xref: /openbmc/linux/drivers/input/input.c (revision e2c75e76)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.function) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	if (handler->filter) {
104 		for (v = vals; v != vals + count; v++) {
105 			if (handler->filter(handle, v->type, v->code, v->value))
106 				continue;
107 			if (end != v)
108 				*end = *v;
109 			end++;
110 		}
111 		count = end - vals;
112 	}
113 
114 	if (!count)
115 		return 0;
116 
117 	if (handler->events)
118 		handler->events(handle, vals, count);
119 	else if (handler->event)
120 		for (v = vals; v != vals + count; v++)
121 			handler->event(handle, v->type, v->code, v->value);
122 
123 	return count;
124 }
125 
126 /*
127  * Pass values first through all filters and then, if event has not been
128  * filtered out, through all open handles. This function is called with
129  * dev->event_lock held and interrupts disabled.
130  */
131 static void input_pass_values(struct input_dev *dev,
132 			      struct input_value *vals, unsigned int count)
133 {
134 	struct input_handle *handle;
135 	struct input_value *v;
136 
137 	if (!count)
138 		return;
139 
140 	rcu_read_lock();
141 
142 	handle = rcu_dereference(dev->grab);
143 	if (handle) {
144 		count = input_to_handler(handle, vals, count);
145 	} else {
146 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 			if (handle->open) {
148 				count = input_to_handler(handle, vals, count);
149 				if (!count)
150 					break;
151 			}
152 	}
153 
154 	rcu_read_unlock();
155 
156 	/* trigger auto repeat for key events */
157 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158 		for (v = vals; v != vals + count; v++) {
159 			if (v->type == EV_KEY && v->value != 2) {
160 				if (v->value)
161 					input_start_autorepeat(dev, v->code);
162 				else
163 					input_stop_autorepeat(dev);
164 			}
165 		}
166 	}
167 }
168 
169 static void input_pass_event(struct input_dev *dev,
170 			     unsigned int type, unsigned int code, int value)
171 {
172 	struct input_value vals[] = { { type, code, value } };
173 
174 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
175 }
176 
177 /*
178  * Generate software autorepeat event. Note that we take
179  * dev->event_lock here to avoid racing with input_event
180  * which may cause keys get "stuck".
181  */
182 static void input_repeat_key(struct timer_list *t)
183 {
184 	struct input_dev *dev = from_timer(dev, t, timer);
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&dev->event_lock, flags);
188 
189 	if (test_bit(dev->repeat_key, dev->key) &&
190 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 		struct input_value vals[] =  {
192 			{ EV_KEY, dev->repeat_key, 2 },
193 			input_value_sync
194 		};
195 
196 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
197 
198 		if (dev->rep[REP_PERIOD])
199 			mod_timer(&dev->timer, jiffies +
200 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
201 	}
202 
203 	spin_unlock_irqrestore(&dev->event_lock, flags);
204 }
205 
206 #define INPUT_IGNORE_EVENT	0
207 #define INPUT_PASS_TO_HANDLERS	1
208 #define INPUT_PASS_TO_DEVICE	2
209 #define INPUT_SLOT		4
210 #define INPUT_FLUSH		8
211 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
212 
213 static int input_handle_abs_event(struct input_dev *dev,
214 				  unsigned int code, int *pval)
215 {
216 	struct input_mt *mt = dev->mt;
217 	bool is_mt_event;
218 	int *pold;
219 
220 	if (code == ABS_MT_SLOT) {
221 		/*
222 		 * "Stage" the event; we'll flush it later, when we
223 		 * get actual touch data.
224 		 */
225 		if (mt && *pval >= 0 && *pval < mt->num_slots)
226 			mt->slot = *pval;
227 
228 		return INPUT_IGNORE_EVENT;
229 	}
230 
231 	is_mt_event = input_is_mt_value(code);
232 
233 	if (!is_mt_event) {
234 		pold = &dev->absinfo[code].value;
235 	} else if (mt) {
236 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237 	} else {
238 		/*
239 		 * Bypass filtering for multi-touch events when
240 		 * not employing slots.
241 		 */
242 		pold = NULL;
243 	}
244 
245 	if (pold) {
246 		*pval = input_defuzz_abs_event(*pval, *pold,
247 						dev->absinfo[code].fuzz);
248 		if (*pold == *pval)
249 			return INPUT_IGNORE_EVENT;
250 
251 		*pold = *pval;
252 	}
253 
254 	/* Flush pending "slot" event */
255 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258 	}
259 
260 	return INPUT_PASS_TO_HANDLERS;
261 }
262 
263 static int input_get_disposition(struct input_dev *dev,
264 			  unsigned int type, unsigned int code, int *pval)
265 {
266 	int disposition = INPUT_IGNORE_EVENT;
267 	int value = *pval;
268 
269 	switch (type) {
270 
271 	case EV_SYN:
272 		switch (code) {
273 		case SYN_CONFIG:
274 			disposition = INPUT_PASS_TO_ALL;
275 			break;
276 
277 		case SYN_REPORT:
278 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
279 			break;
280 		case SYN_MT_REPORT:
281 			disposition = INPUT_PASS_TO_HANDLERS;
282 			break;
283 		}
284 		break;
285 
286 	case EV_KEY:
287 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
288 
289 			/* auto-repeat bypasses state updates */
290 			if (value == 2) {
291 				disposition = INPUT_PASS_TO_HANDLERS;
292 				break;
293 			}
294 
295 			if (!!test_bit(code, dev->key) != !!value) {
296 
297 				__change_bit(code, dev->key);
298 				disposition = INPUT_PASS_TO_HANDLERS;
299 			}
300 		}
301 		break;
302 
303 	case EV_SW:
304 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
305 		    !!test_bit(code, dev->sw) != !!value) {
306 
307 			__change_bit(code, dev->sw);
308 			disposition = INPUT_PASS_TO_HANDLERS;
309 		}
310 		break;
311 
312 	case EV_ABS:
313 		if (is_event_supported(code, dev->absbit, ABS_MAX))
314 			disposition = input_handle_abs_event(dev, code, &value);
315 
316 		break;
317 
318 	case EV_REL:
319 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320 			disposition = INPUT_PASS_TO_HANDLERS;
321 
322 		break;
323 
324 	case EV_MSC:
325 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
326 			disposition = INPUT_PASS_TO_ALL;
327 
328 		break;
329 
330 	case EV_LED:
331 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332 		    !!test_bit(code, dev->led) != !!value) {
333 
334 			__change_bit(code, dev->led);
335 			disposition = INPUT_PASS_TO_ALL;
336 		}
337 		break;
338 
339 	case EV_SND:
340 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
341 
342 			if (!!test_bit(code, dev->snd) != !!value)
343 				__change_bit(code, dev->snd);
344 			disposition = INPUT_PASS_TO_ALL;
345 		}
346 		break;
347 
348 	case EV_REP:
349 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350 			dev->rep[code] = value;
351 			disposition = INPUT_PASS_TO_ALL;
352 		}
353 		break;
354 
355 	case EV_FF:
356 		if (value >= 0)
357 			disposition = INPUT_PASS_TO_ALL;
358 		break;
359 
360 	case EV_PWR:
361 		disposition = INPUT_PASS_TO_ALL;
362 		break;
363 	}
364 
365 	*pval = value;
366 	return disposition;
367 }
368 
369 static void input_handle_event(struct input_dev *dev,
370 			       unsigned int type, unsigned int code, int value)
371 {
372 	int disposition = input_get_disposition(dev, type, code, &value);
373 
374 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375 		add_input_randomness(type, code, value);
376 
377 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378 		dev->event(dev, type, code, value);
379 
380 	if (!dev->vals)
381 		return;
382 
383 	if (disposition & INPUT_PASS_TO_HANDLERS) {
384 		struct input_value *v;
385 
386 		if (disposition & INPUT_SLOT) {
387 			v = &dev->vals[dev->num_vals++];
388 			v->type = EV_ABS;
389 			v->code = ABS_MT_SLOT;
390 			v->value = dev->mt->slot;
391 		}
392 
393 		v = &dev->vals[dev->num_vals++];
394 		v->type = type;
395 		v->code = code;
396 		v->value = value;
397 	}
398 
399 	if (disposition & INPUT_FLUSH) {
400 		if (dev->num_vals >= 2)
401 			input_pass_values(dev, dev->vals, dev->num_vals);
402 		dev->num_vals = 0;
403 	} else if (dev->num_vals >= dev->max_vals - 2) {
404 		dev->vals[dev->num_vals++] = input_value_sync;
405 		input_pass_values(dev, dev->vals, dev->num_vals);
406 		dev->num_vals = 0;
407 	}
408 
409 }
410 
411 /**
412  * input_event() - report new input event
413  * @dev: device that generated the event
414  * @type: type of the event
415  * @code: event code
416  * @value: value of the event
417  *
418  * This function should be used by drivers implementing various input
419  * devices to report input events. See also input_inject_event().
