1 /* 2 * drivers/i2c/chips/lm8323.c 3 * 4 * Copyright (C) 2007-2009 Nokia Corporation 5 * 6 * Written by Daniel Stone <daniel.stone@nokia.com> 7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> 8 * 9 * Updated by Felipe Balbi <felipe.balbi@nokia.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation (version 2 of the License only). 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/module.h> 26 #include <linux/i2c.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/mutex.h> 30 #include <linux/delay.h> 31 #include <linux/input.h> 32 #include <linux/leds.h> 33 #include <linux/i2c/lm8323.h> 34 35 /* Commands to send to the chip. */ 36 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ 37 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ 38 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ 39 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ 40 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ 41 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ 42 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ 43 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ 44 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ 45 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ 46 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ 47 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ 48 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ 49 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ 50 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ 51 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ 52 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ 53 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ 54 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ 55 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ 56 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ 57 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ 58 59 /* Interrupt status. */ 60 #define INT_KEYPAD 0x01 /* Key event. */ 61 #define INT_ROTATOR 0x02 /* Rotator event. */ 62 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ 63 #define INT_NOINIT 0x10 /* Lost configuration. */ 64 #define INT_PWM1 0x20 /* PWM1 stopped. */ 65 #define INT_PWM2 0x40 /* PWM2 stopped. */ 66 #define INT_PWM3 0x80 /* PWM3 stopped. */ 67 68 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ 69 #define ERR_BADPAR 0x01 /* Bad parameter. */ 70 #define ERR_CMDUNK 0x02 /* Unknown command. */ 71 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ 72 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ 73 74 /* Configuration keys (CMD_{WRITE,READ}_CFG). */ 75 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ 76 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ 77 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ 78 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ 79 #define CFG_PSIZE 0x20 /* Package size (must be 0). */ 80 #define CFG_ROTEN 0x40 /* Enable rotator. */ 81 82 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ 83 #define CLK_RCPWM_INTERNAL 0x00 84 #define CLK_RCPWM_EXTERNAL 0x03 85 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ 86 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ 87 88 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ 89 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ 90 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ 91 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ 92 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ 93 94 /* Key event fifo length */ 95 #define LM8323_FIFO_LEN 15 96 97 /* Commands for PWM engine; feed in with PWM_WRITE. */ 98 /* Load ramp counter from duty cycle field (range 0 - 0xff). */ 99 #define PWM_SET(v) (0x4000 | ((v) & 0xff)) 100 /* Go to start of script. */ 101 #define PWM_GOTOSTART 0x0000 102 /* 103 * Stop engine (generates interrupt). If reset is 1, clear the program 104 * counter, else leave it. 105 */ 106 #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) 107 /* 108 * Ramp. If s is 1, divide clock by 512, else divide clock by 16. 109 * Take t clock scales (up to 63) per step, for n steps (up to 126). 