xref: /openbmc/linux/drivers/input/input.c (revision f42b3800)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/input.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
17 #include <linux/major.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/poll.h>
21 #include <linux/device.h>
22 #include <linux/mutex.h>
23 #include <linux/rcupdate.h>
24 
25 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
26 MODULE_DESCRIPTION("Input core");
27 MODULE_LICENSE("GPL");
28 
29 #define INPUT_DEVICES	256
30 
31 static LIST_HEAD(input_dev_list);
32 static LIST_HEAD(input_handler_list);
33 
34 /*
35  * input_mutex protects access to both input_dev_list and input_handler_list.
36  * This also causes input_[un]register_device and input_[un]register_handler
37  * be mutually exclusive which simplifies locking in drivers implementing
38  * input handlers.
39  */
40 static DEFINE_MUTEX(input_mutex);
41 
42 static struct input_handler *input_table[8];
43 
44 static inline int is_event_supported(unsigned int code,
45 				     unsigned long *bm, unsigned int max)
46 {
47 	return code <= max && test_bit(code, bm);
48 }
49 
50 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
51 {
52 	if (fuzz) {
53 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
54 			return old_val;
55 
56 		if (value > old_val - fuzz && value < old_val + fuzz)
57 			return (old_val * 3 + value) / 4;
58 
59 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
60 			return (old_val + value) / 2;
61 	}
62 
63 	return value;
64 }
65 
66 /*
67  * Pass event through all open handles. This function is called with
68  * dev->event_lock held and interrupts disabled.
69  */
70 static void input_pass_event(struct input_dev *dev,
71 			     unsigned int type, unsigned int code, int value)
72 {
73 	struct input_handle *handle;
74 
75 	rcu_read_lock();
76 
77 	handle = rcu_dereference(dev->grab);
78 	if (handle)
79 		handle->handler->event(handle, type, code, value);
80 	else
81 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
82 			if (handle->open)
83 				handle->handler->event(handle,
84 							type, code, value);
85 	rcu_read_unlock();
86 }
87 
88 /*
89  * Generate software autorepeat event. Note that we take
90  * dev->event_lock here to avoid racing with input_event
91  * which may cause keys get "stuck".
92  */
93 static void input_repeat_key(unsigned long data)
94 {
95 	struct input_dev *dev = (void *) data;
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(&dev->event_lock, flags);
99 
100 	if (test_bit(dev->repeat_key, dev->key) &&
101 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
102 
103 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
104 
105 		if (dev->sync) {
106 			/*
107 			 * Only send SYN_REPORT if we are not in a middle
108 			 * of driver parsing a new hardware packet.
109 			 * Otherwise assume that the driver will send
110 			 * SYN_REPORT once it's done.
111 			 */
112 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
113 		}
114 
115 		if (dev->rep[REP_PERIOD])
116 			mod_timer(&dev->timer, jiffies +
117 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
118 	}
119 
120 	spin_unlock_irqrestore(&dev->event_lock, flags);
121 }
122 
123 static void input_start_autorepeat(struct input_dev *dev, int code)
124 {
125 	if (test_bit(EV_REP, dev->evbit) &&
126 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
127 	    dev->timer.data) {
128 		dev->repeat_key = code;
129 		mod_timer(&dev->timer,
130 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
131 	}
132 }
133 
134 #define INPUT_IGNORE_EVENT	0
135 #define INPUT_PASS_TO_HANDLERS	1
136 #define INPUT_PASS_TO_DEVICE	2
137 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
138 
139 static void input_handle_event(struct input_dev *dev,
140 			       unsigned int type, unsigned int code, int value)
141 {
142 	int disposition = INPUT_IGNORE_EVENT;
143 
144 	switch (type) {
145 
146 	case EV_SYN:
147 		switch (code) {
148 		case SYN_CONFIG:
149 			disposition = INPUT_PASS_TO_ALL;
150 			break;
151 
152 		case SYN_REPORT:
153 			if (!dev->sync) {
154 				dev->sync = 1;
155 				disposition = INPUT_PASS_TO_HANDLERS;
156 			}
157 			break;
158 		}
159 		break;
160 
161 	case EV_KEY:
162 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
163 		    !!test_bit(code, dev->key) != value) {
164 
165 			if (value != 2) {
166 				__change_bit(code, dev->key);
167 				if (value)
168 					input_start_autorepeat(dev, code);
169 			}
170 
171 			disposition = INPUT_PASS_TO_HANDLERS;
172 		}
173 		break;
174 
175 	case EV_SW:
176 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
177 		    !!test_bit(code, dev->sw) != value) {
178 
179 			__change_bit(code, dev->sw);
180 			disposition = INPUT_PASS_TO_HANDLERS;
181 		}
182 		break;
183 
184 	case EV_ABS:
185 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
186 
187 			value = input_defuzz_abs_event(value,
188 					dev->abs[code], dev->absfuzz[code]);
189 
190 			if (dev->abs[code] != value) {
191 				dev->abs[code] = value;
192 				disposition = INPUT_PASS_TO_HANDLERS;
193 			}
194 		}
195 		break;
196 
197 	case EV_REL:
198 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
199 			disposition = INPUT_PASS_TO_HANDLERS;
200 
201 		break;
202 
203 	case EV_MSC:
204 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
205 			disposition = INPUT_PASS_TO_ALL;
206 
207 		break;
208 
209 	case EV_LED:
210 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
211 		    !!test_bit(code, dev->led) != value) {
212 
213 			__change_bit(code, dev->led);
214 			disposition = INPUT_PASS_TO_ALL;
215 		}
216 		break;
217 
218 	case EV_SND:
219 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
220 
221 			if (!!test_bit(code, dev->snd) != !!value)
222 				__change_bit(code, dev->snd);
223 			disposition = INPUT_PASS_TO_ALL;
224 		}
225 		break;
226 
227 	case EV_REP:
228 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
229 			dev->rep[code] = value;
230 			disposition = INPUT_PASS_TO_ALL;
231 		}
232 		break;
233 
234 	case EV_FF:
235 		if (value >= 0)
236 			disposition = INPUT_PASS_TO_ALL;
237 		break;
238 
239 	case EV_PWR:
240 		disposition = INPUT_PASS_TO_ALL;
241 		break;
242 	}
243 
244 	if (type != EV_SYN)
245 		dev->sync = 0;
246 
247 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
248 		dev->event(dev, type, code, value);
249 
250 	if (disposition & INPUT_PASS_TO_HANDLERS)
251 		input_pass_event(dev, type, code, value);
252 }
253 
254 /**
255  * input_event() - report new input event
256  * @dev: device that generated the event
257  * @type: type of the event
258  * @code: event code
259  * @value: value of the event
260  *
261  * This function should be used by drivers implementing various input
262  * devices. See also input_inject_event().