420  *
421  * NOTE: input_event() may be safely used right after input device was
422  * allocated with input_allocate_device(), even before it is registered
423  * with input_register_device(), but the event will not reach any of the
424  * input handlers. Such early invocation of input_event() may be used
425  * to 'seed' initial state of a switch or initial position of absolute
426  * axis, etc.
427  */
428 void input_event(struct input_dev *dev,
429 		 unsigned int type, unsigned int code, int value)
430 {
431 	unsigned long flags;
432 
433 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
434 
435 		spin_lock_irqsave(&dev->event_lock, flags);
436 		input_handle_event(dev, type, code, value);
437 		spin_unlock_irqrestore(&dev->event_lock, flags);
438 	}
439 }
440 EXPORT_SYMBOL(input_event);
441 
442 /**
443  * input_inject_event() - send input event from input handler
444  * @handle: input handle to send event through
445  * @type: type of the event
446  * @code: event code
447  * @value: value of the event
448  *
449  * Similar to input_event() but will ignore event if device is
450  * "grabbed" and handle injecting event is not the one that owns
451  * the device.
452  */
453 void input_inject_event(struct input_handle *handle,
454 			unsigned int type, unsigned int code, int value)
455 {
456 	struct input_dev *dev = handle->dev;
457 	struct input_handle *grab;
458 	unsigned long flags;
459 
460 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
461 		spin_lock_irqsave(&dev->event_lock, flags);
462 
463 		rcu_read_lock();
464 		grab = rcu_dereference(dev->grab);
465 		if (!grab || grab == handle)
466 			input_handle_event(dev, type, code, value);
467 		rcu_read_unlock();
468 
469 		spin_unlock_irqrestore(&dev->event_lock, flags);
470 	}
471 }
472 EXPORT_SYMBOL(input_inject_event);
473 
474 /**
475  * input_alloc_absinfo - allocates array of input_absinfo structs
476  * @dev: the input device emitting absolute events
477  *
478  * If the absinfo struct the caller asked for is already allocated, this
479  * functions will not do anything.
480  */
481 void input_alloc_absinfo(struct input_dev *dev)
482 {
483 	if (!dev->absinfo)
484 		dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo),
485 					GFP_KERNEL);
486 
487 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
488 }
489 EXPORT_SYMBOL(input_alloc_absinfo);
490 
491 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
492 			  int min, int max, int fuzz, int flat)
493 {
494 	struct input_absinfo *absinfo;
495 
496 	input_alloc_absinfo(dev);
497 	if (!dev->absinfo)
498 		return;
499 
500 	absinfo = &dev->absinfo[axis];
501 	absinfo->minimum = min;
502 	absinfo->maximum = max;
503 	absinfo->fuzz = fuzz;
504 	absinfo->flat = flat;
505 
506 	__set_bit(EV_ABS, dev->evbit);
507 	__set_bit(axis, dev->absbit);
508 }
509 EXPORT_SYMBOL(input_set_abs_params);
510 
511 
512 /**
513  * input_grab_device - grabs device for exclusive use
514  * @handle: input handle that wants to own the device
515  *
516  * When a device is grabbed by an input handle all events generated by
517  * the device are delivered only to this handle. Also events injected
518  * by other input handles are ignored while device is grabbed.
519  */
520 int input_grab_device(struct input_handle *handle)
521 {
522 	struct input_dev *dev = handle->dev;
523 	int retval;
524 
525 	retval = mutex_lock_interruptible(&dev->mutex);
526 	if (retval)
527 		return retval;
528 
529 	if (dev->grab) {
530 		retval = -EBUSY;
531 		goto out;
532 	}
533 
534 	rcu_assign_pointer(dev->grab, handle);
535 
536  out:
537 	mutex_unlock(&dev->mutex);
538 	return retval;
539 }
540 EXPORT_SYMBOL(input_grab_device);
541 
542 static void __input_release_device(struct input_handle *handle)
543 {
544 	struct input_dev *dev = handle->dev;
545 	struct input_handle *grabber;
546 
547 	grabber = rcu_dereference_protected(dev->grab,
548 					    lockdep_is_held(&dev->mutex));
549 	if (grabber == handle) {
550 		rcu_assign_pointer(dev->grab, NULL);
551 		/* Make sure input_pass_event() notices that grab is gone */
552 		synchronize_rcu();
553 
554 		list_for_each_entry(handle, &dev->h_list, d_node)
555 			if (handle->open && handle->handler->start)
556 				handle->handler->start(handle);
557 	}
558 }
559 
560 /**
561  * input_release_device - release previously grabbed device
562  * @handle: input handle that owns the device
563  *
564  * Releases previously grabbed device so that other input handles can
565  * start receiving input events. Upon release all handlers attached
566  * to the device have their start() method called so they have a change
567  * to synchronize device state with the rest of the system.
568  */
569 void input_release_device(struct input_handle *handle)
570 {
571 	struct input_dev *dev = handle->dev;
572 
573 	mutex_lock(&dev->mutex);
574 	__input_release_device(handle);
575 	mutex_unlock(&dev->mutex);
576 }
577 EXPORT_SYMBOL(input_release_device);
578 
579 /**
580  * input_open_device - open input device
581  * @handle: handle through which device is being accessed
582  *
583  * This function should be called by input handlers when they
584  * want to start receive events from given input device.
