1 /* 2 * drivers/i2c/chips/lm8323.c 3 * 4 * Copyright (C) 2007-2009 Nokia Corporation 5 * 6 * Written by Daniel Stone <daniel.stone@nokia.com> 7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> 8 * 9 * Updated by Felipe Balbi <felipe.balbi@nokia.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation (version 2 of the License only). 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/module.h> 26 #include <linux/i2c.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/mutex.h> 30 #include <linux/delay.h> 31 #include <linux/input.h> 32 #include <linux/leds.h> 33 #include <linux/i2c/lm8323.h> 34 #include <linux/slab.h> 35 36 /* Commands to send to the chip. */ 37 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ 38 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ 39 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ 40 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ 41 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ 42 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ 43 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ 44 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ 45 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ 46 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ 47 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ 48 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ 49 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ 50 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ 51 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ 52 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ 53 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ 54 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ 55 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ 56 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ 57 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ 58 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ 59 60 /* Interrupt status. */ 61 #define INT_KEYPAD 0x01 /* Key event. */ 62 #define INT_ROTATOR 0x02 /* Rotator event. */ 63 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ 64 #define INT_NOINIT 0x10 /* Lost configuration. */ 65 #define INT_PWM1 0x20 /* PWM1 stopped. */ 66 #define INT_PWM2 0x40 /* PWM2 stopped. */ 67 #define INT_PWM3 0x80 /* PWM3 stopped. */ 68 69 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ 70 #define ERR_BADPAR 0x01 /* Bad parameter. */ 71 #define ERR_CMDUNK 0x02 /* Unknown command. */ 72 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ 73 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ 74 75 /* Configuration keys (CMD_{WRITE,READ}_CFG). */ 76 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ 77 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ 78 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ 79 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ 80 #define CFG_PSIZE 0x20 /* Package size (must be 0). */ 81 #define CFG_ROTEN 0x40 /* Enable rotator. */ 82 83 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ 84 #define CLK_RCPWM_INTERNAL 0x00 85 #define CLK_RCPWM_EXTERNAL 0x03 86 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ 87 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ 88 89 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ 90 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ 91 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ 92 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ 93 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ 94 95 /* Key event fifo length */ 96 #define LM8323_FIFO_LEN 15 97 98 /* Commands for PWM engine; feed in with PWM_WRITE. */ 99 /* Load ramp counter from duty cycle field (range 0 - 0xff). */ 100 #define PWM_SET(v) (0x4000 | ((v) & 0xff)) 101 /* Go to start of script. */ 102 #define PWM_GOTOSTART 0x0000 103 /* 104 * Stop engine (generates interrupt). If reset is 1, clear the program 105 * counter, else leave it. 106 */ 107 #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) 108 /* 109 * Ramp. If s is 1, divide clock by 512, else divide clock by 16. 