1 /* 2 * ADXL345/346 Three-Axis Digital Accelerometers 3 * 4 * Enter bugs at http://blackfin.uclinux.org/ 5 * 6 * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc. 7 * Licensed under the GPL-2 or later. 8 */ 9 10 #include <linux/device.h> 11 #include <linux/init.h> 12 #include <linux/delay.h> 13 #include <linux/input.h> 14 #include <linux/interrupt.h> 15 #include <linux/irq.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/input/adxl34x.h> 19 #include <linux/module.h> 20 21 #include "adxl34x.h" 22 23 /* ADXL345/6 Register Map */ 24 #define DEVID 0x00 /* R Device ID */ 25 #define THRESH_TAP 0x1D /* R/W Tap threshold */ 26 #define OFSX 0x1E /* R/W X-axis offset */ 27 #define OFSY 0x1F /* R/W Y-axis offset */ 28 #define OFSZ 0x20 /* R/W Z-axis offset */ 29 #define DUR 0x21 /* R/W Tap duration */ 30 #define LATENT 0x22 /* R/W Tap latency */ 31 #define WINDOW 0x23 /* R/W Tap window */ 32 #define THRESH_ACT 0x24 /* R/W Activity threshold */ 33 #define THRESH_INACT 0x25 /* R/W Inactivity threshold */ 34 #define TIME_INACT 0x26 /* R/W Inactivity time */ 35 #define ACT_INACT_CTL 0x27 /* R/W Axis enable control for activity and */ 36 /* inactivity detection */ 37 #define THRESH_FF 0x28 /* R/W Free-fall threshold */ 38 #define TIME_FF 0x29 /* R/W Free-fall time */ 39 #define TAP_AXES 0x2A /* R/W Axis control for tap/double tap */ 40 #define ACT_TAP_STATUS 0x2B /* R Source of tap/double tap */ 41 #define BW_RATE 0x2C /* R/W Data rate and power mode control */ 42 #define POWER_CTL 0x2D /* R/W Power saving features control */ 43 #define INT_ENABLE 0x2E /* R/W Interrupt enable control */ 44 #define INT_MAP 0x2F /* R/W Interrupt mapping control */ 45 #define INT_SOURCE 0x30 /* R Source of interrupts */ 46 #define DATA_FORMAT 0x31 /* R/W Data format control */ 47 #define DATAX0 0x32 /* R X-Axis Data 0 */ 48 #define DATAX1 0x33 /* R X-Axis Data 1 */ 49 #define DATAY0 0x34 /* R Y-Axis Data 0 */ 50 #define DATAY1 0x35 /* R Y-Axis Data 1 */ 51 #define DATAZ0 0x36 /* R Z-Axis Data 0 */ 52 #define DATAZ1 0x37 /* R Z-Axis Data 1 */ 53 #define FIFO_CTL 0x38 /* R/W FIFO control */ 54 #define FIFO_STATUS 0x39 /* R FIFO status */ 55 #define TAP_SIGN 0x3A /* R Sign and source for tap/double tap */ 56 /* Orientation ADXL346 only */ 57 #define ORIENT_CONF 0x3B /* R/W Orientation configuration */ 58 #define ORIENT 0x3C /* R Orientation status */ 59 60 /* DEVIDs */ 61 #define ID_ADXL345 0xE5 62 #define ID_ADXL346 0xE6 63 64 /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */ 65 #define DATA_READY (1 << 7) 66 #define SINGLE_TAP (1 << 6) 67 #define DOUBLE_TAP (1 << 5) 68 #define ACTIVITY (1 << 4) 69 #define INACTIVITY (1 << 3) 70 #define FREE_FALL (1 << 2) 71 #define WATERMARK (1 << 1) 72 #define OVERRUN (1 << 0) 73 74 /* ACT_INACT_CONTROL Bits */ 75 #define ACT_ACDC (1 << 7) 76 #define ACT_X_EN (1 << 6) 77 #define ACT_Y_EN (1 << 5) 78 #define ACT_Z_EN (1 << 4) 79 #define INACT_ACDC (1 << 3) 80 #define INACT_X_EN (1 << 2) 81 #define INACT_Y_EN (1 << 1) 82 #define INACT_Z_EN (1 << 0) 83 84 /* TAP_AXES Bits */ 85 #define SUPPRESS (1 << 3) 86 #define TAP_X_EN (1 << 2) 87 #define TAP_Y_EN (1 << 1) 88 #define TAP_Z_EN (1 << 0) 89 90 /* ACT_TAP_STATUS Bits */ 91 #define ACT_X_SRC (1 << 