585  */
586 int input_open_device(struct input_handle *handle)
587 {
588 	struct input_dev *dev = handle->dev;
589 	int retval;
590 
591 	retval = mutex_lock_interruptible(&dev->mutex);
592 	if (retval)
593 		return retval;
594 
595 	if (dev->going_away) {
596 		retval = -ENODEV;
597 		goto out;
598 	}
599 
600 	handle->open++;
601 
602 	if (!dev->users++ && dev->open)
603 		retval = dev->open(dev);
604 
605 	if (retval) {
606 		dev->users--;
607 		if (!--handle->open) {
608 			/*
609 			 * Make sure we are not delivering any more events
610 			 * through this handle
611 			 */
612 			synchronize_rcu();
613 		}
614 	}
615 
616  out:
617 	mutex_unlock(&dev->mutex);
618 	return retval;
619 }
620 EXPORT_SYMBOL(input_open_device);
621 
622 int input_flush_device(struct input_handle *handle, struct file *file)
623 {
624 	struct input_dev *dev = handle->dev;
625 	int retval;
626 
627 	retval = mutex_lock_interruptible(&dev->mutex);
628 	if (retval)
629 		return retval;
630 
631 	if (dev->flush)
632 		retval = dev->flush(dev, file);
633 
634 	mutex_unlock(&dev->mutex);
635 	return retval;
636 }
637 EXPORT_SYMBOL(input_flush_device);
638 
639 /**
640  * input_close_device - close input device
641  * @handle: handle through which device is being accessed
642  *
643  * This function should be called by input handlers when they
644  * want to stop receive events from given input device.
645  */
646 void input_close_device(struct input_handle *handle)
647 {
648 	struct input_dev *dev = handle->dev;
649 
650 	mutex_lock(&dev->mutex);
651 
652 	__input_release_device(handle);
653 
654 	if (!--dev->users && dev->close)
655 		dev->close(dev);
656 
657 	if (!--handle->open) {
658 		/*
659 		 * synchronize_rcu() makes sure that input_pass_event()
660 		 * completed and that no more input events are delivered
661 		 * through this handle
662 		 */
663 		synchronize_rcu();
664 	}
665 
666 	mutex_unlock(&dev->mutex);
667 }
668 EXPORT_SYMBOL(input_close_device);
669 
670 /*
671  * Simulate keyup events for all keys that are marked as pressed.
672  * The function must be called with dev->event_lock held.
673  */
674 static void input_dev_release_keys(struct input_dev *dev)
675 {
676 	bool need_sync = false;
677 	int code;
678 
679 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680 		for_each_set_bit(code, dev->key, KEY_CNT) {
681 			input_pass_event(dev, EV_KEY, code, 0);
682 			need_sync = true;
683 		}
684 
685 		if (need_sync)
686 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
687 
688 		memset(dev->key, 0, sizeof(dev->key));
689 	}
690 }
691 
692 /*
693  * Prepare device for unregistering
694  */
695 static void input_disconnect_device(struct input_dev *dev)
696 {
697 	struct input_handle *handle;
698 
699 	/*
700 	 * Mark device as going away. Note that we take dev->mutex here
701 	 * not to protect access to dev->going_away but rather to ensure
702 	 * that there are no threads in the middle of input_open_device()
703 	 */
704 	mutex_lock(&dev->mutex);
705 	dev->going_away = true;
706 	mutex_unlock(&dev->mutex);
707 
708 	spin_lock_irq(&dev->event_lock);
709 
710 	/*
711 	 * Simulate keyup events for all pressed keys so that handlers
712 	 * are not left with "stuck" keys. The driver may continue
713 	 * generate events even after we done here but they will not
714 	 * reach any handlers.
715 	 */
716 	input_dev_release_keys(dev);
717 
718 	list_for_each_entry(handle, &dev->h_list, d_node)
719 		handle->open = 0;
720 
721 	spin_unlock_irq(&dev->event_lock);
722 }
723 
724 /**
725  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
726  * @ke: keymap entry containing scancode to be converted.
727  * @scancode: pointer to the location where converted scancode should
728  *	be stored.
729  *
730  * This function is used to convert scancode stored in &struct keymap_entry
731  * into scalar form understood by legacy keymap handling methods. These
732  * methods expect scancodes to be represented as 'unsigned int'.
733  */
734 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
735 			     unsigned int *scancode)
736 {
737 	switch (ke->len) {
738 	case 1:
739 		*scancode = *((u8 *)ke->scancode);
740 		break;
741 
742 	case 2:
743 		*scancode = *((u16 *)ke->scancode);
744 		break;
745 
746 	case 4:
747 		*scancode = *((u32 *)ke->scancode);
748 		break;
749 
750 	default:
751 		return -EINVAL;
752 	}
753 
754 	return 0;
755 }
756 EXPORT_SYMBOL(input_scancode_to_scalar);
757 
758 /*
759  * Those routines handle the default case where no [gs]etkeycode() is
760  * defined. In this case, an array indexed by the scancode is used.
761  */
762 
763 static unsigned int input_fetch_keycode(struct input_dev *dev,
764 					unsigned int index)
765 {
766 	switch (dev->keycodesize) {
767 	case 1:
768 		return ((u8 *)dev->keycode)[index];
769 
770 	case 2:
771 		return ((u16 *)dev->keycode)[index];
772 
773 	default:
774 		return ((u32 *)dev->keycode)[index];
775 	}
776 }
777 
778 static int input_default_getkeycode(struct input_dev *dev,
779 				    struct input_keymap_entry *ke)
780 {
781 	unsigned int index;
782 	int error;
783 
784 	if (!dev->keycodesize)
785 		return -EINVAL;
786 
787 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
788 		index = ke->index;
789 	else {
790 		error = input_scancode_to_scalar(ke, &index);
791 		if (error)
792 			return error;
793 	}
794 
795 	if (index >= dev->keycodemax)
796 		return -EINVAL;
797 
798 	ke->keycode = input_fetch_keycode(dev, index);
799 	ke->index = index;
800 	ke->len = sizeof(index);
801 	memcpy(ke->scancode, &index, sizeof(index));
802 
803 	return 0;
804 }
805 
806 static int input_default_setkeycode(struct input_dev *dev,
807 				    const struct input_keymap_entry *ke,
808 				    unsigned int *old_keycode)
809 {
810 	unsigned int index;
811 	int error;
812 	int i;
813 
814 	if (!dev->keycodesize)
815 		return -EINVAL;
816 
817 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
818 		index = ke->index;
819 	} else {
820 		error = input_scancode_to_scalar(ke, &index);
821 		if (error)
822 			return error;
823 	}
824 
825 	if (index >= dev->keycodemax)
826 		return -EINVAL;
827 
828 	if (dev->keycodesize < sizeof(ke->keycode) &&
829 			(ke->keycode >> (dev->keycodesize * 8)))
830 		return -EINVAL;
831 
832 	switch (dev->keycodesize) {
833 		case 1: {
834 			u8 *k = (u8 *)dev->keycode;
835 			*old_keycode = k[index];
836 			k[index] = ke->keycode;
837 			break;
838 		}
839 		case 2: {
840 			u16 *k = (u16 *)dev->keycode;
841 			*old_keycode = k[index];
842 			k[index] = ke->keycode;
843 			break;
844 		}
845 		default: {
846 			u32 *k = (u32 *)dev->keycode;
847 			*old_keycode = k[index];
848 			k[index] = ke->keycode;
849 			break;
850 		}
851 	}
852 
853 	__clear_bit(*old_keycode, dev->keybit);
854 	__set_bit(ke->keycode, dev->keybit);
855 
856 	for (i = 0; i < dev->keycodemax; i++) {
857 		if (input_fetch_keycode(dev, i) == *old_keycode) {
858 			__set_bit(*old_keycode, dev->keybit);
859 			break; /* Setting the bit twice is useless, so break */
860 		}
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  * input_get_keycode - retrieve keycode currently mapped to a given scancode
868  * @dev: input device which keymap is being queried
869  * @ke: keymap entry
870  *
871  * This function should be called by anyone interested in retrieving current
872  * keymap. Presently evdev handlers use it.