263  */
264 
265 void input_event(struct input_dev *dev,
266 		 unsigned int type, unsigned int code, int value)
267 {
268 	unsigned long flags;
269 
270 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
271 
272 		spin_lock_irqsave(&dev->event_lock, flags);
273 		add_input_randomness(type, code, value);
274 		input_handle_event(dev, type, code, value);
275 		spin_unlock_irqrestore(&dev->event_lock, flags);
276 	}
277 }
278 EXPORT_SYMBOL(input_event);
279 
280 /**
281  * input_inject_event() - send input event from input handler
282  * @handle: input handle to send event through
283  * @type: type of the event
284  * @code: event code
285  * @value: value of the event
286  *
287  * Similar to input_event() but will ignore event if device is
288  * "grabbed" and handle injecting event is not the one that owns
289  * the device.
290  */
291 void input_inject_event(struct input_handle *handle,
292 			unsigned int type, unsigned int code, int value)
293 {
294 	struct input_dev *dev = handle->dev;
295 	struct input_handle *grab;
296 	unsigned long flags;
297 
298 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
299 		spin_lock_irqsave(&dev->event_lock, flags);
300 
301 		rcu_read_lock();
302 		grab = rcu_dereference(dev->grab);
303 		if (!grab || grab == handle)
304 			input_handle_event(dev, type, code, value);
305 		rcu_read_unlock();
306 
307 		spin_unlock_irqrestore(&dev->event_lock, flags);
308 	}
309 }
310 EXPORT_SYMBOL(input_inject_event);
311 
312 /**
313  * input_grab_device - grabs device for exclusive use
314  * @handle: input handle that wants to own the device
315  *
316  * When a device is grabbed by an input handle all events generated by
317  * the device are delivered only to this handle. Also events injected
318  * by other input handles are ignored while device is grabbed.
319  */
320 int input_grab_device(struct input_handle *handle)
321 {
322 	struct input_dev *dev = handle->dev;
323 	int retval;
324 
325 	retval = mutex_lock_interruptible(&dev->mutex);
326 	if (retval)
327 		return retval;
328 
329 	if (dev->grab) {
330 		retval = -EBUSY;
331 		goto out;
332 	}
333 
334 	rcu_assign_pointer(dev->grab, handle);
335 	synchronize_rcu();
336 
337  out:
338 	mutex_unlock(&dev->mutex);
339 	return retval;
340 }
341 EXPORT_SYMBOL(input_grab_device);
342 
343 static void __input_release_device(struct input_handle *handle)
344 {
345 	struct input_dev *dev = handle->dev;
346 
347 	if (dev->grab == handle) {
348 		rcu_assign_pointer(dev->grab, NULL);
349 		/* Make sure input_pass_event() notices that grab is gone */
350 		synchronize_rcu();
351 
352 		list_for_each_entry(handle, &dev->h_list, d_node)
353 			if (handle->open && handle->handler->start)
354 				handle->handler->start(handle);
355 	}
356 }
357 
358 /**
359  * input_release_device - release previously grabbed device
360  * @handle: input handle that owns the device
361  *
362  * Releases previously grabbed device so that other input handles can
363  * start receiving input events. Upon release all handlers attached
364  * to the device have their start() method called so they have a change
365  * to synchronize device state with the rest of the system.
366  */
367 void input_release_device(struct input_handle *handle)
368 {
369 	struct input_dev *dev = handle->dev;
370 
371 	mutex_lock(&dev->mutex);
372 	__input_release_device(handle);
373 	mutex_unlock(&dev->mutex);
374 }
375 EXPORT_SYMBOL(input_release_device);
376 
377 /**
378  * input_open_device - open input device
379  * @handle: handle through which device is being accessed
380  *
381  * This function should be called by input handlers when they
382  * want to start receive events from given input device.
383  */
384 int input_open_device(struct input_handle *handle)
385 {
386 	struct input_dev *dev = handle->dev;
387 	int retval;
388 
389 	retval = mutex_lock_interruptible(&dev->mutex);
390 	if (retval)
391 		return retval;
392 
393 	if (dev->going_away) {
394 		retval = -ENODEV;
395 		goto out;
396 	}
397 
398 	handle->open++;
399 
400 	if (!dev->users++ && dev->open)
401 		retval = dev->open(dev);
402 
403 	if (retval) {
404 		dev->users--;
405 		if (!--handle->open) {
406 			/*
407 			 * Make sure we are not delivering any more events
408 			 * through this handle
409 			 */
410 			synchronize_rcu();
411 		}
412 	}
413 
414  out:
415 	mutex_unlock(&dev->mutex);
416 	return retval;
417 }
418 EXPORT_SYMBOL(input_open_device);
419 
420 int input_flush_device(struct input_handle *handle, struct file *file)
421 {
422 	struct input_dev *dev = handle->dev;
423 	int retval;
424 
425 	retval = mutex_lock_interruptible(&dev->mutex);
426 	if (retval)
427 		return retval;
428 
429 	if (dev->flush)
430 		retval = dev->flush(dev, file);
431 
432 	mutex_unlock(&dev->mutex);
433 	return retval;
434 }
435 EXPORT_SYMBOL(input_flush_device);
436 
437 /**
438  * input_close_device - close input device
439  * @handle: handle through which device is being accessed
440  *
441  * This function should be called by input handlers when they
442  * want to stop receive events from given input device.