110 * Take t clock scales (up to 63) per step, for n steps (up to 126). 111 * If u is set, ramp up, else ramp down. 112 */ 113 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ 114 ((n) & 0x7f) | ((u) ? 0 : 0x80)) 115 /* 116 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). 117 * If cnt is zero, execute until PWM_END is encountered. 118 */ 119 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ 120 ((pos) & 0x3f)) 121 /* 122 * Wait for trigger. Argument is a mask of channels, shifted by the channel 123 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered 124 * from 1, not 0. 125 */ 126 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) 127 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ 128 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) 129 130 struct lm8323_pwm { 131 int id; 132 int fade_time; 133 int brightness; 134 int desired_brightness; 135 bool enabled; 136 bool running; 137 /* pwm lock */ 138 struct mutex lock; 139 struct work_struct work; 140 struct led_classdev cdev; 141 struct lm8323_chip *chip; 142 }; 143 144 struct lm8323_chip { 145 /* device lock */ 146 struct mutex lock; 147 struct i2c_client *client; 148 struct work_struct work; 149 struct input_dev *idev; 150 bool kp_enabled; 151 bool pm_suspend; 152 unsigned keys_down; 153 char phys[32]; 154 unsigned short keymap[LM8323_KEYMAP_SIZE]; 155 int size_x; 156 int size_y; 157 int debounce_time; 158 int active_time; 159 struct lm8323_pwm pwm[LM8323_NUM_PWMS]; 160 }; 161 162 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) 163 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) 164 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work) 165 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) 166 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) 167 168 #define LM8323_MAX_DATA 8 169 170 /* 171 * To write, we just access the chip's address in write mode, and dump the 172 * command and data out on the bus. The command byte and data are taken as 173 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. 174 */ 175 static int lm8323_write(struct lm8323_chip *lm, int len, ...) 176 { 177 int ret, i; 178 va_list ap; 179 u8 data[LM8323_MAX_DATA]; 180 181 va_start(ap, len); 182 183 if (unlikely(len > LM8323_MAX_DATA)) { 184 dev_err(&lm->client->dev, "tried to send %d bytes\n", len); 185 va_end(ap); 186 return 0; 187 } 188 189 for (i = 0; i < len; i++) 190 data[i] = va_arg(ap, int); 191 192 va_end(ap); 193 194 /* 195 * If the host is asleep while we send the data, we can get a NACK 196 * back while it wakes up, so try again, once. 197 */ 198 ret = i2c_master_send(lm->client, data, len); 199 if (unlikely(ret == -EREMOTEIO)) 200 ret = i2c_master_send(lm->client, data, len); 201 if (unlikely(ret != len)) 202 dev_err(&lm->client->dev, "sent %d bytes of %d total\n", 203 len, ret); 204 205 return ret; 206 } 207 208 /* 209 * To read, we first send the command byte to the chip and end the transaction, 210 * then access the chip in read mode, at which point it will send the data. 211 */ 212 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) 213 { 214 int ret; 215 216 /* 217 * If the host is asleep while we send the byte, we can get a NACK 218 * back while it wakes up, so try again, once. 219 */ 220 ret = i2c_master_send(lm->client, &cmd, 1); 221 if (unlikely(ret == -EREMOTEIO)) 222 ret = i2c_master_send(lm->client, &cmd, 1); 223 if (unlikely(ret != 1)) { 224 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", 225 cmd); 226 return 0; 227 } 228 229 ret = i2c_master_recv(lm->client, buf, len); 230 if (unlikely(ret != len)) 231 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", 232 len, ret); 233 234 return ret; 235 } 236 237 /* 238 * Set the chip active time (idle time before it enters halt). 239 */ 240 static void lm8323_set_active_time(struct lm8323_chip *lm, int time) 241 { 242 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); 243 } 244 245 /* 246 * The signals are AT-style: the low 7 bits are the keycode, and the top 247 * bit indicates the state (1 for down, 0 for up). 