6) 92 #define ACT_Y_SRC (1 << 5) 93 #define ACT_Z_SRC (1 << 4) 94 #define ASLEEP (1 << 3) 95 #define TAP_X_SRC (1 << 2) 96 #define TAP_Y_SRC (1 << 1) 97 #define TAP_Z_SRC (1 << 0) 98 99 /* BW_RATE Bits */ 100 #define LOW_POWER (1 << 4) 101 #define RATE(x) ((x) & 0xF) 102 103 /* POWER_CTL Bits */ 104 #define PCTL_LINK (1 << 5) 105 #define PCTL_AUTO_SLEEP (1 << 4) 106 #define PCTL_MEASURE (1 << 3) 107 #define PCTL_SLEEP (1 << 2) 108 #define PCTL_WAKEUP(x) ((x) & 0x3) 109 110 /* DATA_FORMAT Bits */ 111 #define SELF_TEST (1 << 7) 112 #define SPI (1 << 6) 113 #define INT_INVERT (1 << 5) 114 #define FULL_RES (1 << 3) 115 #define JUSTIFY (1 << 2) 116 #define RANGE(x) ((x) & 0x3) 117 #define RANGE_PM_2g 0 118 #define RANGE_PM_4g 1 119 #define RANGE_PM_8g 2 120 #define RANGE_PM_16g 3 121 122 /* 123 * Maximum value our axis may get in full res mode for the input device 124 * (signed 13 bits) 125 */ 126 #define ADXL_FULLRES_MAX_VAL 4096 127 128 /* 129 * Maximum value our axis may get in fixed res mode for the input device 130 * (signed 10 bits) 131 */ 132 #define ADXL_FIXEDRES_MAX_VAL 512 133 134 /* FIFO_CTL Bits */ 135 #define FIFO_MODE(x) (((x) & 0x3) << 6) 136 #define FIFO_BYPASS 0 137 #define FIFO_FIFO 1 138 #define FIFO_STREAM 2 139 #define FIFO_TRIGGER 3 140 #define TRIGGER (1 << 5) 141 #define SAMPLES(x) ((x) & 0x1F) 142 143 /* FIFO_STATUS Bits */ 144 #define FIFO_TRIG (1 << 7) 145 #define ENTRIES(x) ((x) & 0x3F) 146 147 /* TAP_SIGN Bits ADXL346 only */ 148 #define XSIGN (1 << 6) 149 #define YSIGN (1 << 5) 150 #define ZSIGN (1 << 4) 151 #define XTAP (1 << 3) 152 #define YTAP (1 << 2) 153 #define ZTAP (1 << 1) 154 155 /* ORIENT_CONF ADXL346 only */ 156 #define ORIENT_DEADZONE(x) (((x) & 0x7) << 4) 157 #define ORIENT_DIVISOR(x) ((x) & 0x7) 158 159 /* ORIENT ADXL346 only */ 160 #define ADXL346_2D_VALID (1 << 6) 161 #define ADXL346_2D_ORIENT(x) (((x) & 0x3) >> 4) 162 #define ADXL346_3D_VALID (1 << 3) 163 #define ADXL346_3D_ORIENT(x) ((x) & 0x7) 164 #define ADXL346_2D_PORTRAIT_POS 0 /* +X */ 165 #define ADXL346_2D_PORTRAIT_NEG 1 /* -X */ 166 #define ADXL346_2D_LANDSCAPE_POS 2 /* +Y */ 167 #define ADXL346_2D_LANDSCAPE_NEG 3 /* -Y */ 168 169 #define ADXL346_3D_FRONT 3 /* +X */ 170 #define ADXL346_3D_BACK 4 /* -X */ 171 #define ADXL346_3D_RIGHT 2 /* +Y */ 172 #define ADXL346_3D_LEFT 5 /* -Y */ 173 #define ADXL346_3D_TOP 1 /* +Z */ 174 #define ADXL346_3D_BOTTOM 6 /* -Z */ 175 176 #undef ADXL_DEBUG 177 178 #define ADXL_X_AXIS 0 179 #define ADXL_Y_AXIS 1 180 #define ADXL_Z_AXIS 2 181 182 #define AC_READ(ac, reg) ((ac)->bops->read((ac)->dev, reg)) 183 #define AC_WRITE(ac, reg, val) ((ac)->bops->write((ac)->dev, reg, val)) 184 185 struct axis_triple { 186 int x; 187 int y; 188 int z; 189 }; 190 191 struct adxl34x { 192 struct device *dev; 193 struct input_dev *input; 194 struct mutex mutex; /* reentrant protection for struct */ 195 struct adxl34x_platform_data pdata; 196 struct axis_triple swcal; 197 struct axis_triple hwcal; 198 struct axis_triple saved; 199 char phys[32]; 200 unsigned orient2d_saved; 201 unsigned orient3d_saved; 202 bool disabled; /* P: mutex */ 203 bool opened; /* P: mutex */ 204 bool suspended; /* P: mutex */ 205 bool fifo_delay; 206 int irq; 207 unsigned