443  */
444 void input_close_device(struct input_handle *handle)
445 {
446 	struct input_dev *dev = handle->dev;
447 
448 	mutex_lock(&dev->mutex);
449 
450 	__input_release_device(handle);
451 
452 	if (!--dev->users && dev->close)
453 		dev->close(dev);
454 
455 	if (!--handle->open) {
456 		/*
457 		 * synchronize_rcu() makes sure that input_pass_event()
458 		 * completed and that no more input events are delivered
459 		 * through this handle
460 		 */
461 		synchronize_rcu();
462 	}
463 
464 	mutex_unlock(&dev->mutex);
465 }
466 EXPORT_SYMBOL(input_close_device);
467 
468 /*
469  * Prepare device for unregistering
470  */
471 static void input_disconnect_device(struct input_dev *dev)
472 {
473 	struct input_handle *handle;
474 	int code;
475 
476 	/*
477 	 * Mark device as going away. Note that we take dev->mutex here
478 	 * not to protect access to dev->going_away but rather to ensure
479 	 * that there are no threads in the middle of input_open_device()
480 	 */
481 	mutex_lock(&dev->mutex);
482 	dev->going_away = 1;
483 	mutex_unlock(&dev->mutex);
484 
485 	spin_lock_irq(&dev->event_lock);
486 
487 	/*
488 	 * Simulate keyup events for all pressed keys so that handlers
489 	 * are not left with "stuck" keys. The driver may continue
490 	 * generate events even after we done here but they will not
491 	 * reach any handlers.
492 	 */
493 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
494 		for (code = 0; code <= KEY_MAX; code++) {
495 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
496 			    __test_and_clear_bit(code, dev->key)) {
497 				input_pass_event(dev, EV_KEY, code, 0);
498 			}
499 		}
500 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
501 	}
502 
503 	list_for_each_entry(handle, &dev->h_list, d_node)
504 		handle->open = 0;
505 
506 	spin_unlock_irq(&dev->event_lock);
507 }
508 
509 static int input_fetch_keycode(struct input_dev *dev, int scancode)
510 {
511 	switch (dev->keycodesize) {
512 		case 1:
513 			return ((u8 *)dev->keycode)[scancode];
514 
515 		case 2:
516 			return ((u16 *)dev->keycode)[scancode];
517 
518 		default:
519 			return ((u32 *)dev->keycode)[scancode];
520 	}
521 }
522 
523 static int input_default_getkeycode(struct input_dev *dev,
524 				    int scancode, int *keycode)
525 {
526 	if (!dev->keycodesize)
527 		return -EINVAL;
528 
529 	if (scancode >= dev->keycodemax)
530 		return -EINVAL;
531 
532 	*keycode = input_fetch_keycode(dev, scancode);
533 
534 	return 0;
535 }
536 
537 static int input_default_setkeycode(struct input_dev *dev,
538 				    int scancode, int keycode)
539 {
540 	int old_keycode;
541 	int i;
542 
543 	if (scancode >= dev->keycodemax)
544 		return -EINVAL;
545 
546 	if (!dev->keycodesize)
547 		return -EINVAL;
548 
549 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
550 		return -EINVAL;
551 
552 	switch (dev->keycodesize) {
553 		case 1: {
554 			u8 *k = (u8 *)dev->keycode;
555 			old_keycode = k[scancode];
556 			k[scancode] = keycode;
557 			break;
558 		}
559 		case 2: {
560 			u16 *k = (u16 *)dev->keycode;
561 			old_keycode = k[scancode];
562 			k[scancode] = keycode;
563 			break;
564 		}
565 		default: {
566 			u32 *k = (u32 *)dev->keycode;
567 			old_keycode = k[scancode];
568 			k[scancode] = keycode;
569 			break;
570 		}
571 	}
572 
573 	clear_bit(old_keycode, dev->keybit);
574 	set_bit(keycode, dev->keybit);
575 
576 	for (i = 0; i < dev->keycodemax; i++) {
577 		if (input_fetch_keycode(dev, i) == old_keycode) {
578 			set_bit(old_keycode, dev->keybit);
579 			break; /* Setting the bit twice is useless, so break */
580 		}
581 	}
582 
583 	return 0;
584 }
585 
586 /**
587  * input_get_keycode - retrieve keycode currently mapped to a given scancode
588  * @dev: input device which keymap is being queried
589  * @scancode: scancode (or its equivalent for device in question) for which
590  *	keycode is needed
591  * @keycode: result
592  *
593  * This function should be called by anyone interested in retrieving current
594  * keymap. Presently keyboard and evdev handlers use it.
595  */
596 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
597 {
598 	if (scancode < 0)
599 		return -EINVAL;
600 
601 	return dev->getkeycode(dev, scancode, keycode);
602 }
603 EXPORT_SYMBOL(input_get_keycode);
604 
605 /**
606  * input_get_keycode - assign new keycode to a given scancode
607  * @dev: input device which keymap is being updated
608  * @scancode: scancode (or its equivalent for device in question)
609  * @keycode: new keycode to be assigned to the scancode
610  *
611  * This function should be called by anyone needing to update current
612  * keymap. Presently keyboard and evdev handlers use it.