110 * If u is set, ramp up, else ramp down. 111 */ 112 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ 113 ((n) & 0x7f) | ((u) ? 0 : 0x80)) 114 /* 115 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). 116 * If cnt is zero, execute until PWM_END is encountered. 117 */ 118 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ 119 ((pos) & 0x3f)) 120 /* 121 * Wait for trigger. Argument is a mask of channels, shifted by the channel 122 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered 123 * from 1, not 0. 124 */ 125 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) 126 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ 127 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) 128 129 struct lm8323_pwm { 130 int id; 131 int fade_time; 132 int brightness; 133 int desired_brightness; 134 bool enabled; 135 bool running; 136 /* pwm lock */ 137 struct mutex lock; 138 struct work_struct work; 139 struct led_classdev cdev; 140 struct lm8323_chip *chip; 141 }; 142 143 struct lm8323_chip { 144 /* device lock */ 145 struct mutex lock; 146 struct i2c_client *client; 147 struct work_struct work; 148 struct input_dev *idev; 149 bool kp_enabled; 150 bool pm_suspend; 151 unsigned keys_down; 152 char phys[32]; 153 unsigned short keymap[LM8323_KEYMAP_SIZE]; 154 int size_x; 155 int size_y; 156 int debounce_time; 157 int active_time; 158 struct lm8323_pwm pwm[LM8323_NUM_PWMS]; 159 }; 160 161 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) 162 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) 163 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work) 164 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) 165 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) 166 167 #define LM8323_MAX_DATA 8 168 169 /* 170 * To write, we just access the chip's address in write mode, and dump the 171 * command and data out on the bus. The command byte and data are taken as 172 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. 173 */ 174 static int lm8323_write(struct lm8323_chip *lm, int len, ...) 175 { 176 int ret, i; 177 va_list ap; 178 u8 data[LM8323_MAX_DATA]; 179 180 va_start(ap, len); 181 182 if (unlikely(len > LM8323_MAX_DATA)) { 183 dev_err(&lm->client->dev, "tried to send %d bytes\n", len); 184 va_end(ap); 185 return 0; 186 } 187 188 for (i = 0; i < len; i++) 189 data[i] = va_arg(ap, int); 190 191 va_end(ap); 192 193 /* 194 * If the host is asleep while we send the data, we can get a NACK 195 * back while it wakes up, so try again, once. 196 */ 197 ret = i2c_master_send(lm->client, data, len); 198 if (unlikely(ret == -EREMOTEIO)) 199 ret = i2c_master_send(lm->client, data, len); 200 if (unlikely(ret != len)) 201 dev_err(&lm->client->dev, "sent %d bytes of %d total\n", 202 len, ret); 203 204 return ret; 205 } 206 207 /* 208 * To read, we first send the command byte to the chip and end the transaction, 209 * then access the chip in read mode, at which point it will send the data. 210 */ 211 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) 212 { 213 int ret; 214 215 /* 216 * If the host is asleep while we send the byte, we can get a NACK 217 * back while it wakes up, so try again, once. 218 */ 219 ret = i2c_master_send(lm->client, &cmd, 1); 220 if (unlikely(ret == -EREMOTEIO)) 221 ret = i2c_master_send(lm->client, &cmd, 1); 222 if (unlikely(ret != 1)) { 223 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", 224 cmd); 225 return 0; 226 } 227 228 ret = i2c_master_recv(lm->client, buf, len); 229 if (unlikely(ret != len)) 230 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", 231 len, ret); 232 233 return ret; 234 } 235 236 /* 237 * Set the chip active time (idle time before it enters halt). 238 */ 239 static void lm8323_set_active_time(struct lm8323_chip *lm, int time) 240 { 241 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); 242 } 243 244 /* 245 * The signals are AT-style: the low 7 bits are the keycode, and the top 246 * bit indicates the state (1 for down, 0 for up). 