1 /* 2 * drivers/i2c/chips/lm8323.c 3 * 4 * Copyright (C) 2007-2009 Nokia Corporation 5 * 6 * Written by Daniel Stone <daniel.stone@nokia.com> 7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> 8 * 9 * Updated by Felipe Balbi <felipe.balbi@nokia.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation (version 2 of the License only). 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 */ 24 25 #include <linux/module.h> 26 #include <linux/i2c.h> 27 #include <linux/interrupt.h> 28 #include <linux/sched.h> 29 #include <linux/mutex.h> 30 #include <linux/delay.h> 31 #include <linux/input.h> 32 #include <linux/leds.h> 33 #include <linux/platform_data/lm8323.h> 34 #include <linux/pm.h> 35 #include <linux/slab.h> 36 37 /* Commands to send to the chip. */ 38 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ 39 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ 40 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ 41 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ 42 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ 43 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ 44 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ 45 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ 46 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ 47 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ 48 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ 49 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ 50 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ 51 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ 52 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ 53 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ 54 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ 55 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ 56 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ 57 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ 58 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ 59 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ 60 61 /* Interrupt status. */ 62 #define INT_KEYPAD 0x01 /* Key event. */ 63 #define INT_ROTATOR 0x02 /* Rotator event. */ 64 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ 65 #define INT_NOINIT 0x10 /* Lost configuration. */ 66 #define INT_PWM1 0x20 /* PWM1 stopped. */ 67 #define INT_PWM2 0x40 /* PWM2 stopped. */ 68 #define INT_PWM3 0x80 /* PWM3 stopped. */ 69 70 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ 71 #define ERR_BADPAR 0x01 /* Bad parameter. */ 72 #define ERR_CMDUNK 0x02 /* Unknown command. */ 73 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ 74 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ 75 76 /* Configuration keys (CMD_{WRITE,READ}_CFG). */ 77 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ 78 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ 79 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ 80 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ 81 #define CFG_PSIZE 0x20 /* Package size (must be 0). */ 82 #define CFG_ROTEN 0x40 /* Enable rotator. */ 83 84 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ 85 #define CLK_RCPWM_INTERNAL 0x00 86 #define CLK_RCPWM_EXTERNAL 0x03 87 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ 88 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ 89 90 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ 91 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ 92 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ 93 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ 94 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ 95 96 /* Key event fifo length */ 97 #define LM8323_FIFO_LEN 15 98 99 /* Commands for PWM engine; feed in with PWM_WRITE. */ 100 /* Load ramp counter from duty cycle field (range 0 - 0xff). */ 101 #define PWM_SET(v) (0x4000 | ((v) & 0xff)) 102 /* Go to start of script. */ 103 #define PWM_GOTOSTART 0x0000 104 /* 105 * Stop engine (generates interrupt). If reset is 1, clear the program 106 * counter, else leave it. 107 */ 108 #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) 109 /* 110 * Ramp. If s is 1, divide clock by 512, else divide clock by 16. 