613  */
614 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
615 {
616 	unsigned long flags;
617 	int old_keycode;
618 	int retval;
619 
620 	if (scancode < 0)
621 		return -EINVAL;
622 
623 	if (keycode < 0 || keycode > KEY_MAX)
624 		return -EINVAL;
625 
626 	spin_lock_irqsave(&dev->event_lock, flags);
627 
628 	retval = dev->getkeycode(dev, scancode, &old_keycode);
629 	if (retval)
630 		goto out;
631 
632 	retval = dev->setkeycode(dev, scancode, keycode);
633 	if (retval)
634 		goto out;
635 
636 	/*
637 	 * Simulate keyup event if keycode is not present
638 	 * in the keymap anymore
639 	 */
640 	if (test_bit(EV_KEY, dev->evbit) &&
641 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
642 	    __test_and_clear_bit(old_keycode, dev->key)) {
643 
644 		input_pass_event(dev, EV_KEY, old_keycode, 0);
645 		if (dev->sync)
646 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
647 	}
648 
649  out:
650 	spin_unlock_irqrestore(&dev->event_lock, flags);
651 
652 	return retval;
653 }
654 EXPORT_SYMBOL(input_set_keycode);
655 
656 #define MATCH_BIT(bit, max) \
657 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
658 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
659 				break; \
660 		if (i != BITS_TO_LONGS(max)) \
661 			continue;
662 
663 static const struct input_device_id *input_match_device(const struct input_device_id *id,
664 							struct input_dev *dev)
665 {
666 	int i;
667 
668 	for (; id->flags || id->driver_info; id++) {
669 
670 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
671 			if (id->bustype != dev->id.bustype)
672 				continue;
673 
674 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
675 			if (id->vendor != dev->id.vendor)
676 				continue;
677 
678 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
679 			if (id->product != dev->id.product)
680 				continue;
681 
682 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
683 			if (id->version != dev->id.version)
684 				continue;
685 
686 		MATCH_BIT(evbit,  EV_MAX);
687 		MATCH_BIT(keybit, KEY_MAX);
688 		MATCH_BIT(relbit, REL_MAX);
689 		MATCH_BIT(absbit, ABS_MAX);
690 		MATCH_BIT(mscbit, MSC_MAX);
691 		MATCH_BIT(ledbit, LED_MAX);
692 		MATCH_BIT(sndbit, SND_MAX);
693 		MATCH_BIT(ffbit,  FF_MAX);
694 		MATCH_BIT(swbit,  SW_MAX);
695 
696 		return id;
697 	}
698 
699 	return NULL;
700 }
701 
702 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
703 {
704 	const struct input_device_id *id;
705 	int error;
706 
707 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
708 		return -ENODEV;
709 
710 	id = input_match_device(handler->id_table, dev);
711 	if (!id)
712 		return -ENODEV;
713 
714 	error = handler->connect(handler, dev, id);
715 	if (error && error != -ENODEV)
716 		printk(KERN_ERR
717 			"input: failed to attach handler %s to device %s, "
718 			"error: %d\n",
719 			handler->name, kobject_name(&dev->dev.kobj), error);
720 
721 	return error;
722 }
723 
724 
725 #ifdef CONFIG_PROC_FS
726 
727 static struct proc_dir_entry *proc_bus_input_dir;
728 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
729 static int input_devices_state;
730 
731 static inline void input_wakeup_procfs_readers(void)
732 {
733 	input_devices_state++;
734 	wake_up(&input_devices_poll_wait);
735 }
736 
737 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
738 {
739 	int state = input_devices_state;
740 
741 	poll_wait(file, &input_devices_poll_wait, wait);
742 	if (state != input_devices_state)
743 		return POLLIN | POLLRDNORM;
744 
745 	return 0;
746 }
747 
748 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
749 {
750 	if (mutex_lock_interruptible(&input_mutex))
751 		return NULL;
752 
753 	return seq_list_start(&input_dev_list, *pos);
754 }
755 
756 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
757 {
758 	return seq_list_next(v, &input_dev_list, pos);
759 }
760 
761 static void input_devices_seq_stop(struct seq_file *seq, void *v)
762 {
763 	mutex_unlock(&input_mutex);
764 }
765 
766 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
767 				   unsigned long *bitmap, int max)
768 {
769 	int i;
770 
771 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
772 		if (bitmap[i])
773 			break;
774 
775 	seq_printf(seq, "B: %s=", name);
776 	for (; i >= 0; i--)
777 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
778 	seq_putc(seq, '\n');
779 }
780 
781 static int input_devices_seq_show(struct seq_file *seq, void *v)
782 {
783 	struct input_dev *dev = container_of(v, struct input_dev, node);
784 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
785 	struct input_handle *handle;
786 
787 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
788 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
789 
790 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
791 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
792 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
793 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
794 	seq_printf(seq, "H: Handlers=");
795 
796 	list_for_each_entry(handle, &dev->h_list, d_node)
797 		seq_printf(seq, "%s ", handle->name);
798 	seq_putc(seq, '\n');
799 
800 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
801 	if (test_bit(EV_KEY, dev->evbit))
802 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
803 	if (test_bit(EV_REL, dev->evbit))
804 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
805 	if (test_bit(EV_ABS, dev->evbit))
806 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
807 	if (test_bit(EV_MSC, dev->evbit))
808 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
809 	if (test_bit(EV_LED, dev->evbit))
810 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
811 	if (test_bit(EV_SND, dev->evbit))
812 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
813 	if (test_bit(EV_FF, dev->evbit))
814 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
815 	if (test_bit(EV_SW, dev->evbit))
816 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
817 
818 	seq_putc(seq, '\n');
819 
820 	kfree(path);
821 	return 0;
822 }
823 
824 static const struct seq_operations input_devices_seq_ops = {
825 	.start	= input_devices_seq_start,
826 	.next	= input_devices_seq_next,
827 	.stop	= input_devices_seq_stop,
828 	.show	= input_devices_seq_show,
829 };
830 
831 static int input_proc_devices_open(struct inode *inode, struct file *file)
832 {
833 	return seq_open(file, &input_devices_seq_ops);
834 }
835 
