1 /* 2 * AD714X CapTouch Programmable Controller driver supporting AD7142/3/7/8/7A 3 * 4 * Copyright 2009 Analog Devices Inc. 5 * 6 * Licensed under the GPL-2 or later. 7 */ 8 9 #include <linux/device.h> 10 #include <linux/init.h> 11 #include <linux/input.h> 12 #include <linux/interrupt.h> 13 #include <linux/slab.h> 14 #include <linux/input/ad714x.h> 15 #include "ad714x.h" 16 17 #define AD714X_PWR_CTRL 0x0 18 #define AD714X_STG_CAL_EN_REG 0x1 19 #define AD714X_AMB_COMP_CTRL0_REG 0x2 20 #define AD714X_PARTID_REG 0x17 21 #define AD7142_PARTID 0xE620 22 #define AD7143_PARTID 0xE630 23 #define AD7147_PARTID 0x1470 24 #define AD7148_PARTID 0x1480 25 #define AD714X_STAGECFG_REG 0x80 26 #define AD714X_SYSCFG_REG 0x0 27 28 #define STG_LOW_INT_EN_REG 0x5 29 #define STG_HIGH_INT_EN_REG 0x6 30 #define STG_COM_INT_EN_REG 0x7 31 #define STG_LOW_INT_STA_REG 0x8 32 #define STG_HIGH_INT_STA_REG 0x9 33 #define STG_COM_INT_STA_REG 0xA 34 35 #define CDC_RESULT_S0 0xB 36 #define CDC_RESULT_S1 0xC 37 #define CDC_RESULT_S2 0xD 38 #define CDC_RESULT_S3 0xE 39 #define CDC_RESULT_S4 0xF 40 #define CDC_RESULT_S5 0x10 41 #define CDC_RESULT_S6 0x11 42 #define CDC_RESULT_S7 0x12 43 #define CDC_RESULT_S8 0x13 44 #define CDC_RESULT_S9 0x14 45 #define CDC_RESULT_S10 0x15 46 #define CDC_RESULT_S11 0x16 47 48 #define STAGE0_AMBIENT 0xF1 49 #define STAGE1_AMBIENT 0x115 50 #define STAGE2_AMBIENT 0x139 51 #define STAGE3_AMBIENT 0x15D 52 #define STAGE4_AMBIENT 0x181 53 #define STAGE5_AMBIENT 0x1A5 54 #define STAGE6_AMBIENT 0x1C9 55 #define STAGE7_AMBIENT 0x1ED 56 #define STAGE8_AMBIENT 0x211 57 #define STAGE9_AMBIENT 0x234 58 #define STAGE10_AMBIENT 0x259 59 #define STAGE11_AMBIENT 0x27D 60 61 #define PER_STAGE_REG_NUM 36 62 #define STAGE_NUM 12 63 #define STAGE_CFGREG_NUM 8 64 #define SYS_CFGREG_NUM 8 65 66 /* 67 * driver information which will be used to maintain the software flow 68 */ 69 enum ad714x_device_state { IDLE, JITTER, ACTIVE, SPACE }; 70 71 struct ad714x_slider_drv { 72 int highest_stage; 73 int abs_pos; 74 int flt_pos; 75 enum ad714x_device_state state; 76 struct input_dev *input; 77 }; 78 79 struct ad714x_wheel_drv { 80 int abs_pos; 81 int flt_pos; 82 int pre_mean_value; 83 int pre_highest_stage; 84 int pre_mean_value_no_offset; 85 int mean_value; 86 int mean_value_no_offset; 87 int pos_offset; 88 int pos_ratio; 89 int highest_stage; 90 enum ad714x_device_state state; 91 struct input_dev *input; 92 }; 93 94 struct ad714x_touchpad_drv { 95 int x_highest_stage; 96 int x_flt_pos; 97 int x_abs_pos; 98 int y_highest_stage; 99 int y_flt_pos; 100 int y_abs_pos; 101 int left_ep; 102 int left_ep_val; 103 int right_ep; 104 int right_ep_val; 105 int top_ep; 106 int top_ep_val; 107 int bottom_ep; 108 int bottom_ep_val; 109 enum ad714x_device_state state; 110 struct input_dev *input; 111 }; 112 113 struct ad714x_button_drv { 114 enum ad714x_device_state state; 115 /* 116 * Unlike slider/wheel/touchpad, all buttons point to 117 * same input_dev instance 118 */ 119 struct input_dev *input; 120 }; 121 122 struct ad714x_driver_data { 123 struct ad714x_slider_drv *slider; 124 struct ad714x_wheel_drv *wheel; 125 struct ad714x_touchpad_drv *touchpad; 126 struct ad714x_button_drv *button; 127 }; 128 129 /* 130 * information to integrate all things which will be private data 131 * of spi/i2c device 132 */ 133 struct ad714x_chip { 134 unsigned short h_state; 135 unsigned short l_state; 136 unsigned short c_state; 137 unsigned short adc_reg[STAGE_NUM]; 138 unsigned short amb_reg[STAGE_NUM]; 139 unsigned short sensor_val[STAGE_NUM]; 140 141 struct ad714x_platform_data *hw; 142 struct ad714x_driver_data *sw; 143 144 int irq; 145 struct device *dev; 146 ad714x_read_t read; 147 ad714x_write_t write; 148 149 struct mutex mutex; 150 151 unsigned product; 152 unsigned version; 153 }; 154 155 static void ad714x_use_com_int(struct ad714x_chip *ad714x, 156 int start_stage, int end_stage) 157 { 158 unsigned short data; 159 unsigned short mask; 160 161 mask = ((1 << (end_stage + 1)) - 1) - (1 << start_stage); 162 163 ad714x->read(ad714x->dev, STG_COM_INT_EN_REG, &data); 164 data |= 1 << start_stage; 165 ad714x->write(ad714x->dev, STG_COM_INT_EN_REG, data); 166 167 ad714x->read(ad714x->dev, STG_HIGH_INT_EN_REG, &data); 168 data &= ~mask; 169 ad714x->write(ad714x->dev, STG_HIGH_INT_EN_REG, data); 170 } 171 172 static void ad714x_use_thr_int(struct ad714x_chip *ad714x, 173 int start_stage, int end_stage) 174 { 175 unsigned short data; 176 unsigned short mask; 177 178 mask = ((1 << (end_stage + 1)) - 1) - (1 << start_stage); 179 180 ad714x->read(ad714x->dev, STG_COM_INT_EN_REG, &data); 181 data &= ~(1 << start_stage); 182 ad714x->write(ad714x->dev, STG_COM_INT_EN_REG, data); 183 184 ad714x->read(ad714x->dev, STG_HIGH_INT_EN_REG, &data); 185 data |= mask; 186 ad714x->write(ad714x->dev, STG_HIGH_INT_EN_REG, data); 187 } 188 189 static int ad714x_cal_highest_stage(struct ad714x_chip *ad714x, 190 int start_stage, int end_stage) 191 { 192 int max_res = 0; 193 int max_idx = 0; 194 int i; 195 196 for (i = start_stage; i <= end_stage; i++) { 197 if (ad714x->sensor_val[i] > max_res) { 198 max_res = ad714x->sensor_val[i]; 199 max_idx = i; 200 } 201 } 202 203 return max_idx; 204 } 205 206 static int ad714x_cal_abs_pos(struct ad714x_chip *ad714x, 207 int start_stage, int end_stage, 