248 */ 249 static inline u8 lm8323_whichkey(u8 event) 250 { 251 return event & 0x7f; 252 } 253 254 static inline int lm8323_ispress(u8 event) 255 { 256 return (event & 0x80) ? 1 : 0; 257 } 258 259 static void process_keys(struct lm8323_chip *lm) 260 { 261 u8 event; 262 u8 key_fifo[LM8323_FIFO_LEN + 1]; 263 int old_keys_down = lm->keys_down; 264 int ret; 265 int i = 0; 266 267 /* 268 * Read all key events from the FIFO at once. Next READ_FIFO clears the 269 * FIFO even if we didn't read all events previously. 270 */ 271 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); 272 273 if (ret < 0) { 274 dev_err(&lm->client->dev, "Failed reading fifo \n"); 275 return; 276 } 277 key_fifo[ret] = 0; 278 279 while ((event = key_fifo[i++])) { 280 u8 key = lm8323_whichkey(event); 281 int isdown = lm8323_ispress(event); 282 unsigned short keycode = lm->keymap[key]; 283 284 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", 285 key, isdown ? "down" : "up"); 286 287 if (lm->kp_enabled) { 288 input_event(lm->idev, EV_MSC, MSC_SCAN, key); 289 input_report_key(lm->idev, keycode, isdown); 290 input_sync(lm->idev); 291 } 292 293 if (isdown) 294 lm->keys_down++; 295 else 296 lm->keys_down--; 297 } 298 299 /* 300 * Errata: We need to ensure that the chip never enters halt mode 301 * during a keypress, so set active time to 0. When it's released, 302 * we can enter halt again, so set the active time back to normal. 303 */ 304 if (!old_keys_down && lm->keys_down) 305 lm8323_set_active_time(lm, 0); 306 if (old_keys_down && !lm->keys_down) 307 lm8323_set_active_time(lm, lm->active_time); 308 } 309 310 static void lm8323_process_error(struct lm8323_chip *lm) 311 { 312 u8 error; 313 314 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { 315 if (error & ERR_FIFOOVER) 316 dev_vdbg(&lm->client->dev, "fifo overflow!\n"); 317 if (error & ERR_KEYOVR) 318 dev_vdbg(&lm->client->dev, 319 "more than two keys pressed\n"); 320 if (error & ERR_CMDUNK) 321 dev_vdbg(&lm->client->dev, 322 "unknown command submitted\n"); 323 if (error & ERR_BADPAR) 324 dev_vdbg(&lm->client->dev, "bad command parameter\n"); 325 } 326 } 327 328 static void lm8323_reset(struct lm8323_chip *lm) 329 { 330 /* The docs say we must pass 0xAA as the data byte. */ 331 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); 332 } 333 334 static int lm8323_configure(struct lm8323_chip *lm) 335 { 336 int keysize = (lm->size_x << 4) | lm->size_y; 337 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); 338 int debounce = lm->debounce_time >> 2; 339 int active = lm->active_time >> 2; 340 341 /* 342 * Active time must be greater than the debounce time: if it's 343 * a close-run thing, give ourselves a 12ms buffer. 344 */ 345 if (debounce >= active) 346 active = debounce + 3; 347 348 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); 349 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); 350 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); 351 lm8323_set_active_time(lm, lm->active_time); 352 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); 353 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); 354 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); 355 356 /* 357 * Not much we can do about errors at this point, so just hope 358 * for the best. 359 */ 360 361 return 0; 362 } 363 364 static void pwm_done(struct lm8323_pwm *pwm) 365 { 366 mutex_lock(&pwm->lock); 367 pwm->running = false; 368 if (pwm->desired_brightness != pwm->brightness) 369 schedule_work(&pwm->work); 370 mutex_unlock(&pwm->lock); 371 } 372 373 /* 374 * Bottom half: handle the interrupt by posting key events, or dealing with 375 * errors appropriately. 376 */ 377 static void lm8323_work(struct work_struct *work) 378 { 379 struct lm8323_chip *lm = work_to_lm8323(work); 380 u8 ints; 381 int i; 382 383 mutex_lock(&lm->lock); 384 385 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { 386 if (likely(ints & INT_KEYPAD)) 387 process_keys(lm); 388 if (ints & INT_ROTATOR) { 389 /* We don't currently support the rotator. */ 390 dev_vdbg(&lm->client->dev, "rotator fired\n"); 391 } 392 if (ints & INT_ERROR) { 393 dev_vdbg(&lm->client->dev, "error!