836 static const struct file_operations input_devices_fileops = {
837 	.owner		= THIS_MODULE,
838 	.open		= input_proc_devices_open,
839 	.poll		= input_proc_devices_poll,
840 	.read		= seq_read,
841 	.llseek		= seq_lseek,
842 	.release	= seq_release,
843 };
844 
845 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
846 {
847 	if (mutex_lock_interruptible(&input_mutex))
848 		return NULL;
849 
850 	seq->private = (void *)(unsigned long)*pos;
851 	return seq_list_start(&input_handler_list, *pos);
852 }
853 
854 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
855 {
856 	seq->private = (void *)(unsigned long)(*pos + 1);
857 	return seq_list_next(v, &input_handler_list, pos);
858 }
859 
860 static void input_handlers_seq_stop(struct seq_file *seq, void *v)
861 {
862 	mutex_unlock(&input_mutex);
863 }
864 
865 static int input_handlers_seq_show(struct seq_file *seq, void *v)
866 {
867 	struct input_handler *handler = container_of(v, struct input_handler, node);
868 
869 	seq_printf(seq, "N: Number=%ld Name=%s",
870 		   (unsigned long)seq->private, handler->name);
871 	if (handler->fops)
872 		seq_printf(seq, " Minor=%d", handler->minor);
873 	seq_putc(seq, '\n');
874 
875 	return 0;
876 }
877 static const struct seq_operations input_handlers_seq_ops = {
878 	.start	= input_handlers_seq_start,
879 	.next	= input_handlers_seq_next,
880 	.stop	= input_handlers_seq_stop,
881 	.show	= input_handlers_seq_show,
882 };
883 
884 static int input_proc_handlers_open(struct inode *inode, struct file *file)
885 {
886 	return seq_open(file, &input_handlers_seq_ops);
887 }
888 
889 static const struct file_operations input_handlers_fileops = {
890 	.owner		= THIS_MODULE,
891 	.open		= input_proc_handlers_open,
892 	.read		= seq_read,
893 	.llseek		= seq_lseek,
894 	.release	= seq_release,
895 };
896 
897 static int __init input_proc_init(void)
898 {
899 	struct proc_dir_entry *entry;
900 
901 	proc_bus_input_dir = proc_mkdir("input", proc_bus);
902 	if (!proc_bus_input_dir)
903 		return -ENOMEM;
904 
905 	proc_bus_input_dir->owner = THIS_MODULE;
906 
907 	entry = create_proc_entry("devices", 0, proc_bus_input_dir);
908 	if (!entry)
909 		goto fail1;
910 
911 	entry->owner = THIS_MODULE;
912 	entry->proc_fops = &input_devices_fileops;
913 
914 	entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
915 	if (!entry)
916 		goto fail2;
917 
918 	entry->owner = THIS_MODULE;
919 	entry->proc_fops = &input_handlers_fileops;
920 
921 	return 0;
922 
923  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
924  fail1: remove_proc_entry("input", proc_bus);
925 	return -ENOMEM;
926 }
927 
928 static void input_proc_exit(void)
929 {
930 	remove_proc_entry("devices", proc_bus_input_dir);
931 	remove_proc_entry("handlers", proc_bus_input_dir);
932 	remove_proc_entry("input", proc_bus);
933 }
934 
935 #else /* !CONFIG_PROC_FS */
936 static inline void input_wakeup_procfs_readers(void) { }
937 static inline int input_proc_init(void) { return 0; }
938 static inline void input_proc_exit(void) { }
939 #endif
940 
941 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
942 static ssize_t input_dev_show_##name(struct device *dev,		\
943 				     struct device_attribute *attr,	\
944 				     char *buf)				\
945 {									\
946 	struct input_dev *input_dev = to_input_dev(dev);		\
947 									\
948 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
949 			 input_dev->name ? input_dev->name : "");	\
950 }									\
951 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
952 
953 INPUT_DEV_STRING_ATTR_SHOW(name);
954 INPUT_DEV_STRING_ATTR_SHOW(phys);
955 INPUT_DEV_STRING_ATTR_SHOW(uniq);
956 
957 static int input_print_modalias_bits(char *buf, int size,
958 				     char name, unsigned long *bm,
959 				     unsigned int min_bit, unsigned int max_bit)
960 {
961 	int len = 0, i;
962 
963 	len += snprintf(buf, max(size, 0), "%c", name);
964 	for (i = min_bit; i < max_bit; i++)
965 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
966 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
967 	return len;
968 }
969 
970 static int input_print_modalias(char *buf, int size, struct input_dev *id,
971 				int add_cr)
972 {
973 	int len;
974 
975 	len = snprintf(buf, max(size, 0),
976 		       "input:b%04Xv%04Xp%04Xe%04X-",
977 		       id->id.bustype, id->id.vendor,
978 		       id->id.product, id->id.version);
979 
980 	len += input_print_modalias_bits(buf + len, size - len,
981 				'e', id->evbit, 0, EV_MAX);
982 	len += input_print_modalias_bits(buf + len, size - len,
983 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
984 	len += input_print_modalias_bits(buf + len, size - len,
985 				'r', id->relbit, 0, REL_MAX);
986 	len += input_print_modalias_bits(buf + len, size - len,
987 				'a', id->absbit, 0, ABS_MAX);
988 	len += input_print_modalias_bits(buf + len, size - len,
989 				'm', id->mscbit, 0, MSC_MAX);
990 	len += input_print_modalias_bits(buf + len, size - len,
991 				'l', id->ledbit, 0, LED_MAX);
992 	len += input_print_modalias_bits(buf + len, size - len,
993 				's', id->sndbit, 0, SND_MAX);
994 	len += input_print_modalias_bits(buf + len, size - len,
995 				'f', id->ffbit, 0, FF_MAX);
996 	len += input_print_modalias_bits(buf + len, size - len,
997 				'w', id->swbit, 0, SW_MAX);
998 
999 	if (add_cr)
1000 		len += snprintf(buf + len, max(size - len, 0), "\n");
1001 
1002 	return len;
1003 }
1004 
1005 static ssize_t input_dev_show_modalias(struct device *dev,
1006 				       struct device_attribute *attr,
1007 				       char *buf)
1008 {
1009 	struct input_dev *id = to_input_dev(dev);
1010 	ssize_t len;
1011 
1012 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1013 
1014 	return min_t(int, len, PAGE_SIZE);
1015 }
1016 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1017 
1018 static struct attribute *input_dev_attrs[] = {
1019 	&dev_attr_name.attr,
1020 	&dev_attr_phys.attr,
1021 	&dev_attr_uniq.attr,
1022 	&dev_attr_modalias.attr,
1023 	NULL
1024 };
1025 
1026 static struct attribute_group input_dev_attr_group = {
1027 	.attrs	= input_dev_attrs,
1028 };
1029 
1030 #define INPUT_DEV_ID_ATTR(name)						\
1031 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1032 					struct device_attribute *attr,	\
1033 					char *buf)			\
1034 {									\
1035 	struct input_dev *input_dev = to_input_dev(dev);		\
1036 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1037 }									\