208 int highest_stage, int max_coord) 209 { 210 int a_param, b_param; 211 212 if (highest_stage == start_stage) { 213 a_param = ad714x->sensor_val[start_stage + 1]; 214 b_param = ad714x->sensor_val[start_stage] + 215 ad714x->sensor_val[start_stage + 1]; 216 } else if (highest_stage == end_stage) { 217 a_param = ad714x->sensor_val[end_stage] * 218 (end_stage - start_stage) + 219 ad714x->sensor_val[end_stage - 1] * 220 (end_stage - start_stage - 1); 221 b_param = ad714x->sensor_val[end_stage] + 222 ad714x->sensor_val[end_stage - 1]; 223 } else { 224 a_param = ad714x->sensor_val[highest_stage] * 225 (highest_stage - start_stage) + 226 ad714x->sensor_val[highest_stage - 1] * 227 (highest_stage - start_stage - 1) + 228 ad714x->sensor_val[highest_stage + 1] * 229 (highest_stage - start_stage + 1); 230 b_param = ad714x->sensor_val[highest_stage] + 231 ad714x->sensor_val[highest_stage - 1] + 232 ad714x->sensor_val[highest_stage + 1]; 233 } 234 235 return (max_coord / (end_stage - start_stage)) * a_param / b_param; 236 } 237 238 /* 239 * One button can connect to multi positive and negative of CDCs 240 * Multi-buttons can connect to same positive/negative of one CDC 241 */ 242 static void ad714x_button_state_machine(struct ad714x_chip *ad714x, int idx) 243 { 244 struct ad714x_button_plat *hw = &ad714x->hw->button[idx]; 245 struct ad714x_button_drv *sw = &ad714x->sw->button[idx]; 246 247 switch (sw->state) { 248 case IDLE: 249 if (((ad714x->h_state & hw->h_mask) == hw->h_mask) && 250 ((ad714x->l_state & hw->l_mask) == hw->l_mask)) { 251 dev_dbg(ad714x->dev, "button %d touched\n", idx); 252 input_report_key(sw->input, hw->keycode, 1); 253 input_sync(sw->input); 254 sw->state = ACTIVE; 255 } 256 break; 257 258 case ACTIVE: 259 if (((ad714x->h_state & hw->h_mask) != hw->h_mask) || 260 ((ad714x->l_state & hw->l_mask) != hw->l_mask)) { 261 dev_dbg(ad714x->dev, "button %d released\n", idx); 262 input_report_key(sw->input, hw->keycode, 0); 263 input_sync(sw->input); 264 sw->state = IDLE; 265 } 266 break; 267 268 default: 269 break; 270 } 271 } 272 273 /* 274 * The response of a sensor is defined by the absolute number of codes 275 * between the current CDC value and the ambient value. 276 */ 277 static void ad714x_slider_cal_sensor_val(struct ad714x_chip *ad714x, int idx) 278 { 279 struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; 280 int i; 281 282 for (i = hw->start_stage; i <= hw->end_stage; i++) { 283 ad714x->read(ad714x->dev, CDC_RESULT_S0 + i, 284 &ad714x->adc_reg[i]); 285 ad714x->read(ad714x->dev, 286 STAGE0_AMBIENT + i * PER_STAGE_REG_NUM, 287 &ad714x->amb_reg[i]); 288 289 ad714x->sensor_val[i] = abs(ad714x->adc_reg[i] - 290 ad714x->amb_reg[i]); 291 } 292 } 293 294 static void ad714x_slider_cal_highest_stage(struct ad714x_chip *ad714x, int idx) 295 { 296 struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; 297 struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; 298 299 sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage, 300 hw->end_stage); 301 302 dev_dbg(ad714x->dev, "slider %d highest_stage:%d\n", idx, 303 sw->highest_stage); 304 } 305 306 /* 307 * The formulae are very straight forward. It uses the sensor with the 308 * highest response and the 2 adjacent ones. 309 * When Sensor 0 has the highest response, only sensor 0 and sensor 1 310 * are used in the calculations. Similarly when the last sensor has the 311 * highest response, only the last sensor and the second last sensors 312 * are used in the calculations. 313 * 314 * For i= idx_of_peak_Sensor-1 to i= idx_of_peak_Sensor+1 315 * v += Sensor response(i)*i 316 * w += Sensor response(i) 317 * POS=(Number_of_Positions_Wanted/(Number_of_Sensors_Used-1)) *(v/w) 318 */ 319 static void ad714x_slider_cal_abs_pos(struct ad714x_chip *ad714x, int idx) 320 { 321 struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; 322 struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; 323 324 sw->abs_pos = ad714x_cal_abs_pos(ad714x, hw->start_stage, hw->end_stage, 325 sw->highest_stage, hw->max_coord); 326 327 dev_dbg(ad714x->dev, "slider %d absolute position:%d\n", idx, 328 sw->abs_pos); 329 } 330 331 /* 332 * To minimise the Impact of the noise on the algorithm, ADI developed a 333 * routine that filters the CDC results after they have been read by the 334 * host processor. 335 * The filter used is an Infinite Input Response(IIR) filter implemented 336 * in firmware and attenuates the noise on the CDC results after they've 337 * been read by the host processor. 338 * Filtered_CDC_result = (Filtered_CDC_result * (10 - Coefficient) + 339 * Latest_CDC_result * Coefficient)/10 340 */ 341 static void ad714x_slider_cal_flt_pos(struct ad714x_chip *ad714x, int idx) 342 { 343 struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; 344 345 sw->flt_pos = (sw->flt_pos * (10 - 4) + 346 sw->abs_pos * 4)/10; 347 348 dev_dbg(ad714x->dev, "slider %d filter position:%d\n", idx, 349 sw->flt_pos); 350 } 351 352 static void ad714x_slider_use_com_int(struct ad714x_chip *ad714x, int idx) 353 { 354 struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; 355 356 ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage); 357 } 358 359 static void ad714x_slider_use_thr_int(struct ad714x_chip *ad714x, int idx) 360 { 361 struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; 362 363 ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage); 364 } 365 366 static void ad714x_slider_state_machine(struct ad714x_chip *ad714x, int idx) 367 { 368 struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; 369 struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; 370 unsigned short h_state, c_state; 371 unsigned short mask; 372 373 mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1); 374 375 h_state = ad714x->h_state & mask; 376 c_state = ad714x->c_state & mask; 377 378 switch (sw->state) { 379 case IDLE: 380 if (h_state) { 381 sw->state = JITTER; 382 /* In End of Conversion interrupt mode, the AD714X 383 * continuously generates hardware interrupts. 