model; 208 unsigned int_mask; 209 210 const struct adxl34x_bus_ops *bops; 211 }; 212 213 static const struct adxl34x_platform_data adxl34x_default_init = { 214 .tap_threshold = 35, 215 .tap_duration = 3, 216 .tap_latency = 20, 217 .tap_window = 20, 218 .tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN, 219 .act_axis_control = 0xFF, 220 .activity_threshold = 6, 221 .inactivity_threshold = 4, 222 .inactivity_time = 3, 223 .free_fall_threshold = 8, 224 .free_fall_time = 0x20, 225 .data_rate = 8, 226 .data_range = ADXL_FULL_RES, 227 228 .ev_type = EV_ABS, 229 .ev_code_x = ABS_X, /* EV_REL */ 230 .ev_code_y = ABS_Y, /* EV_REL */ 231 .ev_code_z = ABS_Z, /* EV_REL */ 232 233 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */ 234 .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK, 235 .fifo_mode = ADXL_FIFO_STREAM, 236 .watermark = 0, 237 }; 238 239 static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis) 240 { 241 short buf[3]; 242 243 ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf); 244 245 mutex_lock(&ac->mutex); 246 ac->saved.x = (s16) le16_to_cpu(buf[0]); 247 axis->x = ac->saved.x; 248 249 ac->saved.y = (s16) le16_to_cpu(buf[1]); 250 axis->y = ac->saved.y; 251 252 ac->saved.z = (s16) le16_to_cpu(buf[2]); 253 axis->z = ac->saved.z; 254 mutex_unlock(&ac->mutex); 255 } 256 257 static void adxl34x_service_ev_fifo(struct adxl34x *ac) 258 { 259 struct adxl34x_platform_data *pdata = &ac->pdata; 260 struct axis_triple axis; 261 262 adxl34x_get_triple(ac, &axis); 263 264 input_event(ac->input, pdata->ev_type, pdata->ev_code_x, 265 axis.x - ac->swcal.x); 266 input_event(ac->input, pdata->ev_type, pdata->ev_code_y, 267 axis.y - ac->swcal.y); 268 input_event(ac->input, pdata->ev_type, pdata->ev_code_z, 269 axis.z - ac->swcal.z); 270 } 271 272 static void adxl34x_report_key_single(struct input_dev *input, int key) 273 { 274 input_report_key(input, key, true); 275 input_sync(input); 276 input_report_key(input, key, false); 277 } 278 279 static void adxl34x_send_key_events(struct adxl34x *ac, 280 struct adxl34x_platform_data *pdata, int status, int press) 281 { 282 int i; 283 284 for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) { 285 if (status & (1 << (ADXL_Z_AXIS - i))) 286 input_report_key(ac->input, 287 pdata->ev_code_tap[i], press); 288 } 289 } 290 291 static void adxl34x_do_tap(struct adxl34x *ac, 292 struct adxl34x_platform_data *pdata, int status) 293 { 294 adxl34x_send_key_events(ac, pdata, status, true); 295 input_sync(ac->input); 296 adxl34x_send_key_events(ac, pdata, status, false); 297 } 298 299 static irqreturn_t adxl34x_irq(int irq, void *handle) 300 { 301 struct adxl34x *ac = handle; 302 struct adxl34x_platform_data *pdata = &ac->pdata; 303 int int_stat, tap_stat, samples, orient, orient_code; 304 305 /* 306 * ACT_TAP_STATUS should be read before clearing the interrupt 307 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled 308 */ 309 310 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) 311 tap_stat = AC_READ(ac, ACT_TAP_STATUS); 312 else 313 tap_stat = 0; 314 315 int_stat = AC_READ(ac, INT_SOURCE); 316 317 if (int_stat & FREE_FALL) 318 adxl34x_report_key_single(ac->input, pdata->ev_code_ff); 319 320 if (int_stat & OVERRUN) 321 dev_dbg(ac->dev, "OVERRUN\n"); 322 323 if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) { 324 adxl34x_do_tap(ac, pdata, tap_stat); 325 326 if (int_stat & DOUBLE_TAP) 327 adxl34x_do_tap(ac, pdata, tap_stat); 328 } 329 330 if (pdata->ev_code_act_inactivity) { 331 if (int_stat & ACTIVITY) 332 input_report_key(ac->input, 333 pdata->ev_code_act_inactivity, 1); 334 if (int_stat & INACTIVITY) 335 input_report_key(ac->input, 336 pdata->ev_code_act_inactivity, 0); 337 } 338 339 /* 340 * ORIENTATION SENSING ADXL346 only 341 */ 342 if (pdata->orientation_enable) { 343 orient = AC_READ(ac, ORIENT); 344 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) && 345 (orient & ADXL346_2D_VALID)) { 346 347 orient_code = ADXL346_2D_ORIENT(orient); 348 /* Report orientation only when it changes */ 349 if (ac->orient2d_saved != orient_code) { 350 ac->orient2d_saved = orient_code; 351 adxl34x_report_key_single(ac->input, 352 pdata->ev_codes_orient_2d[orient_code]); 353 } 354 } 355 356 if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) && 357 (orient & ADXL346_3D_VALID)) { 358 359 orient_code = ADXL346_3D_ORIENT(orient) - 1; 360 /* Report orientation only when it changes */ 361 if (ac->orient3d_saved != orient_code) { 362 ac->orient3d_saved = orient_code; 363 adxl34x_report_key_single(ac->input, 364 pdata->ev_codes_orient_3d[orient_code]); 365 } 366 } 367 } 368 369 if (int_stat & (DATA_READY | WATERMARK)) { 370 371 if (pdata->fifo_mode) 372 samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1; 373 else 374 samples = 1; 375 376 for (; samples > 0; samples--) { 377 adxl34x_service_ev_fifo(ac); 378 /* 379 * To ensure that the FIFO has 380 * completely popped, there must be at least 5 us between 381 * the end of reading the data registers, signified by the 382 * transition to register 0x38 from 0x37 or the CS pin 383 * going high, and the start of new reads of the FIFO or 384 * reading the FIFO_STATUS register. For SPI operation at 385 * 1.5 MHz or lower, the register addressing portion of the 386 * transmission is sufficient delay to ensure the FIFO has 387 * completely popped. It is necessary for SPI operation 388 * greater than 1.5 MHz to de-assert the CS pin to ensure a 389 * total of 5 us, which is at most 3.4 us at 5 MHz 390 * operation. 391 */ 392 if (ac->fifo_delay && (samples > 1)) 393 udelay(3); 394 } 395 } 396 397 input_sync(ac->input); 398 399 return IRQ_HANDLED; 400 } 401 402 static void __adxl34x_disable(struct adxl34x *ac) 403 { 404 /* 405 * A '0' places the ADXL34x into standby mode 406 * with minimum power consumption. 407 */ 408 AC_WRITE(ac, POWER_CTL, 0); 409 } 410 411 static void __adxl34x_enable(struct adxl34x *ac) 412 { 413 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); 414 } 415 416 void adxl34x_suspend(struct adxl34x *ac) 417 { 418 mutex_lock(&ac->mutex); 419 420 if (!ac->suspended && !ac->disabled && ac->opened) 421 __adxl34x_disable(ac); 422 423 ac->suspended = true; 424 425 mutex_unlock(&ac->mutex); 426 } 427 EXPORT_SYMBOL_GPL(adxl34x_suspend); 428 429 void adxl34x_resume(struct adxl34x *ac) 430 { 431 mutex_lock(&ac->mutex); 432 433 if (ac->suspended && !ac->disabled && ac->opened) 434 __adxl34x_enable(ac); 