111 * Take t clock scales (up to 63) per step, for n steps (up to 126). 112 * If u is set, ramp up, else ramp down. 113 */ 114 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ 115 ((n) & 0x7f) | ((u) ? 0 : 0x80)) 116 /* 117 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). 118 * If cnt is zero, execute until PWM_END is encountered. 119 */ 120 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ 121 ((pos) & 0x3f)) 122 /* 123 * Wait for trigger. Argument is a mask of channels, shifted by the channel 124 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered 125 * from 1, not 0. 126 */ 127 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) 128 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ 129 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) 130 131 struct lm8323_pwm { 132 int id; 133 int fade_time; 134 int brightness; 135 int desired_brightness; 136 bool enabled; 137 bool running; 138 /* pwm lock */ 139 struct mutex lock; 140 struct work_struct work; 141 struct led_classdev cdev; 142 struct lm8323_chip *chip; 143 }; 144 145 struct lm8323_chip { 146 /* device lock */ 147 struct mutex lock; 148 struct i2c_client *client; 149 struct input_dev *idev; 150 bool kp_enabled; 151 bool pm_suspend; 152 unsigned keys_down; 153 char phys[32]; 154 unsigned short keymap[LM8323_KEYMAP_SIZE]; 155 int size_x; 156 int size_y; 157 int debounce_time; 158 int active_time; 159 struct lm8323_pwm pwm[LM8323_NUM_PWMS]; 160 }; 161 162 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) 163 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) 164 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) 165 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) 166 167 #define LM8323_MAX_DATA 8 168 169 /* 170 * To write, we just access the chip's address in write mode, and dump the 171 * command and data out on the bus. The command byte and data are taken as 172 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. 173 */ 174 static int lm8323_write(struct lm8323_chip *lm, int len, ...) 175 { 176 int ret, i; 177 va_list ap; 178 u8 data[LM8323_MAX_DATA]; 179 180 va_start(ap, len); 181 182 if (unlikely(len > LM8323_MAX_DATA)) { 183 dev_err(&lm->client->dev, "tried to send %d bytes\n", len); 184 va_end(ap); 185 return 0; 186 } 187 188 for (i = 0; i < len; i++) 189 data[i] = va_arg(ap, int); 190 191 va_end(ap); 192 193 /* 194 * If the host is asleep while we send the data, we can get a NACK 195 * back while it wakes up, so try again, once. 196 */ 197 ret = i2c_master_send(lm->client, data, len); 198 if (unlikely(ret == -EREMOTEIO)) 199 ret = i2c_master_send(lm->client, data, len); 200 if (unlikely(ret != len)) 201 dev_err(&lm->client->dev, "sent %d bytes of %d total\n", 202 len, ret); 203 204 return ret; 205 } 206 207 /* 208 * To read, we first send the command byte to the chip and end the transaction, 209 * then access the chip in read mode, at which point it will send the data. 210 */ 211 static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) 212 { 213 int ret; 214 215 /* 216 * If the host is asleep while we send the byte, we can get a NACK 217 * back while it wakes up, so try again, once. 218 */ 219 ret = i2c_master_send(lm->client, &cmd, 1); 220 if (unlikely(ret == -EREMOTEIO)) 221 ret = i2c_master_send(lm->client, &cmd, 1); 222 if (unlikely(ret != 1)) { 223 dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", 224 cmd); 225 return 0; 226 } 227 228 ret = i2c_master_recv(lm->client, buf, len); 229 if (unlikely(ret != len)) 230 dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", 231 len, ret); 232 233 return ret; 234 } 235 236 /* 237 * Set the chip active time (idle time before it enters halt). 238 */ 239 static void lm8323_set_active_time(struct lm8323_chip *lm, int time) 240 { 241 lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); 242 } 243 244 /* 245 * The signals are AT-style: the low 7 bits are the keycode, and the top 246 * bit indicates the state (1 for down, 0 for up). 