1038 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1039 
1040 INPUT_DEV_ID_ATTR(bustype);
1041 INPUT_DEV_ID_ATTR(vendor);
1042 INPUT_DEV_ID_ATTR(product);
1043 INPUT_DEV_ID_ATTR(version);
1044 
1045 static struct attribute *input_dev_id_attrs[] = {
1046 	&dev_attr_bustype.attr,
1047 	&dev_attr_vendor.attr,
1048 	&dev_attr_product.attr,
1049 	&dev_attr_version.attr,
1050 	NULL
1051 };
1052 
1053 static struct attribute_group input_dev_id_attr_group = {
1054 	.name	= "id",
1055 	.attrs	= input_dev_id_attrs,
1056 };
1057 
1058 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1059 			      int max, int add_cr)
1060 {
1061 	int i;
1062 	int len = 0;
1063 
1064 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1065 		if (bitmap[i])
1066 			break;
1067 
1068 	for (; i >= 0; i--)
1069 		len += snprintf(buf + len, max(buf_size - len, 0),
1070 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1071 
1072 	if (add_cr)
1073 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1074 
1075 	return len;
1076 }
1077 
1078 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1079 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1080 				       struct device_attribute *attr,	\
1081 				       char *buf)			\
1082 {									\
1083 	struct input_dev *input_dev = to_input_dev(dev);		\
1084 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1085 				     input_dev->bm##bit, ev##_MAX, 1);	\
1086 	return min_t(int, len, PAGE_SIZE);				\
1087 }									\
1088 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1089 
1090 INPUT_DEV_CAP_ATTR(EV, ev);
1091 INPUT_DEV_CAP_ATTR(KEY, key);
1092 INPUT_DEV_CAP_ATTR(REL, rel);
1093 INPUT_DEV_CAP_ATTR(ABS, abs);
1094 INPUT_DEV_CAP_ATTR(MSC, msc);
1095 INPUT_DEV_CAP_ATTR(LED, led);
1096 INPUT_DEV_CAP_ATTR(SND, snd);
1097 INPUT_DEV_CAP_ATTR(FF, ff);
1098 INPUT_DEV_CAP_ATTR(SW, sw);
1099 
1100 static struct attribute *input_dev_caps_attrs[] = {
1101 	&dev_attr_ev.attr,
1102 	&dev_attr_key.attr,
1103 	&dev_attr_rel.attr,
1104 	&dev_attr_abs.attr,
1105 	&dev_attr_msc.attr,
1106 	&dev_attr_led.attr,
1107 	&dev_attr_snd.attr,
1108 	&dev_attr_ff.attr,
1109 	&dev_attr_sw.attr,
1110 	NULL
1111 };
1112 
1113 static struct attribute_group input_dev_caps_attr_group = {
1114 	.name	= "capabilities",
1115 	.attrs	= input_dev_caps_attrs,
1116 };
1117 
1118 static struct attribute_group *input_dev_attr_groups[] = {
1119 	&input_dev_attr_group,
1120 	&input_dev_id_attr_group,
1121 	&input_dev_caps_attr_group,
1122 	NULL
1123 };
1124 
1125 static void input_dev_release(struct device *device)
1126 {
1127 	struct input_dev *dev = to_input_dev(device);
1128 
1129 	input_ff_destroy(dev);
1130 	kfree(dev);
1131 
1132 	module_put(THIS_MODULE);
1133 }
1134 
1135 /*
1136  * Input uevent interface - loading event handlers based on
1137  * device bitfields.
1138  */
1139 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1140 				   const char *name, unsigned long *bitmap, int max)
1141 {
1142 	int len;
1143 
1144 	if (add_uevent_var(env, "%s=", name))
1145 		return -ENOMEM;
1146 
1147 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1148 				 sizeof(env->buf) - env->buflen,
1149 				 bitmap, max, 0);
1150 	if (len >= (sizeof(env->buf) - env->buflen))
1151 		return -ENOMEM;
1152 
1153 	env->buflen += len;
1154 	return 0;
1155 }
1156 
1157 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1158 					 struct input_dev *dev)
1159 {
1160 	int len;
1161 
1162 	if (add_uevent_var(env, "MODALIAS="))
1163 		return -ENOMEM;
1164 
1165 	len = input_print_modalias(&env->buf[env->buflen - 1],
1166 				   sizeof(env->buf) - env->buflen,
1167 				   dev, 0);
1168 	if (len >= (sizeof(env->buf) - env->buflen))
1169 		return -ENOMEM;
1170 
1171 	env->buflen += len;
1172 	return 0;
1173 }
1174 
1175 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1176 	do {								\
1177 		int err = add_uevent_var(env, fmt, val);		\
1178 		if (err)						\
1179 			return err;					\
1180 	} while (0)
1181 
1182 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1183 	do {								\
1184 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1185 		if (err)						\
1186 			return err;					\
1187 	} while (0)
1188 
1189 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1190 	do {								\
1191 		int err = input_add_uevent_modalias_var(env, dev);	\
1192 		if (err)						\
1193 			return err;					\
1194 	} while (0)
1195 
1196 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1197 {
1198 	struct input_dev *dev = to_input_dev(device);
1199 
1200 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1201 				dev->id.bustype, dev->id.vendor,
1202 				dev->id.product, dev->id.version);
1203 	if (dev->name)
1204 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1205 	if (dev->phys)
1206 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1207 	if (dev->uniq)
1208 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1209 
1210 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1211 	if (test_bit(EV_KEY, dev->evbit))
1212 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1213 	if (test_bit(EV_REL, dev->evbit))
1214 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1215 	if (test_bit(EV_ABS, dev->evbit))
1216 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1217 	if (test_bit(EV_MSC, dev->evbit))
1218 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1219 	if (test_bit(EV_LED, dev->evbit))
1220 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1221 	if (test_bit(EV_SND, dev->evbit))
1222 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1223 	if (test_bit(EV_FF, dev->evbit))
1224 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1225 	if (test_bit(EV_SW, dev->evbit))
1226 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1227 
1228 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1229 
1230 	return 0;
1231 }
1232 
1233 static struct device_type input_dev_type = {
1234 	.groups		= input_dev_attr_groups,
1235 	.release	= input_dev_release,
1236 	.uevent		= input_dev_uevent,
1237 };
1238 
1239 struct class input_class = {
1240 	.name		= "input",
1241 };
1242 EXPORT_SYMBOL_GPL(input_class);
1243 
1244 /**
1245  * input_allocate_device - allocate memory for new input device
1246  *
1247  * Returns prepared struct input_dev or NULL.
1248  *
1249  * NOTE: Use input_free_device() to free devices that have not been
1250  * registered; input_unregister_device() should be used for already
1251  * registered devices.