247 */ 248 static inline u8 lm8323_whichkey(u8 event) 249 { 250 return event & 0x7f; 251 } 252 253 static inline int lm8323_ispress(u8 event) 254 { 255 return (event & 0x80) ? 1 : 0; 256 } 257 258 static void process_keys(struct lm8323_chip *lm) 259 { 260 u8 event; 261 u8 key_fifo[LM8323_FIFO_LEN + 1]; 262 int old_keys_down = lm->keys_down; 263 int ret; 264 int i = 0; 265 266 /* 267 * Read all key events from the FIFO at once. Next READ_FIFO clears the 268 * FIFO even if we didn't read all events previously. 269 */ 270 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); 271 272 if (ret < 0) { 273 dev_err(&lm->client->dev, "Failed reading fifo \n"); 274 return; 275 } 276 key_fifo[ret] = 0; 277 278 while ((event = key_fifo[i++])) { 279 u8 key = lm8323_whichkey(event); 280 int isdown = lm8323_ispress(event); 281 unsigned short keycode = lm->keymap[key]; 282 283 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", 284 key, isdown ? "down" : "up"); 285 286 if (lm->kp_enabled) { 287 input_event(lm->idev, EV_MSC, MSC_SCAN, key); 288 input_report_key(lm->idev, keycode, isdown); 289 input_sync(lm->idev); 290 } 291 292 if (isdown) 293 lm->keys_down++; 294 else 295 lm->keys_down--; 296 } 297 298 /* 299 * Errata: We need to ensure that the chip never enters halt mode 300 * during a keypress, so set active time to 0. When it's released, 301 * we can enter halt again, so set the active time back to normal. 302 */ 303 if (!old_keys_down && lm->keys_down) 304 lm8323_set_active_time(lm, 0); 305 if (old_keys_down && !lm->keys_down) 306 lm8323_set_active_time(lm, lm->active_time); 307 } 308 309 static void lm8323_process_error(struct lm8323_chip *lm) 310 { 311 u8 error; 312 313 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { 314 if (error & ERR_FIFOOVER) 315 dev_vdbg(&lm->client->dev, "fifo overflow!\n"); 316 if (error & ERR_KEYOVR) 317 dev_vdbg(&lm->client->dev, 318 "more than two keys pressed\n"); 319 if (error & ERR_CMDUNK) 320 dev_vdbg(&lm->client->dev, 321 "unknown command submitted\n"); 322 if (error & ERR_BADPAR) 323 dev_vdbg(&lm->client->dev, "bad command parameter\n"); 324 } 325 } 326 327 static void lm8323_reset(struct lm8323_chip *lm) 328 { 329 /* The docs say we must pass 0xAA as the data byte. */ 330 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); 331 } 332 333 static int lm8323_configure(struct lm8323_chip *lm) 334 { 335 int keysize = (lm->size_x << 4) | lm->size_y; 336 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); 337 int debounce = lm->debounce_time >> 2; 338 int active = lm->active_time >> 2; 339 340 /* 341 * Active time must be greater than the debounce time: if it's 342 * a close-run thing, give ourselves a 12ms buffer. 343 */ 344 if (debounce >= active) 345 active = debounce + 3; 346 347 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); 348 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); 349 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); 350 lm8323_set_active_time(lm, lm->active_time); 351 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); 352 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); 353 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); 354 355 /* 356 * Not much we can do about errors at this point, so just hope 357 * for the best. 358 */ 359 360 return 0; 361 } 362 363 static void pwm_done(struct lm8323_pwm *pwm) 364 { 365 mutex_lock(&pwm->lock); 366 pwm->running = false; 367 if (pwm->desired_brightness != pwm->brightness) 368 schedule_work(&pwm->work); 369 mutex_unlock(&pwm->lock); 370 } 371 372 /* 373 * Bottom half: handle the interrupt by posting key events, or dealing with 374 * errors appropriately. 375 */ 376 static void lm8323_work(struct work_struct *work) 377 { 378 struct lm8323_chip *lm = work_to_lm8323(work); 379 u8 ints; 380 int i; 381 382 mutex_lock(&lm->lock); 383 384 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { 385 if (likely(ints & INT_KEYPAD)) 386 process_keys(lm); 387 if (ints & INT_ROTATOR) { 388 /* We don't currently support the rotator. */ 389 dev_vdbg(&lm->client->dev, "rotator fired\n"); 390 } 391 if (ints & INT_ERROR) { 392 dev_vdbg(&lm->client->dev, "error!