435 436 ac->suspended = false; 437 438 mutex_unlock(&ac->mutex); 439 } 440 EXPORT_SYMBOL_GPL(adxl34x_resume); 441 442 static ssize_t adxl34x_disable_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct adxl34x *ac = dev_get_drvdata(dev); 446 447 return sprintf(buf, "%u\n", ac->disabled); 448 } 449 450 static ssize_t adxl34x_disable_store(struct device *dev, 451 struct device_attribute *attr, 452 const char *buf, size_t count) 453 { 454 struct adxl34x *ac = dev_get_drvdata(dev); 455 unsigned int val; 456 int error; 457 458 error = kstrtouint(buf, 10, &val); 459 if (error) 460 return error; 461 462 mutex_lock(&ac->mutex); 463 464 if (!ac->suspended && ac->opened) { 465 if (val) { 466 if (!ac->disabled) 467 __adxl34x_disable(ac); 468 } else { 469 if (ac->disabled) 470 __adxl34x_enable(ac); 471 } 472 } 473 474 ac->disabled = !!val; 475 476 mutex_unlock(&ac->mutex); 477 478 return count; 479 } 480 481 static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store); 482 483 static ssize_t adxl34x_calibrate_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct adxl34x *ac = dev_get_drvdata(dev); 487 ssize_t count; 488 489 mutex_lock(&ac->mutex); 490 count = sprintf(buf, "%d,%d,%d\n", 491 ac->hwcal.x * 4 + ac->swcal.x, 492 ac->hwcal.y * 4 + ac->swcal.y, 493 ac->hwcal.z * 4 + ac->swcal.z); 494 mutex_unlock(&ac->mutex); 495 496 return count; 497 } 498 499 static ssize_t adxl34x_calibrate_store(struct device *dev, 500 struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct adxl34x *ac = dev_get_drvdata(dev); 504 505 /* 506 * Hardware offset calibration has a resolution of 15.6 mg/LSB. 507 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB) 508 */ 509 510 mutex_lock(&ac->mutex); 511 ac->hwcal.x -= (ac->saved.x / 4); 512 ac->swcal.x = ac->saved.x % 4; 513 514 ac->hwcal.y -= (ac->saved.y / 4); 515 ac->swcal.y = ac->saved.y % 4; 516 517 ac->hwcal.z -= (ac->saved.z / 4); 518 ac->swcal.z = ac->saved.z % 4; 519 520 AC_WRITE(ac, OFSX, (s8) ac->hwcal.x); 521 AC_WRITE(ac, OFSY, (s8) ac->hwcal.y); 522 AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z); 523 mutex_unlock(&ac->mutex); 524 525 return count; 526 } 527 528 static DEVICE_ATTR(calibrate, 0664, 529 adxl34x_calibrate_show, adxl34x_calibrate_store); 530 531 static ssize_t adxl34x_rate_show(struct device *dev, 532 struct device_attribute *attr, char *buf) 533 { 534 struct adxl34x *ac = dev_get_drvdata(dev); 535 536 return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate)); 537 } 538 539 static ssize_t adxl34x_rate_store(struct device *dev, 540 struct device_attribute *attr, 541 const char *buf, size_t count) 542 { 543 struct adxl34x *ac = dev_get_drvdata(dev); 544 unsigned char val; 545 int error; 546 547 error = kstrtou8(buf, 10, &val); 548 if (error) 549 return error; 550 551 mutex_lock(&ac->mutex); 552 553 ac->pdata.data_rate = RATE(val); 554 AC_WRITE(ac, BW_RATE, 555 ac->pdata.data_rate | 556 (ac->pdata.low_power_mode ? LOW_POWER : 0)); 557 558 mutex_unlock(&ac->mutex); 559 560 return count; 561 } 562 563 static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store); 564 565 static ssize_t adxl34x_autosleep_show(struct device *dev, 566 struct device_attribute *attr, char *buf) 567 { 568 struct