\n"); 394 lm8323_process_error(lm); 395 } 396 if (ints & INT_NOINIT) { 397 dev_err(&lm->client->dev, "chip lost config; " 398 "reinitialising\n"); 399 lm8323_configure(lm); 400 } 401 for (i = 0; i < LM8323_NUM_PWMS; i++) { 402 if (ints & (1 << (INT_PWM1 + i))) { 403 dev_vdbg(&lm->client->dev, 404 "pwm%d engine completed\n", i); 405 pwm_done(&lm->pwm[i]); 406 } 407 } 408 } 409 410 mutex_unlock(&lm->lock); 411 } 412 413 /* 414 * We cannot use I2C in interrupt context, so we just schedule work. 415 */ 416 static irqreturn_t lm8323_irq(int irq, void *data) 417 { 418 struct lm8323_chip *lm = data; 419 420 schedule_work(&lm->work); 421 422 return IRQ_HANDLED; 423 } 424 425 /* 426 * Read the chip ID. 427 */ 428 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) 429 { 430 int bytes; 431 432 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); 433 if (unlikely(bytes != 2)) 434 return -EIO; 435 436 return 0; 437 } 438 439 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) 440 { 441 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, 442 (cmd & 0xff00) >> 8, cmd & 0x00ff); 443 } 444 445 /* 446 * Write a script into a given PWM engine, concluding with PWM_END. 447 * If 'kill' is nonzero, the engine will be shut down at the end 448 * of the script, producing a zero output. Otherwise the engine 449 * will be kept running at the final PWM level indefinitely. 450 */ 451 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, 452 int len, const u16 *cmds) 453 { 454 int i; 455 456 for (i = 0; i < len; i++) 457 lm8323_write_pwm_one(pwm, i, cmds[i]); 458 459 lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); 460 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); 461 pwm->running = true; 462 } 463 464 static void lm8323_pwm_work(struct work_struct *work) 465 { 466 struct lm8323_pwm *pwm = work_to_pwm(work); 467 int div512, perstep, steps, hz, up, kill; 468 u16 pwm_cmds[3]; 469 int num_cmds = 0; 470 471 mutex_lock(&pwm->lock); 472 473 /* 474 * Do nothing if we're already at the requested level, 475 * or previous setting is not yet complete. In the latter 476 * case we will be called again when the previous PWM script 477 * finishes. 478 */ 479 if (pwm->running || pwm->desired_brightness == pwm->brightness) 480 goto out; 481 482 kill = (pwm->desired_brightness == 0); 483 up = (pwm->desired_brightness > pwm->brightness); 484 steps = abs(pwm->desired_brightness - pwm->brightness); 485 486 /* 487 * Convert time (in ms) into a divisor (512 or 16 on a refclk of 488 * 32768Hz), and number of ticks per step. 489 */ 490 if ((pwm->fade_time / steps) > (32768 / 512)) { 491 div512 = 1; 492 hz = 32768 / 512; 493 } else { 494 div512 = 0; 495 hz = 32768 / 16; 496 } 497 498 perstep = (hz * pwm->fade_time) / (steps * 1000); 499 500 if (perstep == 0) 501 perstep = 1; 502 else if (perstep > 63) 503 perstep = 63; 504 505 while (steps) { 506 int s; 507 508 s = min(126, steps); 509 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); 510 steps -= s; 511 } 512 513 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); 514 pwm->brightness = pwm->desired_brightness; 515 516 out: 517 mutex_unlock(&pwm->lock); 518 } 519 520 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, 521 enum led_brightness brightness) 522 { 523 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 524 struct lm8323_chip *lm = pwm->chip; 525 526 mutex_lock(&pwm->lock); 527 pwm->desired_brightness = brightness; 528 mutex_unlock(&pwm->lock); 529 530 if (in_interrupt()) { 531 schedule_work(&pwm->work); 532 } else { 533 /* 534 * Schedule PWM work as usual unless we are going into suspend 535 */ 536 mutex_lock(&lm->lock); 537 if (likely(!lm->pm_suspend)) 538 schedule_work(&pwm->work); 539 else 540 lm8323_pwm_work(&pwm->work); 541 mutex_unlock(&lm->lock); 542 } 543 } 544 545 static ssize_t lm8323_pwm_show_time(struct device *dev, 546 struct device_attribute *attr, char *buf) 547 { 548 struct led_classdev *led_cdev = dev_get_drvdata(dev); 549 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 550 551 return sprintf(buf, "%d\n", pwm->fade_time); 