873  */
874 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
875 {
876 	unsigned long flags;
877 	int retval;
878 
879 	spin_lock_irqsave(&dev->event_lock, flags);
880 	retval = dev->getkeycode(dev, ke);
881 	spin_unlock_irqrestore(&dev->event_lock, flags);
882 
883 	return retval;
884 }
885 EXPORT_SYMBOL(input_get_keycode);
886 
887 /**
888  * input_set_keycode - attribute a keycode to a given scancode
889  * @dev: input device which keymap is being updated
890  * @ke: new keymap entry
891  *
892  * This function should be called by anyone needing to update current
893  * keymap. Presently keyboard and evdev handlers use it.
894  */
895 int input_set_keycode(struct input_dev *dev,
896 		      const struct input_keymap_entry *ke)
897 {
898 	unsigned long flags;
899 	unsigned int old_keycode;
900 	int retval;
901 
902 	if (ke->keycode > KEY_MAX)
903 		return -EINVAL;
904 
905 	spin_lock_irqsave(&dev->event_lock, flags);
906 
907 	retval = dev->setkeycode(dev, ke, &old_keycode);
908 	if (retval)
909 		goto out;
910 
911 	/* Make sure KEY_RESERVED did not get enabled. */
912 	__clear_bit(KEY_RESERVED, dev->keybit);
913 
914 	/*
915 	 * Simulate keyup event if keycode is not present
916 	 * in the keymap anymore
917 	 */
918 	if (test_bit(EV_KEY, dev->evbit) &&
919 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
920 	    __test_and_clear_bit(old_keycode, dev->key)) {
921 		struct input_value vals[] =  {
922 			{ EV_KEY, old_keycode, 0 },
923 			input_value_sync
924 		};
925 
926 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
927 	}
928 
929  out:
930 	spin_unlock_irqrestore(&dev->event_lock, flags);
931 
932 	return retval;
933 }
934 EXPORT_SYMBOL(input_set_keycode);
935 
936 bool input_match_device_id(const struct input_dev *dev,
937 			   const struct input_device_id *id)
938 {
939 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
940 		if (id->bustype != dev->id.bustype)
941 			return false;
942 
943 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
944 		if (id->vendor != dev->id.vendor)
945 			return false;
946 
947 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
948 		if (id->product != dev->id.product)
949 			return false;
950 
951 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
952 		if (id->version != dev->id.version)
953 			return false;
954 
955 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
956 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
957 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
958 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
959 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
960 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
961 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
962 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
963 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
964 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
965 		return false;
966 	}
967 
968 	return true;
969 }
970 EXPORT_SYMBOL(input_match_device_id);
971 
972 static const struct input_device_id *input_match_device(struct input_handler *handler,
973 							struct input_dev *dev)
974 {
975 	const struct input_device_id *id;
976 
977 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
978 		if (input_match_device_id(dev, id) &&
979 		    (!handler->match || handler->match(handler, dev))) {
980 			return id;
981 		}
982 	}
983 
984 	return NULL;
985 }
986 
987 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
988 {
989 	const struct input_device_id *id;
990 	int error;
991 
992 	id = input_match_device(handler, dev);
993 	if (!id)
994 		return -ENODEV;
995 
996 	error = handler->connect(handler, dev, id);
997 	if (error && error != -ENODEV)
998 		pr_err("failed to attach handler %s to device %s, error: %d\n",
999 		       handler->name, kobject_name(&dev->dev.kobj), error);
1000 
1001 	return error;
1002 }
1003 
1004 #ifdef CONFIG_COMPAT
1005 
1006 static int input_bits_to_string(char *buf, int buf_size,
1007 				unsigned long bits, bool skip_empty)
1008 {
1009 	int len = 0;
1010 
1011 	if (in_compat_syscall()) {
1012 		u32 dword = bits >> 32;
1013 		if (dword || !skip_empty)
1014 			len += snprintf(buf, buf_size, "%x ", dword);
1015 
1016 		dword = bits & 0xffffffffUL;
1017 		if (dword || !skip_empty || len)
1018 			len += snprintf(buf + len, max(buf_size - len, 0),
1019 					"%x", dword);
1020 	} else {
1021 		if (bits || !skip_empty)
1022 			len += snprintf(buf, buf_size, "%lx", bits);
1023 	}
1024 
1025 	return len;
1026 }
1027 
1028 #else /* !CONFIG_COMPAT */
1029 
1030 static int input_bits_to_string(char *buf, int buf_size,
1031 				unsigned long bits, bool skip_empty)
1032 {
1033 	return bits || !skip_empty ?
1034 		snprintf(buf, buf_size, "%lx", bits) : 0;
1035 }
1036 
1037 #endif
1038 
1039 #ifdef CONFIG_PROC_FS
1040 
1041 static struct proc_dir_entry *proc_bus_input_dir;
1042 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1043 static int input_devices_state;
1044 
1045 static inline void input_wakeup_procfs_readers(void)
1046 {
1047 	input_devices_state++;
1048 	wake_up(&input_devices_poll_wait);
1049 }
1050 
1051 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1052 {
1053 	poll_wait(file, &input_devices_poll_wait, wait);
1054 	if (file->f_version != input_devices_state) {
1055 		file->f_version = input_devices_state;
1056 		return EPOLLIN | EPOLLRDNORM;
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 union input_seq_state {
1063 	struct {
1064 		unsigned short pos;
1065 		bool mutex_acquired;
1066 	};
1067 	void *p;
1068 };
1069 
1070 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1071 {
1072 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1073 	int error;
1074 
1075 	/* We need to fit into seq->private pointer */
1076 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1077 
1078 	error = mutex_lock_interruptible(&input_mutex);
1079 	if (error) {
1080 		state->mutex_acquired = false;
1081 		return ERR_PTR(error);
1082 	}
1083 
1084 	state->mutex_acquired = true;
1085 
1086 	return seq_list_start(&input_dev_list, *pos);
1087 }
1088 
1089 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1090 {
1091 	return seq_list_next(v, &input_dev_list, pos);
1092 }
1093 
1094 static void input_seq_stop(struct seq_file *seq, void *v)
1095 {
1096 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1097 
1098 	if (state->mutex_acquired)
1099 		mutex_unlock(&input_mutex);
1100 }
1101 
1102 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1103 				   unsigned long *bitmap, int max)
1104 {
1105 	int i;
1106 	bool skip_empty = true;
1107 	char buf[18];
1108 
1109 	seq_printf(seq, "B: %s=", name);
1110 
1111 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1112 		if (input_bits_to_string(buf, sizeof(buf),
1113 					 bitmap[i], skip_empty)) {
1114 			skip_empty = false;
1115 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * If no output was produced print a single 0.
