconds\n", 486 tv.tv_sec, tv.tv_usec/1000); 487 } 488 489 p += sprintf(p, 490 "DST_enable\t: %s\n" 491 "BCD\t\t: %s\n" 492 "24hr\t\t: %s\n" 493 "square_wave\t: %s\n" 494 "alarm_IRQ\t: %s\n" 495 "update_IRQ\t: %s\n" 496 "periodic_IRQ\t: %s\n" 497 "periodic_freq\t: %ld\n" 498 "batt_status\t: %s\n", 499 YN(RTC_DST_EN), 500 NY(RTC_DM_BINARY), 501 YN(RTC_24H), 502 YN(RTC_SQWE), 503 YN(RTC_AIE), 504 YN(RTC_UIE), 505 YN(RTC_PIE), 506 1UL, 507 1 ? "okay" : "dead"); 508 509 return p - buf; 510 #undef YN 511 #undef NY 512 } 513 514 static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off, 515 int count, int *eof, void *data) 516 { 517 int len = hp_sdc_rtc_proc_output (page); 518 if (len <= off+count) *eof = 1; 519 *start = page + off; 520 len -= off; 521 if (len>count) len = count; 522 if (len<0) len = 0; 523 return len; 524 } 525 526 static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file, 527 unsigned int cmd, unsigned long arg) 528 { 529 #if 1 530 return -EINVAL; 531 #else 532 533 struct rtc_time wtime; 534 struct timeval ttime; 535 int use_wtime = 0; 536 537 /* This needs major work. */ 538 539 switch (cmd) { 540 541 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ 542 case RTC_AIE_ON: /* Allow alarm interrupts. */ 543 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ 544 case RTC_PIE_ON: /* Allow periodic ints */ 545 case RTC_UIE_ON: /* Allow ints for RTC updates. */ 546 case RTC_UIE_OFF: /* Allow ints for RTC updates. */ 547 { 548 /* We cannot mask individual user timers and we 549 cannot tell them apart when they occur, so it 550 would be disingenuous to succeed these IOCTLs */ 551 return -EINVAL; 552 } 553 case RTC_ALM_READ: /* Read the present alarm time */ 554 { 555 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT; 556 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; 557 558 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600; 559 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60; 560 wtime.tm_sec = ttime.tv_sec; 561 562 break; 563 } 564 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ 565 { 566 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg); 567 } 568 case RTC_IRQP_SET: /* Set periodic IRQ rate. */ 569 { 570 /* 571 * The max we can do is 100Hz. 572 */ 573 574 if ((arg < 1) || (arg > 100)) return -EINVAL; 575 ttime.tv_sec = 0; 576 ttime.tv_usec = 1000000 / arg; 577 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT; 578 hp_sdc_rtc_freq = arg; 579 return 0; 580 } 581 case RTC_ALM_SET: /* Store a time into the alarm */ 582 { 583 /* 584 * This expects a struct hp_sdc_rtc_time. Writing 0xff means 585 * "don't care" or "match all" for PC timers. The HP SDC 586 * does not support that perk, but it could be emulated fairly 587 * easily. Only the tm_hour, tm_min and tm_sec are used. 588 * We could do it with 10ms accuracy with the HP SDC, if the 589 * rtc interface left us a way to do that. 590 */ 591 struct hp_sdc_rtc_time alm_tm; 592 593 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg, 594 sizeof(struct hp_sdc_rtc_time))) 595 return -EFAULT; 596 597 if (alm_tm.tm_hour > 23) return -EINVAL; 598 if (alm_tm.tm_min > 59) return -EINVAL; 599 if (alm_tm.tm_sec > 59) return -EINVAL; 600 601 ttime.sec = alm_tm.tm_hour * 3600 + 602 alm_tm.tm_min * 60 + alm_tm.tm_sec; 603 ttime.usec = 0; 604 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT; 605 return 0; 606 } 607 case RTC_RD_TIME: /* Read the time/date from RTC */ 608 { 609 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT; 610 break; 611 } 612 case RTC_SET_TIME: /* Set the RTC */ 613 { 614 struct rtc_time hp_sdc_rtc_tm; 615 unsigned char mon, day, hrs, min, sec, leap_yr; 616 unsigned int yrs; 617 618 if (!capable(CAP_SYS_TIME)) 619 return -EACCES; 620 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg, 621 sizeof(struct rtc_time))) 622 return -EFAULT; 623 624 yrs = hp_sdc_rtc_tm.tm_year + 1900; 625 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ 626 day = hp_sdc_rtc_tm.tm_mday; 627 hrs = hp_sdc_rtc_tm.tm_hour; 628 min = hp_sdc_rtc_tm.tm_min; 629 sec = hp_sdc_rtc_tm.tm_sec; 630 631 if (yrs < 1970) 632 return -EINVAL; 633 634 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); 635 636 if ((mon > 12) || (day == 0)) 637 return -EINVAL; 638 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) 639 return -EINVAL; 640 if ((hrs >= 24) || (min >= 60) || (sec >= 60)) 641 return -EINVAL; 642 643 if ((yrs -= eH) > 255) /* They are unsigned */ 644 return -EINVAL; 645 646 647 return 0; 648 } 649 case RTC_EPOCH_READ: /* Read the epoch. */ 650 { 651 return put_user (epoch, (unsigned long *)arg); 652 } 653 case RTC_EPOCH_SET: /* Set the epoch. */ 654 { 655 /* 656 * There were no RTC clocks before 1900. 657 */ 658 if (arg < 1900) 659 return -EINVAL; 660 if (!capable(CAP_SYS_TIME)) 661 return -EACCES; 662 663 epoch = arg; 664 return 0; 665 } 666 default: 667 return -EINVAL; 668 } 669 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; 670 #endif 671 } 672 673 static const struct file_operations hp_sdc_rtc_fops = { 674 .owner = THIS_MODULE, 675 .llseek = no_llseek, 676 .read = hp_sdc_rtc_read, 677 .poll = hp_sdc_rtc_poll, 678 .ioctl = hp_sdc_rtc_ioctl, 679 .open = hp_sdc_rtc_open, 680 .release = hp_sdc_rtc_release, 681 .fasync = hp_sdc_rtc_fasync, 682 }; 683 684 static struct miscdevice hp_sdc_rtc_dev = { 685 .minor = RTC_MINOR, 686 .name = "rtc_HIL", 687 .fops = &hp_sdc_rtc_fops 688 }; 689 690 static int __init hp_sdc_rtc_init(void) 691 { 692 int ret; 693 694 init_MUTEX(&i8042tregs); 695 696 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr))) 697 return ret; 698 if (misc_register(&hp_sdc_rtc_dev) != 0) 699 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n"); 700 701 create_proc_read_entry ("driver/rtc", 0, NULL, 702 hp_sdc_rtc_read_proc, NULL); 703 704 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded " 705 "(RTC v " RTC_VERSION ")\n"); 706 707 return 0; 708 } 709 710 static void __exit hp_sdc_rtc_exit(void) 711 { 712 remove_proc_entry ("driver/rtc", NULL); 713 misc_deregister(&hp_sdc_rtc_dev); 714 hp_sdc_release_timer_irq(hp_sdc_rtc_isr); 715 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n"); 716 } 717 718 module_init(hp_sdc_rtc_init); 719 module_exit(hp_sdc_rtc_exit); 720