247 */ 248 static inline u8 lm8323_whichkey(u8 event) 249 { 250 return event & 0x7f; 251 } 252 253 static inline int lm8323_ispress(u8 event) 254 { 255 return (event & 0x80) ? 1 : 0; 256 } 257 258 static void process_keys(struct lm8323_chip *lm) 259 { 260 u8 event; 261 u8 key_fifo[LM8323_FIFO_LEN + 1]; 262 int old_keys_down = lm->keys_down; 263 int ret; 264 int i = 0; 265 266 /* 267 * Read all key events from the FIFO at once. Next READ_FIFO clears the 268 * FIFO even if we didn't read all events previously. 269 */ 270 ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); 271 272 if (ret < 0) { 273 dev_err(&lm->client->dev, "Failed reading fifo \n"); 274 return; 275 } 276 key_fifo[ret] = 0; 277 278 while ((event = key_fifo[i++])) { 279 u8 key = lm8323_whichkey(event); 280 int isdown = lm8323_ispress(event); 281 unsigned short keycode = lm->keymap[key]; 282 283 dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", 284 key, isdown ? "down" : "up"); 285 286 if (lm->kp_enabled) { 287 input_event(lm->idev, EV_MSC, MSC_SCAN, key); 288 input_report_key(lm->idev, keycode, isdown); 289 input_sync(lm->idev); 290 } 291 292 if (isdown) 293 lm->keys_down++; 294 else 295 lm->keys_down--; 296 } 297 298 /* 299 * Errata: We need to ensure that the chip never enters halt mode 300 * during a keypress, so set active time to 0. When it's released, 301 * we can enter halt again, so set the active time back to normal. 302 */ 303 if (!old_keys_down && lm->keys_down) 304 lm8323_set_active_time(lm, 0); 305 if (old_keys_down && !lm->keys_down) 306 lm8323_set_active_time(lm, lm->active_time); 307 } 308 309 static void lm8323_process_error(struct lm8323_chip *lm) 310 { 311 u8 error; 312 313 if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { 314 if (error & ERR_FIFOOVER) 315 dev_vdbg(&lm->client->dev, "fifo overflow!\n"); 316 if (error & ERR_KEYOVR) 317 dev_vdbg(&lm->client->dev, 318 "more than two keys pressed\n"); 319 if (error & ERR_CMDUNK) 320 dev_vdbg(&lm->client->dev, 321 "unknown command submitted\n"); 322 if (error & ERR_BADPAR) 323 dev_vdbg(&lm->client->dev, "bad command parameter\n"); 324 } 325 } 326 327 static void lm8323_reset(struct lm8323_chip *lm) 328 { 329 /* The docs say we must pass 0xAA as the data byte. */ 330 lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); 331 } 332 333 static int lm8323_configure(struct lm8323_chip *lm) 334 { 335 int keysize = (lm->size_x << 4) | lm->size_y; 336 int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); 337 int debounce = lm->debounce_time >> 2; 338 int active = lm->active_time >> 2; 339 340 /* 341 * Active time must be greater than the debounce time: if it's 342 * a close-run thing, give ourselves a 12ms buffer. 343 */ 344 if (debounce >= active) 345 active = debounce + 3; 346 347 lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); 348 lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); 349 lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); 350 lm8323_set_active_time(lm, lm->active_time); 351 lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); 352 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); 353 lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); 354 355 /* 356 * Not much we can do about errors at this point, so just hope 357 * for the best. 358 */ 359 360 return 0; 361 } 362 363 static void pwm_done(struct lm8323_pwm *pwm) 364 { 365 mutex_lock(&pwm->lock); 366 pwm->running = false; 367 if (pwm->desired_brightness != pwm->brightness) 368 schedule_work(&pwm->work); 369 mutex_unlock(&pwm->lock); 370 } 371 372 /* 373 * Bottom half: handle the interrupt by posting key events, or dealing with 374 * errors appropriately. 