\n"); 393 lm8323_process_error(lm); 394 } 395 if (ints & INT_NOINIT) { 396 dev_err(&lm->client->dev, "chip lost config; " 397 "reinitialising\n"); 398 lm8323_configure(lm); 399 } 400 for (i = 0; i < LM8323_NUM_PWMS; i++) { 401 if (ints & (1 << (INT_PWM1 + i))) { 402 dev_vdbg(&lm->client->dev, 403 "pwm%d engine completed\n", i); 404 pwm_done(&lm->pwm[i]); 405 } 406 } 407 } 408 409 mutex_unlock(&lm->lock); 410 } 411 412 /* 413 * We cannot use I2C in interrupt context, so we just schedule work. 414 */ 415 static irqreturn_t lm8323_irq(int irq, void *data) 416 { 417 struct lm8323_chip *lm = data; 418 419 schedule_work(&lm->work); 420 421 return IRQ_HANDLED; 422 } 423 424 /* 425 * Read the chip ID. 426 */ 427 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) 428 { 429 int bytes; 430 431 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); 432 if (unlikely(bytes != 2)) 433 return -EIO; 434 435 return 0; 436 } 437 438 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) 439 { 440 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, 441 (cmd & 0xff00) >> 8, cmd & 0x00ff); 442 } 443 444 /* 445 * Write a script into a given PWM engine, concluding with PWM_END. 446 * If 'kill' is nonzero, the engine will be shut down at the end 447 * of the script, producing a zero output. Otherwise the engine 448 * will be kept running at the final PWM level indefinitely. 449 */ 450 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, 451 int len, const u16 *cmds) 452 { 453 int i; 454 455 for (i = 0; i < len; i++) 456 lm8323_write_pwm_one(pwm, i, cmds[i]); 457 458 lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); 459 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); 460 pwm->running = true; 461 } 462 463 static void lm8323_pwm_work(struct work_struct *work) 464 { 465 struct lm8323_pwm *pwm = work_to_pwm(work); 466 int div512, perstep, steps, hz, up, kill; 467 u16 pwm_cmds[3]; 468 int num_cmds = 0; 469 470 mutex_lock(&pwm->lock); 471 472 /* 473 * Do nothing if we're already at the requested level, 474 * or previous setting is not yet complete. In the latter 475 * case we will be called again when the previous PWM script 476 * finishes. 477 */ 478 if (pwm->running || pwm->desired_brightness == pwm->brightness) 479 goto out; 480 481 kill = (pwm->desired_brightness == 0); 482 up = (pwm->desired_brightness > pwm->brightness); 483 steps = abs(pwm->desired_brightness - pwm->brightness); 484 485 /* 486 * Convert time (in ms) into a divisor (512 or 16 on a refclk of 487 * 32768Hz), and number of ticks per step. 488 */ 489 if ((pwm->fade_time / steps) > (32768 / 512)) { 490 div512 = 1; 491 hz = 32768 / 512; 492 } else { 493 div512 = 0; 494 hz = 32768 / 16; 495 } 496 497 perstep = (hz * pwm->fade_time) / (steps * 1000); 498 499 if (perstep == 0) 500 perstep = 1; 501 else if (perstep > 63) 502 perstep = 63; 503 504 while (steps) { 505 int s; 506 507 s = min(126, steps); 508 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); 509 steps -= s; 510 } 511 512 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); 513 pwm->brightness = pwm->desired_brightness; 514 515 out: 516 mutex_unlock(&pwm->lock); 517 } 518 519 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, 520 enum led_brightness brightness) 521 { 522 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 523 struct lm8323_chip *lm = pwm->chip; 524 525 mutex_lock(&pwm->lock); 526 pwm->desired_brightness = brightness; 527 mutex_unlock(&pwm->lock); 528 529 if (in_interrupt()) { 530 schedule_work(&pwm->work); 531 } else { 532 /* 533 * Schedule PWM work as usual unless we are going into suspend 534 */ 535 mutex_lock(&lm->lock); 536 if (likely(!lm->pm_suspend)) 537 schedule_work(&pwm->work); 538 else 539 lm8323_pwm_work(&pwm->work); 540 mutex_unlock(&lm->lock); 541 } 542 } 543 544 static ssize_t lm8323_pwm_show_time(struct device *dev, 545 struct device_attribute *attr, char *buf) 546 { 547 struct led_classdev *led_cdev = dev_get_drvdata(dev); 548 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 549 550 return