1121 	 */
1122 	if (skip_empty)
1123 		seq_putc(seq, '0');
1124 
1125 	seq_putc(seq, '\n');
1126 }
1127 
1128 static int input_devices_seq_show(struct seq_file *seq, void *v)
1129 {
1130 	struct input_dev *dev = container_of(v, struct input_dev, node);
1131 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1132 	struct input_handle *handle;
1133 
1134 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1135 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1136 
1137 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1138 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1139 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1140 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1141 	seq_puts(seq, "H: Handlers=");
1142 
1143 	list_for_each_entry(handle, &dev->h_list, d_node)
1144 		seq_printf(seq, "%s ", handle->name);
1145 	seq_putc(seq, '\n');
1146 
1147 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1148 
1149 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1150 	if (test_bit(EV_KEY, dev->evbit))
1151 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1152 	if (test_bit(EV_REL, dev->evbit))
1153 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1154 	if (test_bit(EV_ABS, dev->evbit))
1155 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1156 	if (test_bit(EV_MSC, dev->evbit))
1157 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1158 	if (test_bit(EV_LED, dev->evbit))
1159 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1160 	if (test_bit(EV_SND, dev->evbit))
1161 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1162 	if (test_bit(EV_FF, dev->evbit))
1163 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1164 	if (test_bit(EV_SW, dev->evbit))
1165 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1166 
1167 	seq_putc(seq, '\n');
1168 
1169 	kfree(path);
1170 	return 0;
1171 }
1172 
1173 static const struct seq_operations input_devices_seq_ops = {
1174 	.start	= input_devices_seq_start,
1175 	.next	= input_devices_seq_next,
1176 	.stop	= input_seq_stop,
1177 	.show	= input_devices_seq_show,
1178 };
1179 
1180 static int input_proc_devices_open(struct inode *inode, struct file *file)
1181 {
1182 	return seq_open(file, &input_devices_seq_ops);
1183 }
1184 
1185 static const struct file_operations input_devices_fileops = {
1186 	.owner		= THIS_MODULE,
1187 	.open		= input_proc_devices_open,
1188 	.poll		= input_proc_devices_poll,
1189 	.read		= seq_read,
1190 	.llseek		= seq_lseek,
1191 	.release	= seq_release,
1192 };
1193 
1194 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1195 {
1196 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1197 	int error;
1198 
1199 	/* We need to fit into seq->private pointer */
1200 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1201 
1202 	error = mutex_lock_interruptible(&input_mutex);
1203 	if (error) {
1204 		state->mutex_acquired = false;
1205 		return ERR_PTR(error);
1206 	}
1207 
1208 	state->mutex_acquired = true;
1209 	state->pos = *pos;
1210 
1211 	return seq_list_start(&input_handler_list, *pos);
1212 }
1213 
1214 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1215 {
1216 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1217 
1218 	state->pos = *pos + 1;
1219 	return seq_list_next(v, &input_handler_list, pos);
1220 }
1221 
1222 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1223 {
1224 	struct input_handler *handler = container_of(v, struct input_handler, node);
1225 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1226 
1227 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1228 	if (handler->filter)
1229 		seq_puts(seq, " (filter)");
1230 	if (handler->legacy_minors)
1231 		seq_printf(seq, " Minor=%d", handler->minor);
1232 	seq_putc(seq, '\n');
1233 
1234 	return 0;
1235 }
1236 
1237 static const struct seq_operations input_handlers_seq_ops = {
1238 	.start	= input_handlers_seq_start,
1239 	.next	= input_handlers_seq_next,
1240 	.stop	= input_seq_stop,
1241 	.show	= input_handlers_seq_show,
1242 };
1243 
1244 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1245 {
1246 	return seq_open(file, &input_handlers_seq_ops);
1247 }
1248 
1249 static const struct file_operations input_handlers_fileops = {
1250 	.owner		= THIS_MODULE,
1251 	.open		= input_proc_handlers_open,
1252 	.read		= seq_read,
1253 	.llseek		= seq_lseek,
1254 	.release	= seq_release,
1255 };
1256 
1257 static int __init input_proc_init(void)
1258 {
1259 	struct proc_dir_entry *entry;
1260 
1261 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1262 	if (!proc_bus_input_dir)
1263 		return -ENOMEM;
1264 
1265 	entry = proc_create("devices", 0, proc_bus_input_dir,
1266 			    &input_devices_fileops);
1267 	if (!entry)
1268 		goto fail1;
1269 
1270 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1271 			    &input_handlers_fileops);
1272 	if (!entry)
1273 		goto fail2;
1274 
1275 	return 0;
1276 
1277  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1278  fail1: remove_proc_entry("bus/input", NULL);
1279 	return -ENOMEM;
1280 }
1281 
1282 static void input_proc_exit(void)
1283 {
1284 	remove_proc_entry("devices", proc_bus_input_dir);
1285 	remove_proc_entry("handlers", proc_bus_input_dir);
1286 	remove_proc_entry("bus/input", NULL);
1287 }
1288 
1289 #else /* !CONFIG_PROC_FS */
1290 static inline void input_wakeup_procfs_readers(void) { }
1291 static inline int input_proc_init(void) { return 0; }
1292 static inline void input_proc_exit(void) { }
1293 #endif
1294 
1295 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1296 static ssize_t input_dev_show_##name(struct device *dev,		\
1297 				     struct device_attribute *attr,	\
1298 				     char *buf)				\
1299 {									\
1300 	struct input_dev *input_dev = to_input_dev(dev);		\
1301 									\
1302 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1303 			 input_dev->name ? input_dev->name : "");	\
1304 }									\
1305 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1306 
1307 INPUT_DEV_STRING_ATTR_SHOW(name);
1308 INPUT_DEV_STRING_ATTR_SHOW(phys);
1309 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1310 
1311 static int input_print_modalias_bits(char *buf, int size,
1312 				     char name, unsigned long *bm,
1313 				     unsigned int min_bit, unsigned int max_bit)
1314 {
1315 	int len = 0, i;