375 */ 376 static irqreturn_t lm8323_irq(int irq, void *_lm) 377 { 378 struct lm8323_chip *lm = _lm; 379 u8 ints; 380 int i; 381 382 mutex_lock(&lm->lock); 383 384 while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { 385 if (likely(ints & INT_KEYPAD)) 386 process_keys(lm); 387 if (ints & INT_ROTATOR) { 388 /* We don't currently support the rotator. */ 389 dev_vdbg(&lm->client->dev, "rotator fired\n"); 390 } 391 if (ints & INT_ERROR) { 392 dev_vdbg(&lm->client->dev, "error!\n"); 393 lm8323_process_error(lm); 394 } 395 if (ints & INT_NOINIT) { 396 dev_err(&lm->client->dev, "chip lost config; " 397 "reinitialising\n"); 398 lm8323_configure(lm); 399 } 400 for (i = 0; i < LM8323_NUM_PWMS; i++) { 401 if (ints & (INT_PWM1 << i)) { 402 dev_vdbg(&lm->client->dev, 403 "pwm%d engine completed\n", i); 404 pwm_done(&lm->pwm[i]); 405 } 406 } 407 } 408 409 mutex_unlock(&lm->lock); 410 411 return IRQ_HANDLED; 412 } 413 414 /* 415 * Read the chip ID. 416 */ 417 static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) 418 { 419 int bytes; 420 421 bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); 422 if (unlikely(bytes != 2)) 423 return -EIO; 424 425 return 0; 426 } 427 428 static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) 429 { 430 lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, 431 (cmd & 0xff00) >> 8, cmd & 0x00ff); 432 } 433 434 /* 435 * Write a script into a given PWM engine, concluding with PWM_END. 436 * If 'kill' is nonzero, the engine will be shut down at the end 437 * of the script, producing a zero output. Otherwise the engine 438 * will be kept running at the final PWM level indefinitely. 439 */ 440 static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, 441 int len, const u16 *cmds) 442 { 443 int i; 444 445 for (i = 0; i < len; i++) 446 lm8323_write_pwm_one(pwm, i, cmds[i]); 447 448 lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); 449 lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); 450 pwm->running = true; 451 } 452 453 static void lm8323_pwm_work(struct work_struct *work) 454 { 455 struct lm8323_pwm *pwm = work_to_pwm(work); 456 int div512, perstep, steps, hz, up, kill; 457 u16 pwm_cmds[3]; 458 int num_cmds = 0; 459 460 mutex_lock(&pwm->lock); 461 462 /* 463 * Do nothing if we're already at the requested level, 464 * or previous setting is not yet complete. In the latter 465 * case we will be called again when the previous PWM script 466 * finishes. 467 */ 468 if (pwm->running || pwm->desired_brightness == pwm->brightness) 469 goto out; 470 471 kill = (pwm->desired_brightness == 0); 472 up = (pwm->desired_brightness > pwm->brightness); 473 steps = abs(pwm->desired_brightness - pwm->brightness); 474 475 /* 476 * Convert time (in ms) into a divisor (512 or 16 on a refclk of 477 * 32768Hz), and number of ticks per step. 478 */ 479 if ((pwm->fade_time / steps) > (32768 / 512)) { 480 div512 = 1; 481 hz = 32768 / 512; 482 } else { 483 div512 = 0; 484 hz = 32768 / 16; 485 } 486 487 perstep = (hz * pwm->fade_time) / (steps * 1000); 488 489 if (perstep == 0) 490 perstep = 1; 491 else if (perstep > 63) 492 perstep = 63; 493 494 while (steps) { 495 int s; 496 497 s = min(126, steps); 498 pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); 499 steps -= s; 500 } 501 502 lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); 503 pwm->brightness = pwm->desired_brightness; 504 505 out: 506 mutex_unlock(&pwm->lock); 507 } 508 509 static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, 510 enum led_brightness brightness) 511 { 512 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 513 struct lm8323_chip *lm = pwm->chip; 514 515 mutex_lock(&pwm->lock); 516 pwm->desired_brightness = brightness; 517 mutex_unlock(&pwm->lock); 518 519 if (in_interrupt()) { 520 schedule_work(&pwm->work); 521 } else { 522 /* 523 * Schedule PWM work as usual unless we are going into suspend 524 */ 525 mutex_lock(&lm->lock); 526 if (likely(!lm->pm_suspend)) 527 schedule_work(&pwm->work); 528 else 529 lm8323_pwm_work(&pwm->work); 530 mutex_unlock(&lm->lock); 531 } 532 } 533 534 static ssize_t lm8323_pwm_show_time(struct device *dev, 535 struct device_attribute *attr, char *buf) 536 { 537 struct led_classdev *led_cdev = dev_get_drvdata(dev); 