384 */ 385 ad714x_slider_use_com_int(ad714x, idx); 386 dev_dbg(ad714x->dev, "slider %d touched\n", idx); 387 } 388 break; 389 390 case JITTER: 391 if (c_state == mask) { 392 ad714x_slider_cal_sensor_val(ad714x, idx); 393 ad714x_slider_cal_highest_stage(ad714x, idx); 394 ad714x_slider_cal_abs_pos(ad714x, idx); 395 sw->flt_pos = sw->abs_pos; 396 sw->state = ACTIVE; 397 } 398 break; 399 400 case ACTIVE: 401 if (c_state == mask) { 402 if (h_state) { 403 ad714x_slider_cal_sensor_val(ad714x, idx); 404 ad714x_slider_cal_highest_stage(ad714x, idx); 405 ad714x_slider_cal_abs_pos(ad714x, idx); 406 ad714x_slider_cal_flt_pos(ad714x, idx); 407 408 input_report_abs(sw->input, ABS_X, sw->flt_pos); 409 input_report_key(sw->input, BTN_TOUCH, 1); 410 } else { 411 /* When the user lifts off the sensor, configure 412 * the AD714X back to threshold interrupt mode. 413 */ 414 ad714x_slider_use_thr_int(ad714x, idx); 415 sw->state = IDLE; 416 input_report_key(sw->input, BTN_TOUCH, 0); 417 dev_dbg(ad714x->dev, "slider %d released\n", 418 idx); 419 } 420 input_sync(sw->input); 421 } 422 break; 423 424 default: 425 break; 426 } 427 } 428 429 /* 430 * When the scroll wheel is activated, we compute the absolute position based 431 * on the sensor values. To calculate the position, we first determine the 432 * sensor that has the greatest response among the 8 sensors that constitutes 433 * the scrollwheel. Then we determined the 2 sensors on either sides of the 434 * sensor with the highest response and we apply weights to these sensors. 435 */ 436 static void ad714x_wheel_cal_highest_stage(struct ad714x_chip *ad714x, int idx) 437 { 438 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 439 struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; 440 441 sw->pre_highest_stage = sw->highest_stage; 442 sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage, 443 hw->end_stage); 444 445 dev_dbg(ad714x->dev, "wheel %d highest_stage:%d\n", idx, 446 sw->highest_stage); 447 } 448 449 static void ad714x_wheel_cal_sensor_val(struct ad714x_chip *ad714x, int idx) 450 { 451 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 452 int i; 453 454 for (i = hw->start_stage; i <= hw->end_stage; i++) { 455 ad714x->read(ad714x->dev, CDC_RESULT_S0 + i, 456 &ad714x->adc_reg[i]); 457 ad714x->read(ad714x->dev, 458 STAGE0_AMBIENT + i * PER_STAGE_REG_NUM, 459 &ad714x->amb_reg[i]); 460 if (ad714x->adc_reg[i] > ad714x->amb_reg[i]) 461 ad714x->sensor_val[i] = ad714x->adc_reg[i] - 462 ad714x->amb_reg[i]; 463 else 464 ad714x->sensor_val[i] = 0; 465 } 466 } 467 468 /* 469 * When the scroll wheel is activated, we compute the absolute position based 470 * on the sensor values. To calculate the position, we first determine the 471 * sensor that has the greatest response among the 8 sensors that constitutes 472 * the scrollwheel. Then we determined the 2 sensors on either sides of the 473 * sensor with the highest response and we apply weights to these sensors. The 474 * result of this computation gives us the mean value which defined by the 475 * following formula: 476 * For i= second_before_highest_stage to i= second_after_highest_stage 477 * v += Sensor response(i)*WEIGHT*(i+3) 478 * w += Sensor response(i) 479 * Mean_Value=v/w 480 * pos_on_scrollwheel = (Mean_Value - position_offset) / position_ratio 481 */ 482 483 #define WEIGHT_FACTOR 30 484 /* This constant prevents the "PositionOffset" from reaching a big value */ 485 #define OFFSET_POSITION_CLAMP 120 486 static void ad714x_wheel_cal_abs_pos(struct ad714x_chip *ad714x, int idx) 487 { 488 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 489 struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; 490 int stage_num = hw->end_stage - hw->start_stage + 1; 491 int second_before, first_before, highest, first_after, second_after; 492 int a_param, b_param; 493 494 /* Calculate Mean value */ 495 496 second_before = (sw->highest_stage + stage_num - 2) % stage_num; 497 first_before = (sw->highest_stage + stage_num - 1) % stage_num; 498 highest = sw->highest_stage; 499 first_after = (sw->highest_stage + stage_num + 1) % stage_num; 500 second_after = (sw->highest_stage + stage_num + 2) % stage_num; 501 502 if (((sw->highest_stage - hw->start_stage) > 1) && 503 ((hw->end_stage - sw->highest_stage) > 1)) { 504 a_param = ad714x->sensor_val[second_before] * 505 (second_before - hw->start_stage + 3) + 506 ad714x->sensor_val[first_before] * 507 (second_before - hw->start_stage + 3) + 508 ad714x->sensor_val[highest] * 509 (second_before - hw->start_stage + 3) + 510 ad714x->sensor_val[first_after] * 511 (first_after - hw->start_stage + 3) + 512 ad714x->sensor_val[second_after] * 513 (second_after - hw->start_stage + 3); 514 } else { 515 a_param = ad714x->sensor_val[second_before] * 516 (second_before - hw->start_stage + 1) + 517 ad714x->sensor_val[first_before] * 518 (second_before - hw->start_stage + 2) + 519 ad714x->sensor_val[highest] * 520 (second_before - hw->start_stage + 3) + 521 ad714x->sensor_val[first_after] * 522 (first_after - hw->start_stage + 4) + 523 ad714x->sensor_val[second_after] * 524 (second_after - hw->start_stage + 5); 525 } 526 a_param *= WEIGHT_FACTOR; 527 528 b_param = ad714x->sensor_val[second_before] + 529 ad714x->sensor_val[first_before] + 530 ad714x->sensor_val[highest] + 531 ad714x->sensor_val[first_after] + 532 ad714x->sensor_val[second_after]; 533 534 sw->pre_mean_value = sw->mean_value; 535 sw->mean_value = a_param / b_param; 536 537 /* Calculate the offset */ 538 539 if ((sw->pre_highest_stage == hw->end_stage) && 540 (sw->highest_stage == hw->start_stage)) 541 sw->pos_offset = sw->mean_value; 542 else if ((sw->pre_highest_stage == hw->start_stage) && 543 (sw->highest_stage == hw->end_stage)) 544 sw->pos_offset = sw->pre_mean_value; 545 546 if (sw->pos_offset > OFFSET_POSITION_CLAMP) 547 sw->pos_offset = OFFSET_POSITION_CLAMP; 548 549 /* Calculate the mean value without the offset */ 550 551 sw->pre_mean_value_no_offset = sw->mean_value_no_offset; 552 sw->mean_value_no_offset = sw->mean_value - sw->pos_offset; 553 if (sw->mean_value_no_offset < 0) 554 sw->mean_value_no_offset = 0; 555 556 /* Calculate ratio to scale down to NUMBER_OF_WANTED_POSITIONS */ 557 558 if ((sw->pre_highest_stage == hw->end_stage) && 559 (sw->highest_stage == hw->start_stage)) 560 sw->pos_ratio = (sw->pre_mean_value_no_offset * 100) / 561 hw->max_coord; 562 else if ((sw->pre_highest_stage == hw->start_stage) && 563 (sw->highest_stage == hw->end_stage)) 564 sw->pos_ratio = (sw->mean_value_no_offset * 100) / 565 hw->max_coord; 566 sw->abs_pos = (sw->mean_value_no_offset * 100) / sw->pos_ratio; 567 if (sw->abs_pos > hw->max_coord) 568 sw->abs_pos = hw->max_coord; 569 } 570 571 static void ad714x_wheel_cal_flt_pos(struct ad714x_chip *ad714x, int idx) 572 { 573 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 574 struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; 575 if (((sw->pre_highest_stage == hw->end_stage) && 576 (sw->highest_stage == hw->start_stage)) || 577 ((sw->pre_highest_stage == hw->start_stage) && 578 (sw->highest_stage == hw->end_stage))) 579 sw->flt_pos = sw->abs_pos; 580 else 581 sw->flt_pos = ((sw->flt_pos * 30) + (sw->abs_pos * 71)) / 100; 582 583 if (sw->flt_pos > hw->max_coord) 584 sw->flt_pos = hw->max_coord; 585 } 586 587 static void ad714x_wheel_use_com_int(struct ad714x_chip *ad714x, int idx) 588 { 589 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 590 591 ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage); 592 } 593 594 static void ad714x_wheel_use_thr_int(struct ad714x_chip *ad714x, int idx) 595 { 596 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 597 598 ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage); 599 } 600 601 static void ad714x_wheel_state_machine(struct ad714x_chip *ad714x, int idx) 602 { 603 struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; 604 struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; 605 unsigned short h_state, c_state; 606 unsigned short mask; 607 608 mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1); 609 610 h_state = ad714x->h_state & mask; 611 c_state = ad714x->c_state & mask; 612 613 switch (sw->state) { 614 case IDLE: 615 if (h_state) { 616 sw->state = JITTER; 617 /* In End of Conversion interrupt mode, the AD714X 618 * continuously generates hardware interrupts. 619 */ 620 ad714x_wheel_use_com_int(ad714x, idx); 621 dev_dbg(ad714x->dev, "wheel %d touched\n", idx); 622 } 623 break; 624 625 case JITTER: 626 if (c_state == mask) { 627 ad714x_wheel_cal_sensor_val(ad714x, idx); 628 ad714x_wheel_cal_highest_stage(ad714x, idx); 629 ad714x_wheel_cal_abs_pos(ad714x, idx); 630 sw->flt_pos = sw->abs_pos; 631 sw->state = ACTIVE; 632 } 633 break; 634 635 case ACTIVE: 636 if (c_state == mask) { 637 if (h_state) { 638 ad714x_wheel_cal_sensor_val(ad714x, idx); 639 ad714x_wheel_cal_highest_stage(ad714x, idx); 640 ad714x_wheel_cal_abs_pos(ad714x, idx); 641 ad714x_wheel_cal_flt_pos(ad714x, idx); 642 643 input_report_abs(sw->input, ABS_WHEEL, 644 sw->abs_pos); 645 input_report_key(sw->input, BTN_TOUCH, 1); 646 } else { 647 /* When the user lifts off the sensor, configure 648 * the AD714X back to threshold interrupt mode. 649 */ 650 ad714x_wheel_use_thr_int(ad714x, idx); 651 sw->state = IDLE; 652 input_report_key(sw->input, BTN_TOUCH, 0); 653 654 dev_dbg(ad714x->dev, "wheel %d released\n", 655 idx); 656 } 657 input_sync(sw->input); 658 } 659 break; 660 661 default: 662 break; 663 } 664 } 665 666 static void touchpad_cal_sensor_val(struct ad714x_chip *ad714x, int idx) 667 { 668 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 669 int i; 670 671 for (i = hw->x_start_stage; i <= hw->x_end_stage; i++) { 672 ad714x->read(ad714x->dev, CDC_RESULT_S0 + i, 673 &ad714x->adc_reg[i]); 674 ad714x->read(ad714x->dev, 675 STAGE0_AMBIENT + i * PER_STAGE_REG_NUM, 676 &ad714x->amb_reg[i]); 677 if (ad714x->adc_reg[i] > ad714x->amb_reg[i]) 