adxl34x *ac = dev_get_drvdata(dev); 569 570 return sprintf(buf, "%u\n", 571 ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0); 572 } 573 574 static ssize_t adxl34x_autosleep_store(struct device *dev, 575 struct device_attribute *attr, 576 const char *buf, size_t count) 577 { 578 struct adxl34x *ac = dev_get_drvdata(dev); 579 unsigned int val; 580 int error; 581 582 error = kstrtouint(buf, 10, &val); 583 if (error) 584 return error; 585 586 mutex_lock(&ac->mutex); 587 588 if (val) 589 ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK); 590 else 591 ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK); 592 593 if (!ac->disabled && !ac->suspended && ac->opened) 594 AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE); 595 596 mutex_unlock(&ac->mutex); 597 598 return count; 599 } 600 601 static DEVICE_ATTR(autosleep, 0664, 602 adxl34x_autosleep_show, adxl34x_autosleep_store); 603 604 static ssize_t adxl34x_position_show(struct device *dev, 605 struct device_attribute *attr, char *buf) 606 { 607 struct adxl34x *ac = dev_get_drvdata(dev); 608 ssize_t count; 609 610 mutex_lock(&ac->mutex); 611 count = sprintf(buf, "(%d, %d, %d)\n", 612 ac->saved.x, ac->saved.y, ac->saved.z); 613 mutex_unlock(&ac->mutex); 614 615 return count; 616 } 617 618 static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL); 619 620 #ifdef ADXL_DEBUG 621 static ssize_t adxl34x_write_store(struct device *dev, 622 struct device_attribute *attr, 623 const char *buf, size_t count) 624 { 625 struct adxl34x *ac = dev_get_drvdata(dev); 626 unsigned int val; 627 int error; 628 629 /* 630 * This allows basic ADXL register write access for debug purposes. 631 */ 632 error = kstrtouint(buf, 16, &val); 633 if (error) 634 return error; 635 636 mutex_lock(&ac->mutex); 637 AC_WRITE(ac, val >> 8, val & 0xFF); 638 mutex_unlock(&ac->mutex); 639 640 return count; 641 } 642 643 static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store); 644 #endif 645 646 static struct attribute *adxl34x_attributes[] = { 647 &dev_attr_disable.attr, 648 &dev_attr_calibrate.attr, 649 &dev_attr_rate.attr, 650 &dev_attr_autosleep.attr, 651 &dev_attr_position.attr, 652 #ifdef ADXL_DEBUG 653 &dev_attr_write.attr, 654 #endif 655 NULL 656 }; 657 658 static const struct attribute_group adxl34x_attr_group = { 659 .attrs = adxl34x_attributes, 660 }; 661 662 static int adxl34x_input_open(struct input_dev *input) 663 { 664 struct adxl34x *ac = input_get_drvdata(input); 665 666 mutex_lock(&ac->mutex); 667 668 if (!ac->suspended && !ac->disabled) 669 __adxl34x_enable(ac); 670 671 ac->opened = true; 672 673 mutex_unlock(&ac->mutex); 674 675 return 0; 676 } 677 678 static void adxl34x_input_close(struct input_dev *input) 679 { 680 struct adxl34x *ac = input_get_drvdata(input); 681 682 mutex_lock(&ac->mutex); 683 684 if (!ac->suspended && !ac->disabled) 685 __adxl34x_disable(ac); 686 687 ac->opened = false; 688 689 mutex_unlock(&ac->mutex); 690 } 691 692 struct adxl34x *adxl34x_probe(struct device *dev, int irq, 693 bool fifo_delay_default, 694 const struct adxl34x_bus_ops *bops) 695 { 696 struct adxl34x *ac; 697 struct input_dev *input_dev; 698 const struct adxl34x_platform_data *pdata; 699 int err, range, i; 700 unsigned char revid; 701 702 if (!irq) { 703 dev_err(dev, "no IRQ?