538 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 539 540 return sprintf(buf, "%d\n", pwm->fade_time); 541 } 542 543 static ssize_t lm8323_pwm_store_time(struct device *dev, 544 struct device_attribute *attr, const char *buf, size_t len) 545 { 546 struct led_classdev *led_cdev = dev_get_drvdata(dev); 547 struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); 548 int ret, time; 549 550 ret = kstrtoint(buf, 10, &time); 551 /* Numbers only, please. */ 552 if (ret) 553 return ret; 554 555 pwm->fade_time = time; 556 557 return strlen(buf); 558 } 559 static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); 560 561 static struct attribute *lm8323_pwm_attrs[] = { 562 &dev_attr_time.attr, 563 NULL 564 }; 565 ATTRIBUTE_GROUPS(lm8323_pwm); 566 567 static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, 568 const char *name) 569 { 570 struct lm8323_pwm *pwm; 571 572 BUG_ON(id > 3); 573 574 pwm = &lm->pwm[id - 1]; 575 576 pwm->id = id; 577 pwm->fade_time = 0; 578 pwm->brightness = 0; 579 pwm->desired_brightness = 0; 580 pwm->running = false; 581 pwm->enabled = false; 582 INIT_WORK(&pwm->work, lm8323_pwm_work); 583 mutex_init(&pwm->lock); 584 pwm->chip = lm; 585 586 if (name) { 587 pwm->cdev.name = name; 588 pwm->cdev.brightness_set = lm8323_pwm_set_brightness; 589 pwm->cdev.groups = lm8323_pwm_groups; 590 if (led_classdev_register(dev, &pwm->cdev) < 0) { 591 dev_err(dev, "couldn't register PWM %d\n", id); 592 return -1; 593 } 594 pwm->enabled = true; 595 } 596 597 return 0; 598 } 599 600 static struct i2c_driver lm8323_i2c_driver; 601 602 static ssize_t lm8323_show_disable(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct lm8323_chip *lm = dev_get_drvdata(dev); 606 607 return sprintf(buf, "%u\n", !lm->kp_enabled); 608 } 609 610 static ssize_t lm8323_set_disable(struct device *dev, 611 struct device_attribute *attr, 612 const char *buf, size_t count) 613 { 614 struct lm8323_chip *lm = dev_get_drvdata(dev); 615 int ret; 616 unsigned int i; 617 618 ret = kstrtouint(buf, 10, &i); 619 if (ret) 620 return ret; 621 622 mutex_lock(&lm->lock); 623 lm->kp_enabled = !i; 624 mutex_unlock(&lm->lock); 625 626 return count; 627 } 628 static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); 629 630 static int lm8323_probe(struct i2c_client *client, 631 const struct i2c_device_id *id) 632 { 633 struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev); 634 struct input_dev *idev; 635 struct lm8323_chip *lm; 636 int pwm; 637 int i, err; 638 unsigned long tmo; 639 u8 data[2]; 640 641 if (!pdata || !pdata->size_x || !pdata->size_y) { 642 dev_err(&client->dev, "missing platform_data\n"); 643 return -EINVAL; 644 } 645 646 if (pdata->size_x > 8) { 647 dev_err(&client->dev, "invalid x size %d specified\n", 648 pdata->size_x); 649 return -EINVAL; 650 } 651 652 if (pdata->size_y > 12) { 653 dev_err(&client->dev, "invalid y size %d specified\n", 654 pdata->size_y); 655 return -EINVAL; 656 } 657 658 lm = kzalloc(sizeof *lm, GFP_KERNEL); 659 idev = input_allocate_device(); 660 if (!lm || !idev) { 661 err = -ENOMEM; 662 goto fail1; 663 } 664 665 lm->client = client; 666 lm->idev = idev; 667 mutex_init(&lm->lock); 668 669 lm->size_x = pdata->size_x; 670 lm->size_y = pdata->size_y; 671 dev_vdbg(&client->dev, "Keypad size: %d x %d\n", 672 lm->size_x, lm->size_y); 673 674 lm->debounce_time = pdata->debounce_time; 675 lm->active_time = pdata->active_time; 676 677 lm8323_reset(lm); 678 679 /* Nothing's set up to service the IRQ yet, so just spin for max. 680 * 100ms until we can configure. */ 681 tmo = jiffies + msecs_to_jiffies(100); 682 while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { 683 if (data[0] & INT_NOINIT) 684 break; 685 686 if (time_after(jiffies, tmo)) { 687 dev_err(&client->dev, 688 "timeout waiting for initialisation\n"); 689 break; 690 } 691 692 msleep(1); 693 } 694 695 lm8323_configure(lm); 696 697 /* If a true probe check the device */ 698 if (lm8323_read_id(lm, data) != 0) { 699 dev_err(&client->dev, "device