sprintf(buf, "%d\n", pwm->fade_time); 551 } 552 553 static ssize_t lm8323_pwm_store_time(struct device *dev, 554 struct device_attribute *attr, const char *buf, size_t len) 555 { 556 struct led_classdev *led_cdev = dev_get_drvdata(dev); 557 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 558 int ret; 559 unsigned long time; 560 561 ret = strict_strtoul(buf, 10, &time); 562 /* Numbers only, please. */ 563 if (ret) 564 return -EINVAL; 565 566 pwm->fade_time = time; 567 568 return strlen(buf); 569 } 570 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); 571 572 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, 573 const char *name) 574 { 575 struct lm8323_pwm *pwm; 576 577 BUG_ON(id > 3); 578 579 pwm = &lm->pwm[id - 1]; 580 581 pwm->id = id; 582 pwm->fade_time = 0; 583 pwm->brightness = 0; 584 pwm->desired_brightness = 0; 585 pwm->running = false; 586 pwm->enabled = false; 587 INIT_WORK(&pwm->work, lm8323_pwm_work); 588 mutex_init(&pwm->lock); 589 pwm->chip = lm; 590 591 if (name) { 592 pwm->cdev.name = name; 593 pwm->cdev.brightness_set = lm8323_pwm_set_brightness; 594 if (led_classdev_register(dev, &pwm->cdev) < 0) { 595 dev_err(dev, "couldn't register PWM %d\n", id); 596 return -1; 597 } 598 if (device_create_file(pwm->cdev.dev, 599 &dev_attr_time) < 0) { 600 dev_err(dev, "couldn't register time attribute\n"); 601 led_classdev_unregister(&pwm->cdev); 602 return -1; 603 } 604 pwm->enabled = true; 605 } 606 607 return 0; 608 } 609 610 static struct i2c_driver lm8323_i2c_driver; 611 612 static ssize_t lm8323_show_disable(struct device *dev, 613 struct device_attribute *attr, char *buf) 614 { 615 struct lm8323_chip *lm = dev_get_drvdata(dev); 616 617 return sprintf(buf, "%u\n", !lm->kp_enabled); 618 } 619 620 static ssize_t lm8323_set_disable(struct device *dev, 621 struct device_attribute *attr, 622 const char *buf, size_t count) 623 { 624 struct lm8323_chip *lm = dev_get_drvdata(dev); 625 int ret; 626 unsigned long i; 627 628 ret = strict_strtoul(buf, 10, &i); 629 630 mutex_lock(&lm->lock); 631 lm->kp_enabled = !i; 632 mutex_unlock(&lm->lock); 633 634 return count; 635 } 636 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); 637 638 static int __devinit lm8323_probe(struct i2c_client *client, 639 const struct i2c_device_id *id) 640 { 641 struct lm8323_platform_data *pdata = client->dev.platform_data; 642 struct input_dev *idev; 643 struct lm8323_chip *lm; 644 int i, err; 645 unsigned long tmo; 646 u8 data[2]; 647 648 if (!pdata || !pdata->size_x || !pdata->size_y) { 649 dev_err(&client->dev, "missing platform_data\n"); 650 return -EINVAL; 651 } 652 653 if (pdata->size_x > 8) { 654 dev_err(&client->dev, "invalid x size %d specified\n", 655 pdata->size_x); 656 return -EINVAL; 657 } 658 659 if (pdata->size_y > 12) { 660 dev_err(&client->dev, "invalid y size %d specified\n", 661 pdata->size_y); 662 return -EINVAL; 663 } 664 665 lm = kzalloc(sizeof *lm, GFP_KERNEL); 666 idev = input_allocate_device(); 667 if (!lm || !idev) { 668 err = -ENOMEM; 669 goto fail1; 670 } 671 672 i2c_set_clientdata(client, lm); 673 674 lm->client = client; 675 lm->idev = idev; 676 mutex_init(&lm->lock); 677 INIT_WORK(&lm->work, lm8323_work); 678 679 lm->size_x = pdata->size_x; 680 lm->size_y = pdata->size_y; 681 dev_vdbg(&client->dev, "Keypad size: %d x %d\n", 682 lm->size_x, lm->size_y); 683 684 lm->debounce_time = pdata->debounce_time; 685 lm->active_time = pdata->active_time; 686 687 lm8323_reset(lm); 688 689 /* Nothing's set up to service the IRQ yet, so just spin for max. 690 * 100ms until we can configure. */ 691 tmo = jiffies + msecs_to_jiffies(100); 692 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { 693 if (data[0] & INT_NOINIT) 694 break; 695 696 if (time_after(jiffies, tmo)) { 697 dev_err(&client->dev, 698 "timeout waiting for initialisation\n"); 699 break; 700 } 701 702 msleep(1); 703 } 704 705 lm8323_configure(lm); 706 707 /* If a true probe check the device */ 708 if (lm8323_read_id(lm, data) != 0) { 709 dev_err(&client->dev, "device not found\n"); 710 err = -ENODEV; 711 goto fail1; 712 } 