1252  */
1253 struct input_dev *input_allocate_device(void)
1254 {
1255 	struct input_dev *dev;
1256 
1257 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1258 	if (dev) {
1259 		dev->dev.type = &input_dev_type;
1260 		dev->dev.class = &input_class;
1261 		device_initialize(&dev->dev);
1262 		mutex_init(&dev->mutex);
1263 		spin_lock_init(&dev->event_lock);
1264 		INIT_LIST_HEAD(&dev->h_list);
1265 		INIT_LIST_HEAD(&dev->node);
1266 
1267 		__module_get(THIS_MODULE);
1268 	}
1269 
1270 	return dev;
1271 }
1272 EXPORT_SYMBOL(input_allocate_device);
1273 
1274 /**
1275  * input_free_device - free memory occupied by input_dev structure
1276  * @dev: input device to free
1277  *
1278  * This function should only be used if input_register_device()
1279  * was not called yet or if it failed. Once device was registered
1280  * use input_unregister_device() and memory will be freed once last
1281  * reference to the device is dropped.
1282  *
1283  * Device should be allocated by input_allocate_device().
1284  *
1285  * NOTE: If there are references to the input device then memory
1286  * will not be freed until last reference is dropped.
1287  */
1288 void input_free_device(struct input_dev *dev)
1289 {
1290 	if (dev)
1291 		input_put_device(dev);
1292 }
1293 EXPORT_SYMBOL(input_free_device);
1294 
1295 /**
1296  * input_set_capability - mark device as capable of a certain event
1297  * @dev: device that is capable of emitting or accepting event
1298  * @type: type of the event (EV_KEY, EV_REL, etc...)
1299  * @code: event code
1300  *
1301  * In addition to setting up corresponding bit in appropriate capability
1302  * bitmap the function also adjusts dev->evbit.
1303  */
1304 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1305 {
1306 	switch (type) {
1307 	case EV_KEY:
1308 		__set_bit(code, dev->keybit);
1309 		break;
1310 
1311 	case EV_REL:
1312 		__set_bit(code, dev->relbit);
1313 		break;
1314 
1315 	case EV_ABS:
1316 		__set_bit(code, dev->absbit);
1317 		break;
1318 
1319 	case EV_MSC:
1320 		__set_bit(code, dev->mscbit);
1321 		break;
1322 
1323 	case EV_SW:
1324 		__set_bit(code, dev->swbit);
1325 		break;
1326 
1327 	case EV_LED:
1328 		__set_bit(code, dev->ledbit);
1329 		break;
1330 
1331 	case EV_SND:
1332 		__set_bit(code, dev->sndbit);
1333 		break;
1334 
1335 	case EV_FF:
1336 		__set_bit(code, dev->ffbit);
1337 		break;
1338 
1339 	case EV_PWR:
1340 		/* do nothing */
1341 		break;
1342 
1343 	default:
1344 		printk(KERN_ERR
1345 			"input_set_capability: unknown type %u (code %u)\n",
1346 			type, code);
1347 		dump_stack();
1348 		return;
1349 	}
1350 
1351 	__set_bit(type, dev->evbit);
1352 }
1353 EXPORT_SYMBOL(input_set_capability);
1354 
1355 /**
1356  * input_register_device - register device with input core
1357  * @dev: device to be registered
1358  *
1359  * This function registers device with input core. The device must be
1360  * allocated with input_allocate_device() and all it's capabilities
1361  * set up before registering.
1362  * If function fails the device must be freed with input_free_device().
1363  * Once device has been successfully registered it can be unregistered
1364  * with input_unregister_device(); input_free_device() should not be
1365  * called in this case.
1366  */
1367 int input_register_device(struct input_dev *dev)
1368 {
1369 	static atomic_t input_no = ATOMIC_INIT(0);
1370 	struct input_handler *handler;
1371 	const char *path;
1372 	int error;
1373 
1374 	__set_bit(EV_SYN, dev->evbit);
1375 
1376 	/*
1377 	 * If delay and period are pre-set by the driver, then autorepeating
1378 	 * is handled by the driver itself and we don't do it in input.c.
1379 	 */
1380 
1381 	init_timer(&dev->timer);
1382 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1383 		dev->timer.data = (long) dev;
1384 		dev->timer.function = input_repeat_key;
1385 		dev->rep[REP_DELAY] = 250;
1386 		dev->rep[REP_PERIOD] = 33;
1387 	}
1388 
1389 	if (!dev->getkeycode)
1390 		dev->getkeycode = input_default_getkeycode;
1391 
1392 	if (!dev->setkeycode)
1393 		dev->setkeycode = input_default_setkeycode;
1394 
1395 	snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
1396 		 "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
1397 
1398 	error = device_add(&dev->dev);
1399 	if (error)
1400 		return error;
1401 
1402 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1403 	printk(KERN_INFO "input: %s as %s\n",
1404 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1405 	kfree(path);
1406 
1407 	error = mutex_lock_interruptible(&input_mutex);
1408 	if (error) {
1409 		device_del(&dev->dev);
1410 		return error;
1411 	}
1412 
1413 	list_add_tail(&dev->node, &input_dev_list);
1414 
1415 	list_for_each_entry(handler, &input_handler_list, node)
1416 		input_attach_handler(dev, handler);
1417 
1418 	input_wakeup_procfs_readers();
1419 
1420 	mutex_unlock(&input_mutex);
1421 
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL(input_register_device);
1425 
1426 /**
1427  * input_unregister_device - unregister previously registered device
1428  * @dev: device to be unregistered
1429  *
1430  * This function unregisters an input device. Once device is unregistered
1431  * the caller should not try to access it as it may get freed at any moment.
1432  */
1433 void input_unregister_device(struct input_dev *dev)
1434 {
1435 	struct input_handle *handle, *next;
1436 
1437 	input_disconnect_device(dev);
1438 
1439 	mutex_lock(&input_mutex);
1440 
1441 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1442 		handle->handler->disconnect(handle);
1443 	WARN_ON(!list_empty(&dev->h_list));
1444 
1445 	del_timer_sync(&dev->timer);
1446 	list_del_init(&dev->node);
1447 
1448 	input_wakeup_procfs_readers();
1449 
1450 	mutex_unlock(&input_mutex);
1451 
1452 	device_unregister(&dev->dev);
1453 }
1454 EXPORT_SYMBOL(input_unregister_device);
1455 
1456 /**
1457  * input_register_handler - register a new input handler
1458  * @handler: handler to be registered
1459  *
1460  * This function registers a new input handler (interface) for input
1461  * devices in the system and attaches it to all input devices that
1462  * are compatible with the handler.