not found\n"); 700 err = -ENODEV; 701 goto fail1; 702 } 703 704 for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) { 705 err = init_pwm(lm, pwm + 1, &client->dev, 706 pdata->pwm_names[pwm]); 707 if (err < 0) 708 goto fail2; 709 } 710 711 lm->kp_enabled = true; 712 err = device_create_file(&client->dev, &dev_attr_disable_kp); 713 if (err < 0) 714 goto fail2; 715 716 idev->name = pdata->name ? : "LM8323 keypad"; 717 snprintf(lm->phys, sizeof(lm->phys), 718 "%s/input-kp", dev_name(&client->dev)); 719 idev->phys = lm->phys; 720 721 idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); 722 __set_bit(MSC_SCAN, idev->mscbit); 723 for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { 724 __set_bit(pdata->keymap[i], idev->keybit); 725 lm->keymap[i] = pdata->keymap[i]; 726 } 727 __clear_bit(KEY_RESERVED, idev->keybit); 728 729 if (pdata->repeat) 730 __set_bit(EV_REP, idev->evbit); 731 732 err = input_register_device(idev); 733 if (err) { 734 dev_dbg(&client->dev, "error registering input device\n"); 735 goto fail3; 736 } 737 738 err = request_threaded_irq(client->irq, NULL, lm8323_irq, 739 IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm); 740 if (err) { 741 dev_err(&client->dev, "could not get IRQ %d\n", client->irq); 742 goto fail4; 743 } 744 745 i2c_set_clientdata(client, lm); 746 747 device_init_wakeup(&client->dev, 1); 748 enable_irq_wake(client->irq); 749 750 return 0; 751 752 fail4: 753 input_unregister_device(idev); 754 idev = NULL; 755 fail3: 756 device_remove_file(&client->dev, &dev_attr_disable_kp); 757 fail2: 758 while (--pwm >= 0) 759 if (lm->pwm[pwm].enabled) 760 led_classdev_unregister(&lm->pwm[pwm].cdev); 761 fail1: 762 input_free_device(idev); 763 kfree(lm); 764 return err; 765 } 766 767 static int lm8323_remove(struct i2c_client *client) 768 { 769 struct lm8323_chip *lm = i2c_get_clientdata(client); 770 int i; 771 772 disable_irq_wake(client->irq); 773 free_irq(client->irq, lm); 774 775 input_unregister_device(lm->idev); 776 777 device_remove_file(&lm->client->dev, &dev_attr_disable_kp); 778 779 for (i = 0; i < 3; i++) 780 if (lm->pwm[i].enabled) 781 led_classdev_unregister(&lm->pwm[i].cdev); 782 783 kfree(lm); 784 785 return 0; 786 } 787 788 #ifdef CONFIG_PM_SLEEP 789 /* 790 * We don't need to explicitly suspend the chip, as it already switches off 791 * when there's no activity. 792 */ 793 static int lm8323_suspend(struct device *dev) 794 { 795 struct i2c_client *client = to_i2c_client(dev); 796 struct lm8323_chip *lm = i2c_get_clientdata(client); 797 int i; 798 799 irq_set_irq_wake(client->irq, 0); 800 disable_irq(client->irq); 801 802 mutex_lock(&lm->lock); 803 lm->pm_suspend = true; 804 mutex_unlock(&lm->lock); 805 806 for (i = 0; i < 3; i++) 807 if (lm->pwm[i].enabled) 808 led_classdev_suspend(&lm->pwm[i].cdev); 809 810 return 0; 811 } 812 813 static int lm8323_resume(struct device *dev) 814 { 815 struct i2c_client *client = to_i2c_client(dev); 816 struct lm8323_chip *lm = i2c_get_clientdata(client); 817 int i; 818 819 mutex_lock(&lm->lock); 820 lm->pm_suspend = false; 821 mutex_unlock(&lm->lock); 822 823 for (i = 0; i < 3; i++) 824 if (lm->pwm[i].enabled) 825 led_classdev_resume(&lm->pwm[i].cdev); 826 827 enable_irq(client->irq); 828 irq_set_irq_wake(client->irq, 1); 829 830 return 0; 831 } 832 #endif 833 834 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume); 835 836 static const struct i2c_device_id lm8323_id[] = { 837 { "lm8323", 0 }, 838 { } 839 }; 840 841 static struct i2c_driver lm8323_i2c_driver = { 842 .driver = { 843 .name = "lm8323", 844 .pm = &lm8323_pm_ops, 845 }, 846 .probe = lm8323_probe, 847 .remove = lm8323_remove, 848 .id_table = lm8323_id, 849 }; 850 MODULE_DEVICE_TABLE(i2c, lm8323_id); 851 852 module_i2c_driver(lm8323_i2c_driver); 853 854 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); 855 MODULE_AUTHOR("Daniel Stone"); 856 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); 857 MODULE_DESCRIPTION("LM8323 keypad driver"); 858 MODULE_LICENSE("GPL"); 859 860