1316 
1317 	len += snprintf(buf, max(size, 0), "%c", name);
1318 	for (i = min_bit; i < max_bit; i++)
1319 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1320 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1321 	return len;
1322 }
1323 
1324 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1325 				int add_cr)
1326 {
1327 	int len;
1328 
1329 	len = snprintf(buf, max(size, 0),
1330 		       "input:b%04Xv%04Xp%04Xe%04X-",
1331 		       id->id.bustype, id->id.vendor,
1332 		       id->id.product, id->id.version);
1333 
1334 	len += input_print_modalias_bits(buf + len, size - len,
1335 				'e', id->evbit, 0, EV_MAX);
1336 	len += input_print_modalias_bits(buf + len, size - len,
1337 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1338 	len += input_print_modalias_bits(buf + len, size - len,
1339 				'r', id->relbit, 0, REL_MAX);
1340 	len += input_print_modalias_bits(buf + len, size - len,
1341 				'a', id->absbit, 0, ABS_MAX);
1342 	len += input_print_modalias_bits(buf + len, size - len,
1343 				'm', id->mscbit, 0, MSC_MAX);
1344 	len += input_print_modalias_bits(buf + len, size - len,
1345 				'l', id->ledbit, 0, LED_MAX);
1346 	len += input_print_modalias_bits(buf + len, size - len,
1347 				's', id->sndbit, 0, SND_MAX);
1348 	len += input_print_modalias_bits(buf + len, size - len,
1349 				'f', id->ffbit, 0, FF_MAX);
1350 	len += input_print_modalias_bits(buf + len, size - len,
1351 				'w', id->swbit, 0, SW_MAX);
1352 
1353 	if (add_cr)
1354 		len += snprintf(buf + len, max(size - len, 0), "\n");
1355 
1356 	return len;
1357 }
1358 
1359 static ssize_t input_dev_show_modalias(struct device *dev,
1360 				       struct device_attribute *attr,
1361 				       char *buf)
1362 {
1363 	struct input_dev *id = to_input_dev(dev);
1364 	ssize_t len;
1365 
1366 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1367 
1368 	return min_t(int, len, PAGE_SIZE);
1369 }
1370 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1371 
1372 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1373 			      int max, int add_cr);
1374 
1375 static ssize_t input_dev_show_properties(struct device *dev,
1376 					 struct device_attribute *attr,
1377 					 char *buf)
1378 {
1379 	struct input_dev *input_dev = to_input_dev(dev);
1380 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1381 				     INPUT_PROP_MAX, true);
1382 	return min_t(int, len, PAGE_SIZE);
1383 }
1384 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1385 
1386 static struct attribute *input_dev_attrs[] = {
1387 	&dev_attr_name.attr,
1388 	&dev_attr_phys.attr,
1389 	&dev_attr_uniq.attr,
1390 	&dev_attr_modalias.attr,
1391 	&dev_attr_properties.attr,
1392 	NULL
1393 };
1394 
1395 static const struct attribute_group input_dev_attr_group = {
1396 	.attrs	= input_dev_attrs,
1397 };
1398 
1399 #define INPUT_DEV_ID_ATTR(name)						\
1400 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1401 					struct device_attribute *attr,	\
1402 					char *buf)			\
1403 {									\
1404 	struct input_dev *input_dev = to_input_dev(dev);		\
1405 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1406 }									\
1407 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1408 
1409 INPUT_DEV_ID_ATTR(bustype);
1410 INPUT_DEV_ID_ATTR(vendor);
1411 INPUT_DEV_ID_ATTR(product);
1412 INPUT_DEV_ID_ATTR(version);
1413 
1414 static struct attribute *input_dev_id_attrs[] = {
1415 	&dev_attr_bustype.attr,
1416 	&dev_attr_vendor.attr,
1417 	&dev_attr_product.attr,
1418 	&dev_attr_version.attr,
1419 	NULL
1420 };
1421 
1422 static const struct attribute_group input_dev_id_attr_group = {
1423 	.name	= "id",
1424 	.attrs	= input_dev_id_attrs,
1425 };
1426 
1427 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1428 			      int max, int add_cr)
1429 {
1430 	int i;
1431 	int len = 0;
1432 	bool skip_empty = true;
1433 
1434 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1435 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1436 					    bitmap[i], skip_empty);
1437 		if (len) {
1438 			skip_empty = false;
1439 			if (i > 0)
1440 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1441 		}
1442 	}
1443 
1444 	/*
1445 	 * If no output was produced print a single 0.
1446 	 */
1447 	if (len == 0)
1448 		len = snprintf(buf, buf_size, "%d", 0);
1449 
1450 	if (add_cr)
1451 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1452 
1453 	return len;
1454 }
1455 
1456 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1457 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1458 				       struct device_attribute *attr,	\
1459 				       char *buf)			\
1460 {									\
1461 	struct input_dev *input_dev = to_input_dev(dev);		\
1462 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1463 				     input_dev->bm##bit, ev##_MAX,	\
1464 				     true);				\
1465 	return min_t(int, len, PAGE_SIZE);				\
1466 }									\
1467 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1468 
1469 INPUT_DEV_CAP_ATTR(EV, ev);
1470 INPUT_DEV_CAP_ATTR(KEY, key);
1471 INPUT_DEV_CAP_ATTR(REL, rel);
1472 INPUT_DEV_CAP_ATTR(ABS, abs);
1473 INPUT_DEV_CAP_ATTR(MSC, msc);
1474 INPUT_DEV_CAP_ATTR(LED, led);
1475 INPUT_DEV_CAP_ATTR(SND, snd);
1476 INPUT_DEV_CAP_ATTR(FF, ff);
1477 INPUT_DEV_CAP_ATTR(SW, sw);
1478 
1479 static struct attribute *input_dev_caps_attrs[] = {
1480 	&dev_attr_ev.attr,
1481 	&dev_attr_key.attr,
1482 	&dev_attr_rel.attr,
1483 	&dev_attr_abs.attr,
1484 	&dev_attr_msc.attr,
1485 	&dev_attr_led.attr,
1486 	&dev_attr_snd.attr,
1487 	&dev_attr_ff.attr,
1488 	&dev_attr_sw.attr,
1489 	NULL
1490 };
1491 
1492 static const struct attribute_group input_dev_caps_attr_group = {
1493 	.name	= "capabilities",
1494 	.attrs	= input_dev_caps_attrs,
1495 };
1496 
1497 static const struct attribute_group *input_dev_attr_groups[] = {
1498 	&input_dev_attr_group,
1499 	&input_dev_id_attr_group,
1500 	&input_dev_caps_attr_group,
1501 	NULL
1502 };
1503 
1504 static void input_dev_release(struct device *device)
1505 {
1506 	struct input_dev *dev = to_input_dev(device);
1507 
1508 	input_ff_destroy(dev);
1509 	input_mt_destroy_slots(dev);
1510 	kfree(dev->absinfo);
1511 	kfree(dev->vals);
1512 	kfree(dev);
1513 
1514 	module_put(THIS_MODULE);
1515 }
1516 
1517 /*
1518  * Input uevent interface - loading event handlers based on
1519  * device bitfields.