713 714 for (i = 0; i < LM8323_NUM_PWMS; i++) { 715 err = init_pwm(lm, i + 1, &client->dev, pdata->pwm_names[i]); 716 if (err < 0) 717 goto fail2; 718 } 719 720 lm->kp_enabled = true; 721 err = device_create_file(&client->dev, &dev_attr_disable_kp); 722 if (err < 0) 723 goto fail2; 724 725 idev->name = pdata->name ? : "LM8323 keypad"; 726 snprintf(lm->phys, sizeof(lm->phys), 727 "%s/input-kp", dev_name(&client->dev)); 728 idev->phys = lm->phys; 729 730 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); 731 __set_bit(MSC_SCAN, idev->mscbit); 732 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { 733 __set_bit(pdata->keymap[i], idev->keybit); 734 lm->keymap[i] = pdata->keymap[i]; 735 } 736 __clear_bit(KEY_RESERVED, idev->keybit); 737 738 if (pdata->repeat) 739 __set_bit(EV_REP, idev->evbit); 740 741 err = input_register_device(idev); 742 if (err) { 743 dev_dbg(&client->dev, "error registering input device\n"); 744 goto fail3; 745 } 746 747 err = request_irq(client->irq, lm8323_irq, 748 IRQF_TRIGGER_FALLING | IRQF_DISABLED, 749 "lm8323", lm); 750 if (err) { 751 dev_err(&client->dev, "could not get IRQ %d\n", client->irq); 752 goto fail4; 753 } 754 755 device_init_wakeup(&client->dev, 1); 756 enable_irq_wake(client->irq); 757 758 return 0; 759 760 fail4: 761 input_unregister_device(idev); 762 idev = NULL; 763 fail3: 764 device_remove_file(&client->dev, &dev_attr_disable_kp); 765 fail2: 766 while (--i >= 0) 767 if (lm->pwm[i].enabled) 768 led_classdev_unregister(&lm->pwm[i].cdev); 769 fail1: 770 input_free_device(idev); 771 kfree(lm); 772 return err; 773 } 774 775 static int __devexit lm8323_remove(struct i2c_client *client) 776 { 777 struct lm8323_chip *lm = i2c_get_clientdata(client); 778 int i; 779 780 disable_irq_wake(client->irq); 781 free_irq(client->irq, lm); 782 cancel_work_sync(&lm->work); 783 784 input_unregister_device(lm->idev); 785 786 device_remove_file(&lm->client->dev, &dev_attr_disable_kp); 787 788 for (i = 0; i < 3; i++) 789 if (lm->pwm[i].enabled) 790 led_classdev_unregister(&lm->pwm[i].cdev); 791 792 kfree(lm); 793 794 return 0; 795 } 796 797 #ifdef CONFIG_PM 798 /* 799 * We don't need to explicitly suspend the chip, as it already switches off 800 * when there's no activity. 801 */ 802 static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg) 803 { 804 struct lm8323_chip *lm = i2c_get_clientdata(client); 805 int i; 806 807 set_irq_wake(client->irq, 0); 808 disable_irq(client->irq); 809 810 mutex_lock(&lm->lock); 811 lm->pm_suspend = true; 812 mutex_unlock(&lm->lock); 813 814 for (i = 0; i < 3; i++) 815 if (lm->pwm[i].enabled) 816 led_classdev_suspend(&lm->pwm[i].cdev); 817 818 return 0; 819 } 820 821 static int lm8323_resume(struct i2c_client *client) 822 { 823 struct lm8323_chip *lm = i2c_get_clientdata(client); 824 int i; 825 826 mutex_lock(&lm->lock); 827 lm->pm_suspend = false; 828 mutex_unlock(&lm->lock); 829 830 for (i = 0; i < 3; i++) 831 if (lm->pwm[i].enabled) 832 led_classdev_resume(&lm->pwm[i].cdev); 833 834 enable_irq(client->irq); 835 set_irq_wake(client->irq, 1); 836 837 return 0; 838 } 839 #else 840 #define lm8323_suspend NULL 841 #define lm8323_resume NULL 842 #endif 843 844 static const struct i2c_device_id lm8323_id[] = { 845 { "lm8323", 0 }, 846 { } 847 }; 848 849 static struct i2c_driver lm8323_i2c_driver = { 850 .driver = { 851 .name = "lm8323", 852 }, 853 .probe = lm8323_probe, 854 .remove = __devexit_p(lm8323_remove), 855 .suspend = lm8323_suspend, 856 .resume = lm8323_resume, 857 .id_table = lm8323_id, 858 }; 859 MODULE_DEVICE_TABLE(i2c, lm8323_id); 860 861 static int __init lm8323_init(void) 862 { 863 return i2c_add_driver(&lm8323_i2c_driver); 864 } 865 module_init(lm8323_init); 866 867 static void __exit lm8323_exit(void) 868 { 869 i2c_del_driver(&lm8323_i2c_driver); 870 } 871 module_exit(lm8323_exit); 872 873 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); 874 MODULE_AUTHOR("Daniel Stone"); 875 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); 876 MODULE_DESCRIPTION("LM8323 keypad driver"); 877 MODULE_LICENSE("GPL"); 878 879