\n"); 704 err = -ENODEV; 705 goto err_out; 706 } 707 708 ac = kzalloc(sizeof(*ac), GFP_KERNEL); 709 input_dev = input_allocate_device(); 710 if (!ac || !input_dev) { 711 err = -ENOMEM; 712 goto err_free_mem; 713 } 714 715 ac->fifo_delay = fifo_delay_default; 716 717 pdata = dev->platform_data; 718 if (!pdata) { 719 dev_dbg(dev, 720 "No platform data: Using default initialization\n"); 721 pdata = &adxl34x_default_init; 722 } 723 724 ac->pdata = *pdata; 725 pdata = &ac->pdata; 726 727 ac->input = input_dev; 728 ac->dev = dev; 729 ac->irq = irq; 730 ac->bops = bops; 731 732 mutex_init(&ac->mutex); 733 734 input_dev->name = "ADXL34x accelerometer"; 735 revid = AC_READ(ac, DEVID); 736 737 switch (revid) { 738 case ID_ADXL345: 739 ac->model = 345; 740 break; 741 case ID_ADXL346: 742 ac->model = 346; 743 break; 744 default: 745 dev_err(dev, "Failed to probe %s\n", input_dev->name); 746 err = -ENODEV; 747 goto err_free_mem; 748 } 749 750 snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev)); 751 752 input_dev->phys = ac->phys; 753 input_dev->dev.parent = dev; 754 input_dev->id.product = ac->model; 755 input_dev->id.bustype = bops->bustype; 756 input_dev->open = adxl34x_input_open; 757 input_dev->close = adxl34x_input_close; 758 759 input_set_drvdata(input_dev, ac); 760 761 __set_bit(ac->pdata.ev_type, input_dev->evbit); 762 763 if (ac->pdata.ev_type == EV_REL) { 764 __set_bit(REL_X, input_dev->relbit); 765 __set_bit(REL_Y, input_dev->relbit); 766 __set_bit(REL_Z, input_dev->relbit); 767 } else { 768 /* EV_ABS */ 769 __set_bit(ABS_X, input_dev->absbit); 770 __set_bit(ABS_Y, input_dev->absbit); 771 __set_bit(ABS_Z, input_dev->absbit); 772 773 if (pdata->data_range & FULL_RES) 774 range = ADXL_FULLRES_MAX_VAL; /* Signed 13-bit */ 775 else 776 range = ADXL_FIXEDRES_MAX_VAL; /* Signed 10-bit */ 777 778 input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3); 779 input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3); 780 input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3); 781 } 782 783 __set_bit(EV_KEY, input_dev->evbit); 784 __set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit); 785 __set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit); 786 __set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit); 787 788 if (pdata->ev_code_ff) { 789 ac->int_mask = FREE_FALL; 790 __set_bit(pdata->ev_code_ff, input_dev->keybit); 791 } 792 793 if (pdata->ev_code_act_inactivity) 794 __set_bit(pdata->ev_code_act_inactivity, input_dev->keybit); 795 796 ac->int_mask |= ACTIVITY | INACTIVITY; 797 798 if (pdata->watermark) { 799 ac->int_mask |= WATERMARK; 800 if (!FIFO_MODE(pdata->fifo_mode)) 801 ac->pdata.fifo_mode |= FIFO_STREAM; 802 } else { 803 ac->int_mask |= DATA_READY; 804 } 805 806 if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN)) 807 ac->int_mask |= SINGLE_TAP | DOUBLE_TAP; 808 809 if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS) 810 ac->fifo_delay = false; 811 812 AC_WRITE(ac, POWER_CTL, 0); 813 814 err = request_threaded_irq(ac->irq, NULL, adxl34x_irq, 815 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 816 dev_name(dev), ac); 817 if (err) { 818 dev_err(dev, "irq %d busy?