678 ad714x->sensor_val[i] = ad714x->adc_reg[i] - 679 ad714x->amb_reg[i]; 680 else 681 ad714x->sensor_val[i] = 0; 682 } 683 } 684 685 static void touchpad_cal_highest_stage(struct ad714x_chip *ad714x, int idx) 686 { 687 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 688 struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; 689 690 sw->x_highest_stage = ad714x_cal_highest_stage(ad714x, 691 hw->x_start_stage, hw->x_end_stage); 692 sw->y_highest_stage = ad714x_cal_highest_stage(ad714x, 693 hw->y_start_stage, hw->y_end_stage); 694 695 dev_dbg(ad714x->dev, 696 "touchpad %d x_highest_stage:%d, y_highest_stage:%d\n", 697 idx, sw->x_highest_stage, sw->y_highest_stage); 698 } 699 700 /* 701 * If 2 fingers are touching the sensor then 2 peaks can be observed in the 702 * distribution. 703 * The arithmetic doesn't support to get absolute coordinates for multi-touch 704 * yet. 705 */ 706 static int touchpad_check_second_peak(struct ad714x_chip *ad714x, int idx) 707 { 708 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 709 struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; 710 int i; 711 712 for (i = hw->x_start_stage; i < sw->x_highest_stage; i++) { 713 if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1]) 714 > (ad714x->sensor_val[i + 1] / 10)) 715 return 1; 716 } 717 718 for (i = sw->x_highest_stage; i < hw->x_end_stage; i++) { 719 if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i]) 720 > (ad714x->sensor_val[i] / 10)) 721 return 1; 722 } 723 724 for (i = hw->y_start_stage; i < sw->y_highest_stage; i++) { 725 if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1]) 726 > (ad714x->sensor_val[i + 1] / 10)) 727 return 1; 728 } 729 730 for (i = sw->y_highest_stage; i < hw->y_end_stage; i++) { 731 if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i]) 732 > (ad714x->sensor_val[i] / 10)) 733 return 1; 734 } 735 736 return 0; 737 } 738 739 /* 740 * If only one finger is used to activate the touch pad then only 1 peak will be 741 * registered in the distribution. This peak and the 2 adjacent sensors will be 742 * used in the calculation of the absolute position. This will prevent hand 743 * shadows to affect the absolute position calculation. 744 */ 745 static void touchpad_cal_abs_pos(struct ad714x_chip *ad714x, int idx) 746 { 747 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 748 struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; 749 750 sw->x_abs_pos = ad714x_cal_abs_pos(ad714x, hw->x_start_stage, 751 hw->x_end_stage, sw->x_highest_stage, hw->x_max_coord); 752 sw->y_abs_pos = ad714x_cal_abs_pos(ad714x, hw->y_start_stage, 753 hw->y_end_stage, sw->y_highest_stage, hw->y_max_coord); 754 755 dev_dbg(ad714x->dev, "touchpad %d absolute position:(%d, %d)\n", idx, 756 sw->x_abs_pos, sw->y_abs_pos); 757 } 758 759 static void touchpad_cal_flt_pos(struct ad714x_chip *ad714x, int idx) 760 { 761 struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; 762 763 sw->x_flt_pos = (sw->x_flt_pos * (10 - 4) + 764 sw->x_abs_pos * 4)/10; 765 sw->y_flt_pos = (sw->y_flt_pos * (10 - 4) + 766 sw->y_abs_pos * 4)/10; 767 768 dev_dbg(ad714x->dev, "touchpad %d filter position:(%d, %d)\n", 769 idx, sw->x_flt_pos, sw->y_flt_pos); 770 } 771 772 /* 773 * To prevent distortion from showing in the absolute position, it is 774 * necessary to detect the end points. When endpoints are detected, the 775 * driver stops updating the status variables with absolute positions. 776 * End points are detected on the 4 edges of the touchpad sensor. The 777 * method to detect them is the same for all 4. 778 * To detect the end points, the firmware computes the difference in 779 * percent between the sensor on the edge and the adjacent one. The 780 * difference is calculated in percent in order to make the end point 781 * detection independent of the pressure. 782 */ 783 784 #define LEFT_END_POINT_DETECTION_LEVEL 550 785 #define RIGHT_END_POINT_DETECTION_LEVEL 750 786 #define LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL 850 787 #define TOP_END_POINT_DETECTION_LEVEL 550 788 #define BOTTOM_END_POINT_DETECTION_LEVEL 950 789 #define TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL 700 790 static int touchpad_check_endpoint(struct ad714x_chip *ad714x, int idx) 791 { 792 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 793 struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; 794 int percent_sensor_diff; 795 796 /* left endpoint detect */ 797 percent_sensor_diff = (ad714x->sensor_val[hw->x_start_stage] - 798 ad714x->sensor_val[hw->x_start_stage + 1]) * 100 / 799 ad714x->sensor_val[hw->x_start_stage + 1]; 800 if (!sw->left_ep) { 801 if (percent_sensor_diff >= LEFT_END_POINT_DETECTION_LEVEL) { 802 sw->left_ep = 1; 803 sw->left_ep_val = 804 ad714x->sensor_val[hw->x_start_stage + 1]; 805 } 806 } else { 807 if ((percent_sensor_diff < LEFT_END_POINT_DETECTION_LEVEL) && 808 (ad714x->sensor_val[hw->x_start_stage + 1] > 809 LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->left_ep_val)) 810 sw->left_ep = 0; 811 } 812 813 /* right endpoint detect */ 814 percent_sensor_diff = (ad714x->sensor_val[hw->x_end_stage] - 815 ad714x->sensor_val[hw->x_end_stage - 1]) * 100 / 816 ad714x->sensor_val[hw->x_end_stage - 1]; 817 if (!sw->right_ep) { 818 if (percent_sensor_diff >= RIGHT_END_POINT_DETECTION_LEVEL) { 