1520  */
1521 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1522 				   const char *name, unsigned long *bitmap, int max)
1523 {
1524 	int len;
1525 
1526 	if (add_uevent_var(env, "%s", name))
1527 		return -ENOMEM;
1528 
1529 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1530 				 sizeof(env->buf) - env->buflen,
1531 				 bitmap, max, false);
1532 	if (len >= (sizeof(env->buf) - env->buflen))
1533 		return -ENOMEM;
1534 
1535 	env->buflen += len;
1536 	return 0;
1537 }
1538 
1539 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1540 					 struct input_dev *dev)
1541 {
1542 	int len;
1543 
1544 	if (add_uevent_var(env, "MODALIAS="))
1545 		return -ENOMEM;
1546 
1547 	len = input_print_modalias(&env->buf[env->buflen - 1],
1548 				   sizeof(env->buf) - env->buflen,
1549 				   dev, 0);
1550 	if (len >= (sizeof(env->buf) - env->buflen))
1551 		return -ENOMEM;
1552 
1553 	env->buflen += len;
1554 	return 0;
1555 }
1556 
1557 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1558 	do {								\
1559 		int err = add_uevent_var(env, fmt, val);		\
1560 		if (err)						\
1561 			return err;					\
1562 	} while (0)
1563 
1564 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1565 	do {								\
1566 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1567 		if (err)						\
1568 			return err;					\
1569 	} while (0)
1570 
1571 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1572 	do {								\
1573 		int err = input_add_uevent_modalias_var(env, dev);	\
1574 		if (err)						\
1575 			return err;					\
1576 	} while (0)
1577 
1578 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1579 {
1580 	struct input_dev *dev = to_input_dev(device);
1581 
1582 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1583 				dev->id.bustype, dev->id.vendor,
1584 				dev->id.product, dev->id.version);
1585 	if (dev->name)
1586 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1587 	if (dev->phys)
1588 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1589 	if (dev->uniq)
1590 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1591 
1592 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1593 
1594 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1595 	if (test_bit(EV_KEY, dev->evbit))
1596 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1597 	if (test_bit(EV_REL, dev->evbit))
1598 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1599 	if (test_bit(EV_ABS, dev->evbit))
1600 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1601 	if (test_bit(EV_MSC, dev->evbit))
1602 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1603 	if (test_bit(EV_LED, dev->evbit))
1604 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1605 	if (test_bit(EV_SND, dev->evbit))
1606 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1607 	if (test_bit(EV_FF, dev->evbit))
1608 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1609 	if (test_bit(EV_SW, dev->evbit))
1610 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1611 
1612 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1613 
1614 	return 0;
1615 }
1616 
1617 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1618 	do {								\
1619 		int i;							\
1620 		bool active;						\
1621 									\
1622 		if (!test_bit(EV_##type, dev->evbit))			\
1623 			break;						\
1624 									\
1625 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1626 			active = test_bit(i, dev->bits);		\
1627 			if (!active && !on)				\
1628 				continue;				\
1629 									\
1630 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1631 		}							\
1632 	} while (0)
1633 
1634 static void input_dev_toggle(struct input_dev *dev, bool activate)
1635 {
1636 	if (!dev->event)
1637 		return;
1638 
1639 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1640 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1641 
1642 	if (activate && test_bit(EV_REP, dev->evbit)) {
1643 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1644 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1645 	}
1646 }
1647 
1648 /**
1649  * input_reset_device() - reset/restore the state of input device
1650  * @dev: input device whose state needs to be reset
1651  *
1652  * This function tries to reset the state of an opened input device and
1653  * bring internal state and state if the hardware in sync with each other.
1654  * We mark all keys as released, restore LED state, repeat rate, etc.
1655  */
1656 void input_reset_device(struct input_dev *dev)
1657 {
1658 	unsigned long flags;
1659 
1660 	mutex_lock(&dev->mutex);
1661 	spin_lock_irqsave(&dev->event_lock, flags);
1662 
1663 	input_dev_toggle(dev, true);
1664 	input_dev_release_keys(dev);
1665 
1666 	spin_unlock_irqrestore(&dev->event_lock, flags);
1667 	mutex_unlock(&dev->mutex);
1668 }
1669 EXPORT_SYMBOL(input_reset_device);
1670 
1671 #ifdef CONFIG_PM_SLEEP
1672 static int input_dev_suspend(struct device *dev)
1673 {
1674 	struct input_dev *input_dev = to_input_dev(dev);
1675 
1676 	spin_lock_irq(&input_dev->event_lock);
1677 
1678 	/*
1679 	 * Keys that are pressed now are unlikely to be
1680 	 * still pressed when we resume.
1681 	 */
1682 	input_dev_release_keys(input_dev);
1683 
1684 	/* Turn off LEDs and sounds, if any are active. */
1685 	input_dev_toggle(input_dev, false);
1686 
1687 	spin_unlock_irq(&input_dev->event_lock);
1688 
1689 	return 0;
1690 }
1691 
1692 static int input_dev_resume(struct device *dev)
1693 {
1694 	struct input_dev *input_dev = to_input_dev(dev);
1695 
1696 	spin_lock_irq(&input_dev->event_lock);
1697 
1698 	/* Restore state of LEDs and sounds, if any were active. */
1699 	input_dev_toggle(input_dev, true);
1700 
1701 	spin_unlock_irq(&input_dev->event_lock);
1702 
1703 	return 0;
1704 }
1705 
1706 static int input_dev_freeze(struct device *dev)
1707 {
1708 	struct input_dev *input_dev = to_input_dev(dev);
1709 
1710 	spin_lock_irq(&input_dev->event_lock);
1711 
1712 	/*
1713 	 * Keys that are pressed now are unlikely to be
1714 	 * still pressed when we resume.
1715 	 */
1716 	input_dev_release_keys(input_dev);
1717 
1718 	spin_unlock_irq(&input_dev->event_lock);
1719 
1720 	return 0;
1721 }
1722 
1723 static int input_dev_poweroff(struct device *dev)
1724 {
1725 	struct input_dev *input_dev = to_input_dev(dev);
1726 
1727 	spin_lock_irq(&input_dev->event_lock);
1728 
1729 	/* Turn off LEDs and sounds, if any are active. */
1730 	input_dev_toggle(input_dev, false);
1731 
1732 	spin_unlock_irq(&input_dev->event_lock);
1733 
1734 	return 0;
1735 }
1736 
1737 static const struct dev_pm_ops input_dev_pm_ops = {
1738 	.suspend	= input_dev_suspend,
1739 	.resume		= input_dev_resume,
1740 	.freeze		= input_dev_freeze,
1741 	.poweroff	= input_dev_poweroff,
1742 	.restore	= input_dev_resume,
1743 };
1744 #endif /* CONFIG_PM */
1745 
1746 static const struct device_type input_dev_type = {
1747 	.groups		= input_dev_attr_groups,
1748 	.release	= input_dev_release,
1749 	.uevent		= input_dev_uevent,
1750 #ifdef CONFIG_PM_SLEEP
1751 	.pm		= &input_dev_pm_ops,
1752 #endif
1753 };
1754 
1755 static char *input_devnode(struct device *dev, umode_t *mode)
1756 {
1757 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1758 }
1759 
1760 struct class input_class = {
1761 	.name		= "input",
1762 	.devnode	= input_devnode,
1763 };
1764 EXPORT_SYMBOL_GPL(input_class);
1765 
1766 /**
1767  * input_allocate_device - allocate memory for new input device
1768  *
1769  * Returns prepared struct input_dev or %NULL.
1770  *
1771  * NOTE: Use input_free_device() to free devices that have not been
1772  * registered; input_unregister_device() should be used for already
1773  * registered devices.
1774  */
1775 struct input_dev *input_allocate_device(void)
1776 {
1777 	static atomic_t input_no = ATOMIC_INIT(-1);
1778 	struct input_dev *dev;
1779 
1780 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1781 	if (dev) {
1782 		dev->dev.type = &input_dev_type;
1783 		dev->dev.class = &input_class;
1784 		device_initialize(&dev->dev);
1785 		mutex_init(&dev->mutex);
1786 		spin_lock_init(&dev->event_lock);
1787 		timer_setup(&dev->timer, NULL, 0);
1788 		INIT_LIST_HEAD(&dev->h_list);
1789 		INIT_LIST_HEAD(&dev->node);
1790 
1791 		dev_set_name(&dev->dev, "input%lu",
1792 			     (unsigned long)atomic_inc_return(&input_no));
1793 
1794 		__module_get(THIS_MODULE);
1795 	}
1796 
1797 	return dev;
1798 }
1799 EXPORT_SYMBOL(input_allocate_device);
1800 
1801 struct input_devres {
1802 	struct input_dev *input;
1803 };
1804 
1805 static int devm_input_device_match(struct device *dev, void *res, void *data)
1806 {
1807 	struct input_devres *devres = res;
1808 
1809 	return devres->input == data;
1810 }
1811 
1812 static void devm_input_device_release(struct device *dev, void *res)
1813 {
1814 	struct input_devres *devres = res;
1815 	struct input_dev *input = devres->input;
1816 
1817 	dev_dbg(dev, "%s: dropping reference to %s\n",
1818 		__func__, dev_name(&input->dev));
1819 	input_put_device(input);
1820 }
1821 
1822 /**
1823  * devm_input_allocate_device - allocate managed input device
1824  * @dev: device owning the input device being created
1825  *
1826  * Returns prepared struct input_dev or %NULL.