\n", ac->irq); 819 goto err_free_mem; 820 } 821 822 err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group); 823 if (err) 824 goto err_free_irq; 825 826 err = input_register_device(input_dev); 827 if (err) 828 goto err_remove_attr; 829 830 AC_WRITE(ac, OFSX, pdata->x_axis_offset); 831 ac->hwcal.x = pdata->x_axis_offset; 832 AC_WRITE(ac, OFSY, pdata->y_axis_offset); 833 ac->hwcal.y = pdata->y_axis_offset; 834 AC_WRITE(ac, OFSZ, pdata->z_axis_offset); 835 ac->hwcal.z = pdata->z_axis_offset; 836 AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold); 837 AC_WRITE(ac, DUR, pdata->tap_duration); 838 AC_WRITE(ac, LATENT, pdata->tap_latency); 839 AC_WRITE(ac, WINDOW, pdata->tap_window); 840 AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold); 841 AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold); 842 AC_WRITE(ac, TIME_INACT, pdata->inactivity_time); 843 AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold); 844 AC_WRITE(ac, TIME_FF, pdata->free_fall_time); 845 AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control); 846 AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control); 847 AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) | 848 (pdata->low_power_mode ? LOW_POWER : 0)); 849 AC_WRITE(ac, DATA_FORMAT, pdata->data_range); 850 AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) | 851 SAMPLES(pdata->watermark)); 852 853 if (pdata->use_int2) { 854 /* Map all INTs to INT2 */ 855 AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN); 856 } else { 857 /* Map all INTs to INT1 */ 858 AC_WRITE(ac, INT_MAP, 0); 859 } 860 861 if (ac->model == 346 && ac->pdata.orientation_enable) { 862 AC_WRITE(ac, ORIENT_CONF, 863 ORIENT_DEADZONE(ac->pdata.deadzone_angle) | 864 ORIENT_DIVISOR(ac->pdata.divisor_length)); 865 866 ac->orient2d_saved = 1234; 867 ac->orient3d_saved = 1234; 868 869 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) 870 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++) 871 __set_bit(pdata->ev_codes_orient_3d[i], 872 input_dev->keybit); 873 874 if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) 875 for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++) 876 __set_bit(pdata->ev_codes_orient_2d[i], 877 input_dev->keybit); 878 } else { 879 ac->pdata.orientation_enable = 0; 880 } 881 882 AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN); 883 884 ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK); 885 886 return ac; 887 888 err_remove_attr: 889 sysfs_remove_group(&dev->kobj, &adxl34x_attr_group); 890 err_free_irq: 891 free_irq(ac->irq, ac); 892 err_free_mem: 893 input_free_device(input_dev); 894 kfree(ac); 895 err_out: 896 return ERR_PTR(err); 897 } 898 EXPORT_SYMBOL_GPL(adxl34x_probe); 899 900 int adxl34x_remove(struct adxl34x *ac) 901 { 902 sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group); 903 free_irq(ac->irq, ac); 904 input_unregister_device(ac->input); 905 dev_dbg(ac->dev, "unregistered accelerometer\n"); 906 kfree(ac); 907 908 return 0; 909 } 910 EXPORT_SYMBOL_GPL(adxl34x_remove); 911 912 MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>"); 913 MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver"); 914 MODULE_LICENSE("GPL"); 915