819 sw->right_ep = 1; 820 sw->right_ep_val = 821 ad714x->sensor_val[hw->x_end_stage - 1]; 822 } 823 } else { 824 if ((percent_sensor_diff < RIGHT_END_POINT_DETECTION_LEVEL) && 825 (ad714x->sensor_val[hw->x_end_stage - 1] > 826 LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->right_ep_val)) 827 sw->right_ep = 0; 828 } 829 830 /* top endpoint detect */ 831 percent_sensor_diff = (ad714x->sensor_val[hw->y_start_stage] - 832 ad714x->sensor_val[hw->y_start_stage + 1]) * 100 / 833 ad714x->sensor_val[hw->y_start_stage + 1]; 834 if (!sw->top_ep) { 835 if (percent_sensor_diff >= TOP_END_POINT_DETECTION_LEVEL) { 836 sw->top_ep = 1; 837 sw->top_ep_val = 838 ad714x->sensor_val[hw->y_start_stage + 1]; 839 } 840 } else { 841 if ((percent_sensor_diff < TOP_END_POINT_DETECTION_LEVEL) && 842 (ad714x->sensor_val[hw->y_start_stage + 1] > 843 TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->top_ep_val)) 844 sw->top_ep = 0; 845 } 846 847 /* bottom endpoint detect */ 848 percent_sensor_diff = (ad714x->sensor_val[hw->y_end_stage] - 849 ad714x->sensor_val[hw->y_end_stage - 1]) * 100 / 850 ad714x->sensor_val[hw->y_end_stage - 1]; 851 if (!sw->bottom_ep) { 852 if (percent_sensor_diff >= BOTTOM_END_POINT_DETECTION_LEVEL) { 853 sw->bottom_ep = 1; 854 sw->bottom_ep_val = 855 ad714x->sensor_val[hw->y_end_stage - 1]; 856 } 857 } else { 858 if ((percent_sensor_diff < BOTTOM_END_POINT_DETECTION_LEVEL) && 859 (ad714x->sensor_val[hw->y_end_stage - 1] > 860 TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->bottom_ep_val)) 861 sw->bottom_ep = 0; 862 } 863 864 return sw->left_ep || sw->right_ep || sw->top_ep || sw->bottom_ep; 865 } 866 867 static void touchpad_use_com_int(struct ad714x_chip *ad714x, int idx) 868 { 869 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 870 871 ad714x_use_com_int(ad714x, hw->x_start_stage, hw->x_end_stage); 872 } 873 874 static void touchpad_use_thr_int(struct ad714x_chip *ad714x, int idx) 875 { 876 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 877 878 ad714x_use_thr_int(ad714x, hw->x_start_stage, hw->x_end_stage); 879 ad714x_use_thr_int(ad714x, hw->y_start_stage, hw->y_end_stage); 880 } 881 882 static void ad714x_touchpad_state_machine(struct ad714x_chip *ad714x, int idx) 883 { 884 struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; 885 struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; 886 unsigned short h_state, c_state; 887 unsigned short mask; 888 889 mask = (((1 << (hw->x_end_stage + 1)) - 1) - 890 ((1 << hw->x_start_stage) - 1)) + 891 (((1 << (hw->y_end_stage + 1)) - 1) - 892 ((1 << hw->y_start_stage) - 1)); 893 894 h_state = ad714x->h_state & mask; 895 c_state = ad714x->c_state & mask; 896 897 switch (sw->state) { 898 case IDLE: 899 if (h_state) { 900 sw->state = JITTER; 901 /* In End of Conversion interrupt mode, the AD714X 902 * continuously generates hardware interrupts. 903 */ 904 touchpad_use_com_int(ad714x, idx); 905 dev_dbg(ad714x->dev, "touchpad %d touched\n", idx); 906 } 907 break; 908 909 case JITTER: 910 if (c_state == mask) { 911 touchpad_cal_sensor_val(ad714x, idx); 912 touchpad_cal_highest_stage(ad714x, idx); 913 if ((!touchpad_check_second_peak(ad714x, idx)) && 914 (!touchpad_check_endpoint(ad714x, idx))) { 915 dev_dbg(ad714x->dev, 916 "touchpad%d, 2 fingers or endpoint\n", 917 idx); 918 touchpad_cal_abs_pos(ad714x, idx); 919 sw->x_flt_pos = sw->x_abs_pos; 920 sw->y_flt_pos = sw->y_abs_pos; 921 sw->state = ACTIVE; 922 } 923 } 924 break; 925 926 case ACTIVE: 927 if (c_state == mask) { 928 if (h_state) { 929 touchpad_cal_sensor_val(ad714x, idx); 930 touchpad_cal_highest_stage(ad714x, idx); 931 if ((!touchpad_check_second_peak(ad714x, idx)) 932 && (!touchpad_check_endpoint(ad714x, idx))) { 933 touchpad_cal_abs_pos(ad714x, idx); 934 touchpad_cal_flt_pos(ad714x, idx); 935 input_report_abs(sw->input, ABS_X, 936 sw->x_flt_pos); 937 input_report_abs(sw->input, ABS_Y, 938 sw->y_flt_pos); 939 input_report_key(sw->input, BTN_TOUCH, 940 1); 941 } 942 } else { 943 /* When the user lifts off the sensor, configure 944 * the AD714X back to threshold interrupt mode. 945 */ 946 touchpad_use_thr_int(ad714x, idx); 947 sw->state = IDLE; 948 input_report_key(sw->input, BTN_TOUCH, 0); 949 dev_dbg(ad714x->dev, "touchpad %d released\n", 950 idx); 951 } 952 input_sync(sw->input); 953 } 954 break; 955 956 default: 957 break; 958 } 959 } 960 961 static int ad714x_hw_detect(struct ad714x_chip *ad714x) 962 { 963 unsigned short data; 964 965 ad714x->read(ad714x->dev, AD714X_PARTID_REG, &data); 966 switch (data & 0xFFF0) { 967 case AD7142_PARTID: 968 ad714x->product = 0x7142; 969 ad714x->version = data & 0xF; 970 dev_info(ad714x->dev, "found AD7142 captouch, rev:%d\n", 971 ad714x->version); 972 return 0; 973 974 case AD7143_PARTID: 975 ad714x->product = 0x7143; 976 ad714x->version = data & 0xF; 977 dev_info(ad714x->dev, "found AD7143 captouch, rev:%d\n", 978 ad714x->version); 979 return 0; 980 981 case AD7147_PARTID: 982 ad714x->product = 0x7147; 983 ad714x->version = data & 0xF; 984 dev_info(ad714x->dev, "found AD7147(A) captouch, rev:%d\n", 985 ad714x->version); 986 return 0; 987 988 case AD7148_PARTID: 989 ad714x->product = 0x7148; 990 ad714x->version = data & 0xF; 991 dev_info(ad714x->dev, "found AD7148 captouch, rev:%d\n", 992 ad714x->version); 993 return 0; 994 