1463  */
1464 int input_register_handler(struct input_handler *handler)
1465 {
1466 	struct input_dev *dev;
1467 	int retval;
1468 
1469 	retval = mutex_lock_interruptible(&input_mutex);
1470 	if (retval)
1471 		return retval;
1472 
1473 	INIT_LIST_HEAD(&handler->h_list);
1474 
1475 	if (handler->fops != NULL) {
1476 		if (input_table[handler->minor >> 5]) {
1477 			retval = -EBUSY;
1478 			goto out;
1479 		}
1480 		input_table[handler->minor >> 5] = handler;
1481 	}
1482 
1483 	list_add_tail(&handler->node, &input_handler_list);
1484 
1485 	list_for_each_entry(dev, &input_dev_list, node)
1486 		input_attach_handler(dev, handler);
1487 
1488 	input_wakeup_procfs_readers();
1489 
1490  out:
1491 	mutex_unlock(&input_mutex);
1492 	return retval;
1493 }
1494 EXPORT_SYMBOL(input_register_handler);
1495 
1496 /**
1497  * input_unregister_handler - unregisters an input handler
1498  * @handler: handler to be unregistered
1499  *
1500  * This function disconnects a handler from its input devices and
1501  * removes it from lists of known handlers.
1502  */
1503 void input_unregister_handler(struct input_handler *handler)
1504 {
1505 	struct input_handle *handle, *next;
1506 
1507 	mutex_lock(&input_mutex);
1508 
1509 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1510 		handler->disconnect(handle);
1511 	WARN_ON(!list_empty(&handler->h_list));
1512 
1513 	list_del_init(&handler->node);
1514 
1515 	if (handler->fops != NULL)
1516 		input_table[handler->minor >> 5] = NULL;
1517 
1518 	input_wakeup_procfs_readers();
1519 
1520 	mutex_unlock(&input_mutex);
1521 }
1522 EXPORT_SYMBOL(input_unregister_handler);
1523 
1524 /**
1525  * input_register_handle - register a new input handle
1526  * @handle: handle to register
1527  *
1528  * This function puts a new input handle onto device's
1529  * and handler's lists so that events can flow through
1530  * it once it is opened using input_open_device().
1531  *
1532  * This function is supposed to be called from handler's
1533  * connect() method.
1534  */
1535 int input_register_handle(struct input_handle *handle)
1536 {
1537 	struct input_handler *handler = handle->handler;
1538 	struct input_dev *dev = handle->dev;
1539 	int error;
1540 
1541 	/*
1542 	 * We take dev->mutex here to prevent race with
1543 	 * input_release_device().
1544 	 */
1545 	error = mutex_lock_interruptible(&dev->mutex);
1546 	if (error)
1547 		return error;
1548 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1549 	mutex_unlock(&dev->mutex);
1550 	synchronize_rcu();
1551 
1552 	/*
1553 	 * Since we are supposed to be called from ->connect()
1554 	 * which is mutually exclusive with ->disconnect()
1555 	 * we can't be racing with input_unregister_handle()
1556 	 * and so separate lock is not needed here.
1557 	 */
1558 	list_add_tail(&handle->h_node, &handler->h_list);
1559 
1560 	if (handler->start)
1561 		handler->start(handle);
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL(input_register_handle);
1566 
1567 /**
1568  * input_unregister_handle - unregister an input handle
1569  * @handle: handle to unregister
1570  *
1571  * This function removes input handle from device's
1572  * and handler's lists.
1573  *
1574  * This function is supposed to be called from handler's
1575  * disconnect() method.
1576  */
1577 void input_unregister_handle(struct input_handle *handle)
1578 {
1579 	struct input_dev *dev = handle->dev;
1580 
1581 	list_del_init(&handle->h_node);
1582 
1583 	/*
1584 	 * Take dev->mutex to prevent race with input_release_device().
1585 	 */
1586 	mutex_lock(&dev->mutex);
1587 	list_del_rcu(&handle->d_node);
1588 	mutex_unlock(&dev->mutex);
1589 	synchronize_rcu();
1590 }
1591 EXPORT_SYMBOL(input_unregister_handle);
1592 
1593 static int input_open_file(struct inode *inode, struct file *file)
1594 {
1595 	struct input_handler *handler = input_table[iminor(inode) >> 5];
1596 	const struct file_operations *old_fops, *new_fops = NULL;
1597 	int err;
1598 
1599 	/* No load-on-demand here? */
1600 	if (!handler || !(new_fops = fops_get(handler->fops)))
1601 		return -ENODEV;
1602 
1603 	/*
1604 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1605 	 * not "no device". Oh, well...
1606 	 */
1607 	if (!new_fops->open) {
1608 		fops_put(new_fops);
1609 		return -ENODEV;
1610 	}
1611 	old_fops = file->f_op;
1612 	file->f_op = new_fops;
1613 
1614 	err = new_fops->open(inode, file);
1615 
1616 	if (err) {
1617 		fops_put(file->f_op);
1618 		file->f_op = fops_get(old_fops);
1619 	}
1620 	fops_put(old_fops);
1621 	return err;
1622 }
1623 
1624 static const struct file_operations input_fops = {
1625 	.owner = THIS_MODULE,
1626 	.open = input_open_file,
1627 };
1628 
1629 static int __init input_init(void)
1630 {
1631 	int err;
1632 
1633 	err = class_register(&input_class);
1634 	if (err) {
1635 		printk(KERN_ERR "input: unable to register input_dev class\n");
1636 		return err;
1637 	}
1638 
1639 	err = input_proc_init();
1640 	if (err)
1641 		goto fail1;
1642 
1643 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1644 	if (err) {
1645 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1646 		goto fail2;
1647 	}
1648 
1649 	return 0;
1650 
1651  fail2:	input_proc_exit();
1652  fail1:	class_unregister(&input_class);
1653 	return err;
1654 }
1655 
1656 static void __exit input_exit(void)
1657 {
1658 	input_proc_exit();
1659 	unregister_chrdev(INPUT_MAJOR, "input");
1660 	class_unregister(&input_class);
1661 }
1662 
1663 subsys_initcall(input_init);
1664 module_exit(input_exit);
1665