552 } 553 554 static ssize_t lm8323_pwm_store_time(struct device *dev, 555 struct device_attribute *attr, const char *buf, size_t len) 556 { 557 struct led_classdev *led_cdev = dev_get_drvdata(dev); 558 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 559 int ret; 560 unsigned long time; 561 562 ret = strict_strtoul(buf, 10, &time); 563 /* Numbers only, please. */ 564 if (ret) 565 return -EINVAL; 566 567 pwm->fade_time = time; 568 569 return strlen(buf); 570 } 571 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); 572 573 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, 574 const char *name) 575 { 576 struct lm8323_pwm *pwm; 577 578 BUG_ON(id > 3); 579 580 pwm = &lm->pwm[id - 1]; 581 582 pwm->id = id; 583 pwm->fade_time = 0; 584 pwm->brightness = 0; 585 pwm->desired_brightness = 0; 586 pwm->running = false; 587 pwm->enabled = false; 588 INIT_WORK(&pwm->work, lm8323_pwm_work); 589 mutex_init(&pwm->lock); 590 pwm->chip = lm; 591 592 if (name) { 593 pwm->cdev.name = name; 594 pwm->cdev.brightness_set = lm8323_pwm_set_brightness; 595 if (led_classdev_register(dev, &pwm->cdev) < 0) { 596 dev_err(dev, "couldn't register PWM %d\n", id); 597 return -1; 598 } 599 if (device_create_file(pwm->cdev.dev, 600 &dev_attr_time) < 0) { 601 dev_err(dev, "couldn't register time attribute\n"); 602 led_classdev_unregister(&pwm->cdev); 603 return -1; 604 } 605 pwm->enabled = true; 606 } 607 608 return 0; 609 } 610 611 static struct i2c_driver lm8323_i2c_driver; 612 613 static ssize_t lm8323_show_disable(struct device *dev, 614 struct device_attribute *attr, char *buf) 615 { 616 struct lm8323_chip *lm = dev_get_drvdata(dev); 617 618 return sprintf(buf, "%u\n", !lm->kp_enabled); 619 } 620 621 static ssize_t lm8323_set_disable(struct device *dev, 622 struct device_attribute *attr, 623 const char *buf, size_t count) 624 { 625 struct lm8323_chip *lm = dev_get_drvdata(dev); 626 int ret; 627 unsigned long i; 628 629 ret = strict_strtoul(buf, 10, &i); 630 631 mutex_lock(&lm->lock); 632 lm->kp_enabled = !i; 633 mutex_unlock(&lm->lock); 634 635 return count; 636 } 637 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); 638 639 static int __devinit lm8323_probe(struct i2c_client *client, 640 const struct i2c_device_id *id) 641 { 642 struct lm8323_platform_data *pdata = client->dev.platform_data; 643 struct input_dev *idev; 644 struct lm8323_chip *lm; 645 int pwm; 646 int i, err; 647 unsigned long tmo; 648 u8 data[2]; 649 650 if (!pdata || !pdata->size_x || !pdata->size_y) { 651 dev_err(&client->dev, "missing platform_data\n"); 652 return -EINVAL; 653 } 654 655 if (pdata->size_x > 8) { 656 dev_err(&client->dev, "invalid x size %d specified\n", 657 pdata->size_x); 658 return -EINVAL; 659 } 660 661 if (pdata->size_y > 12) { 662 dev_err(&client->dev, "invalid y size %d specified\n", 663 pdata->size_y); 664 return -EINVAL; 665 } 666 667 lm = kzalloc(sizeof *lm, GFP_KERNEL); 668 idev = input_allocate_device(); 669 if (!lm || !idev) { 670 err = -ENOMEM; 671 goto fail1; 672 } 673 674 lm->client = client; 675 lm->idev = idev; 676 mutex_init(&lm->lock); 677 INIT_WORK(&lm->work, lm8323_work); 678 679 lm->size_x = pdata->size_x; 680 lm->size_y = pdata->size_y; 681 dev_vdbg(&client->dev, "Keypad size: %d x %d\n", 682 lm->size_x, lm->size_y); 683 684 lm->debounce_time = pdata->debounce_time; 685 lm->active_time = pdata->active_time; 686 687 lm8323_reset(lm); 688 689 /* Nothing's set up to service the IRQ yet, so just spin for max. 690 * 100ms until we can configure. */ 691 tmo = jiffies + msecs_to_jiffies(100); 692 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { 693 if (data[0] & INT_NOINIT) 694 break; 695 696 if (time_after(jiffies, tmo)) { 697 dev_err(&client->dev, 698 "timeout waiting for initialisation\n"); 699 break; 700 } 701 702 msleep(1); 703 } 704 705 lm8323_configure(lm); 706 707 /* If a true probe check the device */ 708 if (lm8323_read_id(lm, data) != 0) { 709 dev_err(&client->dev, "device not found\n"); 710 err = -ENODEV; 711 goto fail1; 712 } 713 714 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { 715 err = init_pwm(lm, pwm + 1, &client->dev, 716 pdata->pwm_names[pwm]); 717 if (err < 0) 718 goto fail2; 719 } 720 721 lm->kp_enabled = true; 722 err = device_create_file(&client->dev, &dev_attr_disable_kp); 723 if (err < 0) 724 goto fail2; 725 726 idev->name = pdata->name ? : "LM8323 keypad"; 727 snprintf(lm->phys, sizeof(lm->phys), 728 "%s/input-kp", dev_name(&client->dev)); 729 idev->phys = lm->phys; 730 731 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); 732 __set_bit(MSC_SCAN, idev->mscbit); 733 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { 734 __set_bit(pdata->keymap[i], idev->keybit); 735 lm->keymap[i] = pdata->keymap[i]; 736 } 737 __clear_bit(KEY_RESERVED, idev->keybit); 738 739 if (pdata->repeat) 740 __set_bit(EV_REP, idev->evbit); 741 742 err = input_register_device(idev); 743 if (err) { 744 dev_dbg(&client->dev, "error registering input device\n"); 745 goto fail3; 746 } 747 748 err = request_irq(client->irq, lm8323_irq, 749 IRQF_TRIGGER_FALLING | IRQF_DISABLED, 750 "lm8323", lm); 751 if (err) { 752 dev_err(&client->dev, "could not get IRQ %d\n", client->irq); 753 goto fail4; 754 } 755 756 i2c_set_clientdata(client, lm); 757 758 device_init_wakeup(&client->dev, 1); 759 enable_irq_wake(client->irq); 760 761 return 0; 762 763 fail4: 764 input_unregister_device(idev); 765 idev = NULL; 766 fail3: 767 device_remove_file(&client->dev, &dev_attr_disable_kp); 768 fail2: 769 while (--pwm >= 0) 770 if (lm->pwm[pwm].enabled) 771 led_classdev_unregister(&lm->pwm[pwm].cdev); 772 fail1: 773 input_free_device(idev); 774 kfree(lm); 775 return err; 776 } 777 778 static int __devexit lm8323_remove(struct i2c_client *client) 779 { 780 struct lm8323_chip *lm = i2c_get_clientdata(client); 781 int i; 782 783 disable_irq_wake(client->irq); 784 free_irq(client->irq, lm); 785 cancel_work_sync(&lm->work); 786 787 input_unregister_device(lm->idev); 788 789 device_remove_file(&lm->client->dev, &dev_attr_disable_kp); 790 791 for (i = 0; i < 3; i++) 792 if (lm->pwm[i].enabled) 793 led_classdev_unregister(&lm->pwm[i].cdev); 794 795 kfree(lm); 796 797 return 0; 798 } 799 800 #ifdef CONFIG_PM 801 /* 802 * We don't need to explicitly suspend the chip, as it already switches off 803 * when there's no activity. 804 */ 805 static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg) 806 { 807 struct lm8323_chip *lm = i2c_get_clientdata(client); 808 int i; 809 810 set_irq_wake(client->irq, 0); 811 disable_irq(client->irq); 812 813 mutex_lock(&lm->lock); 814 lm->pm_suspend = true; 815 mutex_unlock(&lm->lock); 816 817 for (i = 0; i < 3; i++) 818 if (lm->pwm[i].enabled) 819 led_classdev_suspend(&lm->pwm[i].cdev); 820 821 return 0; 822 } 823 824 static int lm8323_resume(struct i2c_client *client) 825 { 826 struct lm8323_chip *lm = i2c_get_clientdata(client); 827 int i; 828 829 mutex_lock(&lm->lock); 830 lm->pm_suspend = false; 831 mutex_unlock(&lm->lock); 832 833 for (i = 0; i < 3; i++) 834 if (lm->pwm[i].enabled) 835 led_classdev_resume(&lm->pwm[i].cdev); 836 837 enable_irq(client->irq); 838 set_irq_wake(client->irq, 1); 839 840 return 0; 841 } 842 #else 843 #define lm8323_suspend NULL 844 #define lm8323_resume NULL 845 #endif 846 847 static const struct i2c_device_id lm8323_id[] = { 848 { "lm8323", 0 }, 849 { } 850 }; 851 852 static struct i2c_driver lm8323_i2c_driver = { 853 .driver = { 854 .name = "lm8323", 855 }, 856 .probe = lm8323_probe, 857 .remove = __devexit_p(lm8323_remove), 858 .suspend = lm8323_suspend, 859 .resume = lm8323_resume, 860 .id_table = lm8323_id, 861 }; 862 MODULE_DEVICE_TABLE(i2c, lm8323_id); 863 864 static int __init lm8323_init(void) 865 { 866 return i2c_add_driver(&lm8323_i2c_driver); 867 } 868 module_init(lm8323_init); 869 870 static void __exit lm8323_exit(void) 871 { 872 i2c_del_driver(&lm8323_i2c_driver); 873 } 874 module_exit(lm8323_exit); 875 876 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); 877 MODULE_AUTHOR("Daniel Stone"); 878 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); 879 MODULE_DESCRIPTION("LM8323 keypad driver"); 880 MODULE_LICENSE("GPL"); 881 882