995 default: 996 dev_err(ad714x->dev, 997 "fail to detect AD714X captouch, read ID is %04x\n", 998 data); 999 return -ENODEV; 1000 } 1001 } 1002 1003 static void ad714x_hw_init(struct ad714x_chip *ad714x) 1004 { 1005 int i, j; 1006 unsigned short reg_base; 1007 unsigned short data; 1008 1009 /* configuration CDC and interrupts */ 1010 1011 for (i = 0; i < STAGE_NUM; i++) { 1012 reg_base = AD714X_STAGECFG_REG + i * STAGE_CFGREG_NUM; 1013 for (j = 0; j < STAGE_CFGREG_NUM; j++) 1014 ad714x->write(ad714x->dev, reg_base + j, 1015 ad714x->hw->stage_cfg_reg[i][j]); 1016 } 1017 1018 for (i = 0; i < SYS_CFGREG_NUM; i++) 1019 ad714x->write(ad714x->dev, AD714X_SYSCFG_REG + i, 1020 ad714x->hw->sys_cfg_reg[i]); 1021 for (i = 0; i < SYS_CFGREG_NUM; i++) 1022 ad714x->read(ad714x->dev, AD714X_SYSCFG_REG + i, 1023 &data); 1024 1025 ad714x->write(ad714x->dev, AD714X_STG_CAL_EN_REG, 0xFFF); 1026 1027 /* clear all interrupts */ 1028 ad714x->read(ad714x->dev, STG_LOW_INT_STA_REG, &data); 1029 ad714x->read(ad714x->dev, STG_HIGH_INT_STA_REG, &data); 1030 ad714x->read(ad714x->dev, STG_COM_INT_STA_REG, &data); 1031 } 1032 1033 static irqreturn_t ad714x_interrupt_thread(int irq, void *data) 1034 { 1035 struct ad714x_chip *ad714x = data; 1036 int i; 1037 1038 mutex_lock(&ad714x->mutex); 1039 1040 ad714x->read(ad714x->dev, STG_LOW_INT_STA_REG, &ad714x->l_state); 1041 ad714x->read(ad714x->dev, STG_HIGH_INT_STA_REG, &ad714x->h_state); 1042 ad714x->read(ad714x->dev, STG_COM_INT_STA_REG, &ad714x->c_state); 1043 1044 for (i = 0; i < ad714x->hw->button_num; i++) 1045 ad714x_button_state_machine(ad714x, i); 1046 for (i = 0; i < ad714x->hw->slider_num; i++) 1047 ad714x_slider_state_machine(ad714x, i); 1048 for (i = 0; i < ad714x->hw->wheel_num; i++) 1049 ad714x_wheel_state_machine(ad714x, i); 1050 for (i = 0; i < ad714x->hw->touchpad_num; i++) 1051 ad714x_touchpad_state_machine(ad714x, i); 1052 1053 mutex_unlock(&ad714x->mutex); 1054 1055 return IRQ_HANDLED; 1056 } 1057 1058 #define MAX_DEVICE_NUM 8 1059 struct ad714x_chip *ad714x_probe(struct device *dev, u16 bus_type, int irq, 1060 ad714x_read_t read, ad714x_write_t write) 1061 { 1062 int i, alloc_idx; 1063 int error; 1064 struct input_dev *input[MAX_DEVICE_NUM]; 1065 1066 struct ad714x_platform_data *plat_data = dev->platform_data; 1067 struct ad714x_chip *ad714x; 1068 void *drv_mem; 1069 1070 struct ad714x_button_drv *bt_drv; 1071 struct ad714x_slider_drv *sd_drv; 1072 struct ad714x_wheel_drv *wl_drv; 1073 struct ad714x_touchpad_drv *tp_drv; 1074 1075 1076 if (irq <= 0) { 1077 dev_err(dev, "IRQ not configured!\n"); 1078 error = -EINVAL; 1079 goto err_out; 1080 } 1081 1082 if (dev->platform_data == NULL) { 1083 dev_err(dev, "platform data for ad714x doesn't exist\n"); 1084 error = -EINVAL; 1085 goto err_out; 1086 } 1087 1088 ad714x = kzalloc(sizeof(*ad714x) + sizeof(*ad714x->sw) + 1089 sizeof(*sd_drv) * plat_data->slider_num + 1090 sizeof(*wl_drv) * plat_data->wheel_num + 1091 sizeof(*tp_drv) * plat_data->touchpad_num + 1092 sizeof(*bt_drv) * plat_data->button_num, GFP_KERNEL); 1093 if (!ad714x) { 1094 error = -ENOMEM; 1095 goto err_out; 1096 } 1097 1098 ad714x->hw = plat_data; 1099 1100 drv_mem = ad714x + 1; 1101 ad714x->sw = drv_mem; 1102 drv_mem += sizeof(*ad714x->sw); 1103 ad714x->sw->slider = sd_drv = drv_mem; 1104 drv_mem += sizeof(*sd_drv) * ad714x->hw->slider_num; 1105 ad714x->sw->wheel = wl_drv = drv_mem; 1106 drv_mem += sizeof(*wl_drv) * ad714x->hw->wheel_num; 1107 ad714x->sw->touchpad = tp_drv = drv_mem; 1108 drv_mem += sizeof(*tp_drv) * ad714x->hw->touchpad_num; 1109 ad714x->sw->button = bt_drv = drv_mem; 1110 drv_mem += sizeof(*bt_drv) * ad714x->hw->button_num; 1111 1112 ad714x->read = read; 1113 ad714x->write = write; 1114 ad714x->irq = irq; 1115 ad714x->dev = dev; 1116 1117 error = ad714x_hw_detect(ad714x); 1118 if (error) 1119 goto err_free_mem; 1120 1121 /* initialize and request sw/hw resources */ 1122 1123 ad714x_hw_init(ad714x); 1124 mutex_init(&ad714x->mutex); 1125 1126 /* 1127 * Allocate and register AD714X input device 1128 */ 1129 alloc_idx = 0; 1130 1131 /* a slider uses one input_dev instance */ 1132 if (ad714x->hw->slider_num > 0) { 1133 struct ad714x_slider_plat *sd_plat = ad714x->hw->slider; 1134 1135 for (i = 0; i < ad714x->hw->slider_num; i++) { 1136 sd_drv[i].input = input[alloc_idx] = input_allocate_device(); 1137 if (!input[alloc_idx]) { 1138 error = -ENOMEM; 1139 goto err_free_dev; 1140 } 1141 1142 __set_bit(EV_ABS, input[alloc_idx]->evbit); 1143 __set_bit(EV_KEY, input[alloc_idx]->evbit); 1144 __set_bit(ABS_X, input[alloc_idx]->absbit); 1145 __set_bit(BTN_TOUCH, input[alloc_idx]->keybit); 1146 input_set_abs_params(input[alloc_idx], 1147 ABS_X, 0, sd_plat->max_coord, 0, 0); 1148 1149 input[alloc_idx]->id.bustype = bus_type; 1150 input[alloc_idx]->id.product = ad714x->product; 1151 input[alloc_idx]->id.version = ad714x->version; 1152 1153 error = input_register_device(input[alloc_idx]); 1154 if (error) 1155 goto err_free_dev; 1156 1157 alloc_idx++; 1158 } 1159 } 1160 1161 /* a wheel uses one input_dev instance */ 1162 if (ad714x->hw->wheel_num > 0) { 1163 struct ad714x_wheel_plat *wl_plat = ad714x->hw->wheel; 1164 1165 for (i = 0; i < ad714x->hw->wheel_num; i++) { 1166 wl_drv[i].input = input[alloc_idx] = input_allocate_device(); 1167 if (!input[alloc_idx]) { 1168 error = -ENOMEM; 1169 goto err_free_dev; 1170 } 1171 1172 __set_bit(EV_KEY, input[alloc_idx]->evbit); 1173 __set_bit(EV_ABS, input[alloc_idx]->evbit); 1174 __set_bit(ABS_WHEEL, input[alloc_idx]->absbit); 1175 __set_bit(BTN_TOUCH, input[alloc_idx]->keybit); 1176 input_set_abs_params(input[alloc_idx], 1177 ABS_WHEEL, 0, wl_plat->max_coord, 0, 0); 1178 1179 input[alloc_idx]->id.bustype = bus_type; 1180 input[alloc_idx]->id.product = ad714x->product; 1181 input[alloc_idx]->id.version = ad714x->version; 1182 1183 error = input_register_device(input[alloc_idx]); 1184 if (error) 1185 goto err_free_dev; 1186 1187 alloc_idx++; 1188 } 1189 } 1190 1191 /* a touchpad uses one input_dev instance */ 1192 if (ad714x->hw->touchpad_num > 0) { 1193 struct ad714x_touchpad_plat *tp_plat = ad714x->hw->touchpad; 1194 1195 for (i = 0; i < ad714x->hw->touchpad_num; i++) { 1196 tp_drv[i].input = input[alloc_idx] = input_allocate_device(); 1197 if (!input[alloc_idx]) { 1198 error = -ENOMEM; 1199 goto err_free_dev; 1200 } 1201 1202 __set_bit(EV_ABS, input[alloc_idx]->evbit); 1203 __set_bit(EV_KEY, input[alloc_idx]->evbit); 1204 __set_bit(ABS_X, input[alloc_idx]->absbit); 1205 __set_bit(ABS_Y, input[alloc_idx]->absbit); 1206 __set_bit(BTN_TOUCH, input[alloc_idx]->keybit); 1207 input_set_abs_params(input[alloc_idx], 1208 ABS_X, 0, tp_plat->x_max_coord, 0, 0); 1209 input_set_abs_params(input[alloc_idx], 1210 ABS_Y, 0, tp_plat->y_max_coord, 0, 0); 1211 1212 input[alloc_idx]->id.bustype = bus_type; 1213 input[alloc_idx]->id.product = ad714x->product; 1214 input[alloc_idx]->id.version = ad714x->version; 1215 1216 error = input_register_device(input[alloc_idx]); 1217 if (error) 1218 goto err_free_dev; 1219 1220 alloc_idx++; 1221 } 1222 } 1223 1224 /* all buttons use one input node */ 1225 if (ad714x->hw->button_num > 0) { 1226 struct ad714x_button_plat *bt_plat = ad714x->hw->button; 1227 1228 input[alloc_idx] = input_allocate_device(); 1229 if (!input[alloc_idx]) { 1230 error = -ENOMEM; 1231 goto err_free_dev; 1232 } 1233 1234 __set_bit(EV_KEY, input[alloc_idx]->evbit); 1235 for (i = 0; i < ad714x->hw->button_num; i++) { 1236 bt_drv[i].input = input[alloc_idx]; 1237 __set_bit(bt_plat[i].keycode, input[alloc_idx]->keybit); 1238 } 1239 1240 input[alloc_idx]->id.bustype = bus_type; 1241 input[alloc_idx]->id.product = ad714x->product; 1242 input[alloc_idx]->id.version = ad714x->version; 1243 1244 error = input_register_device(input[alloc_idx]); 1245 if (error) 1246 goto err_free_dev; 1247 1248 alloc_idx++; 1249 } 1250 1251 error = request_threaded_irq(ad714x->irq, NULL, ad714x_interrupt_thread, 1252 IRQF_TRIGGER_FALLING, "ad714x_captouch", ad714x); 1253 if (error) { 1254 dev_err(dev, "can't allocate irq %d\n", ad714x->irq); 1255 goto err_unreg_dev; 1256 } 1257 1258 return ad714x; 1259 1260 err_free_dev: 1261 dev_err(dev, "failed to setup AD714x input device %i\n", alloc_idx); 1262 input_free_device(input[alloc_idx]); 1263 err_unreg_dev: 1264 while (--alloc_idx >= 0) 1265 input_unregister_device(input[alloc_idx]); 1266 err_free_mem: 1267 kfree(ad714x); 1268 err_out: 1269 return ERR_PTR(error); 1270 } 1271 EXPORT_SYMBOL(ad714x_probe); 1272 1273 void ad714x_remove(struct ad714x_chip *ad714x) 1274 { 1275 struct ad714x_platform_data *hw = ad714x->hw; 1276 struct ad714x_driver_data *sw = ad714x->sw; 1277 int i; 1278 1279 free_irq(ad714x->irq, ad714x); 1280 1281 /* unregister and free all input devices */ 1282 1283 for (i = 0; i < hw->slider_num; i++) 1284 input_unregister_device(sw->slider[i].input); 1285 1286 for (i = 0; i < hw->wheel_num; i++) 1287 input_unregister_device(sw->wheel[i].input); 1288 1289 for (i = 0; i < hw->touchpad_num; i++) 1290 input_unregister_device(sw->touchpad[i].input); 1291 1292 if (hw->button_num) 1293 input_unregister_device(sw->button[0].input); 1294 1295 kfree(ad714x); 1296 } 1297 EXPORT_SYMBOL(ad714x_remove); 1298 1299 #ifdef CONFIG_PM 1300 int ad714x_disable(struct ad714x_chip *ad714x) 1301 { 1302 unsigned short data; 1303 1304 dev_dbg(ad714x->dev, "%s enter\n", __func__); 1305 1306 mutex_lock(&ad714x->mutex); 1307 1308 data = ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL] | 0x3; 1309 ad714x->write(ad714x->dev, AD714X_PWR_CTRL, data); 1310 1311 mutex_unlock(&ad714x->mutex); 1312 1313 return 0; 1314 } 1315 EXPORT_SYMBOL(ad714x_disable); 1316 1317 int ad714x_enable(struct ad714x_chip *ad714x) 1318 { 1319 unsigned short data; 1320 1321 dev_dbg(ad714x->dev, "%s enter\n", __func__); 1322 1323 mutex_lock(&ad714x->mutex); 1324 1325 /* resume to non-shutdown mode */ 1326 1327 ad714x->write(ad714x->dev, AD714X_PWR_CTRL, 1328 ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL]); 1329 1330 /* make sure the interrupt output line is not low level after resume, 1331 * otherwise we will get no chance to enter falling-edge irq again 1332 */ 1333 1334 ad714x->read(ad714x->dev, STG_LOW_INT_STA_REG, &data); 1335 ad714x->read(ad714x->dev, STG_HIGH_INT_STA_REG, &data); 1336 ad714x->read(ad714x->dev, STG_COM_INT_STA_REG, &data); 1337 1338 mutex_unlock(&ad714x->mutex); 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(ad714x_enable); 1343 #endif 1344 1345 MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor Driver"); 1346 MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); 1347 MODULE_LICENSE("GPL"); 1348