1827  *
1828  * Managed input devices do not need to be explicitly unregistered or
1829  * freed as it will be done automatically when owner device unbinds from
1830  * its driver (or binding fails). Once managed input device is allocated,
1831  * it is ready to be set up and registered in the same fashion as regular
1832  * input device. There are no special devm_input_device_[un]register()
1833  * variants, regular ones work with both managed and unmanaged devices,
1834  * should you need them. In most cases however, managed input device need
1835  * not be explicitly unregistered or freed.
1836  *
1837  * NOTE: the owner device is set up as parent of input device and users
1838  * should not override it.
1839  */
1840 struct input_dev *devm_input_allocate_device(struct device *dev)
1841 {
1842 	struct input_dev *input;
1843 	struct input_devres *devres;
1844 
1845 	devres = devres_alloc(devm_input_device_release,
1846 			      sizeof(*devres), GFP_KERNEL);
1847 	if (!devres)
1848 		return NULL;
1849 
1850 	input = input_allocate_device();
1851 	if (!input) {
1852 		devres_free(devres);
1853 		return NULL;
1854 	}
1855 
1856 	input->dev.parent = dev;
1857 	input->devres_managed = true;
1858 
1859 	devres->input = input;
1860 	devres_add(dev, devres);
1861 
1862 	return input;
1863 }
1864 EXPORT_SYMBOL(devm_input_allocate_device);
1865 
1866 /**
1867  * input_free_device - free memory occupied by input_dev structure
1868  * @dev: input device to free
1869  *
1870  * This function should only be used if input_register_device()
1871  * was not called yet or if it failed. Once device was registered
1872  * use input_unregister_device() and memory will be freed once last
1873  * reference to the device is dropped.
1874  *
1875  * Device should be allocated by input_allocate_device().
1876  *
1877  * NOTE: If there are references to the input device then memory
1878  * will not be freed until last reference is dropped.
1879  */
1880 void input_free_device(struct input_dev *dev)
1881 {
1882 	if (dev) {
1883 		if (dev->devres_managed)
1884 			WARN_ON(devres_destroy(dev->dev.parent,
1885 						devm_input_device_release,
1886 						devm_input_device_match,
1887 						dev));
1888 		input_put_device(dev);
1889 	}
1890 }
1891 EXPORT_SYMBOL(input_free_device);
1892 
1893 /**
1894  * input_set_capability - mark device as capable of a certain event
1895  * @dev: device that is capable of emitting or accepting event
1896  * @type: type of the event (EV_KEY, EV_REL, etc...)
1897  * @code: event code
1898  *
1899  * In addition to setting up corresponding bit in appropriate capability
1900  * bitmap the function also adjusts dev->evbit.
1901  */
1902 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1903 {
1904 	switch (type) {
1905 	case EV_KEY:
1906 		__set_bit(code, dev->keybit);
1907 		break;
1908 
1909 	case EV_REL:
1910 		__set_bit(code, dev->relbit);
1911 		break;
1912 
1913 	case EV_ABS:
1914 		input_alloc_absinfo(dev);
1915 		if (!dev->absinfo)
1916 			return;
1917 
1918 		__set_bit(code, dev->absbit);
1919 		break;
1920 
1921 	case EV_MSC:
1922 		__set_bit(code, dev->mscbit);
1923 		break;
1924 
1925 	case EV_SW:
1926 		__set_bit(code, dev->swbit);
1927 		break;
1928 
1929 	case EV_LED:
1930 		__set_bit(code, dev->ledbit);
1931 		break;
1932 
1933 	case EV_SND:
1934 		__set_bit(code, dev->sndbit);
1935 		break;
1936 
1937 	case EV_FF:
1938 		__set_bit(code, dev->ffbit);
1939 		break;
1940 
1941 	case EV_PWR:
1942 		/* do nothing */
1943 		break;
1944 
1945 	default:
1946 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1947 		       type, code);
1948 		dump_stack();
1949 		return;
1950 	}
1951 
1952 	__set_bit(type, dev->evbit);
1953 }
1954 EXPORT_SYMBOL(input_set_capability);
1955 
1956 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1957 {
1958 	int mt_slots;
1959 	int i;
1960 	unsigned int events;
1961 
1962 	if (dev->mt) {
1963 		mt_slots = dev->mt->num_slots;
1964 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1965 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1966 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1967 		mt_slots = clamp(mt_slots, 2, 32);
1968 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1969 		mt_slots = 2;
1970 	} else {
1971 		mt_slots = 0;
1972 	}
1973 
1974 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1975 
1976 	if (test_bit(EV_ABS, dev->evbit))
1977 		for_each_set_bit(i, dev->absbit, ABS_CNT)
1978 			events += input_is_mt_axis(i) ? mt_slots : 1;
1979 
1980 	if (test_bit(EV_REL, dev->evbit))
1981 		events += bitmap_weight(dev->relbit, REL_CNT);
1982 
1983 	/* Make room for KEY and MSC events */
1984 	events += 7;
1985 
1986 	return events;
1987 }
1988 
1989 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1990 	do {								\
1991 		if (!test_bit(EV_##type, dev->evbit))			\
1992 			memset(dev->bits##bit, 0,			\
1993 				sizeof(dev->bits##bit));		\
1994 	} while (0)
1995 
1996 static void input_cleanse_bitmasks(struct input_dev *dev)
1997 {
1998 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1999 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2000 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2001 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2002 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2003 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2004 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2005 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2006 }
2007 
2008 static void __input_unregister_device(struct input_dev *dev)
2009 {
2010 	struct input_handle *handle, *next;
2011 
2012 	input_disconnect_device(dev);
2013 
2014 	mutex_lock(&input_mutex);
2015 
2016 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2017 		handle->handler->disconnect(handle);
2018 	WARN_ON(!list_empty(&dev->h_list));
2019 
2020 	del_timer_sync(&dev->timer);
2021 	list_del_init(&dev->node);
2022 
2023 	input_wakeup_procfs_readers();
2024 
2025 	mutex_unlock(&input_mutex);
2026 
2027 	device_del(&dev->dev);
2028 }
2029 
2030 static void devm_input_device_unregister(struct device *dev, void *res)
2031 {
2032 	struct input_devres *devres = res;
2033 	struct input_dev *input = devres->input;
2034 
2035 	dev_dbg(dev, "%s: unregistering device %s\n",
2036 		__func__, dev_name(&input->dev));
2037 	__input_unregister_device(input);
2038 }
2039 
2040 /**
2041  * input_enable_softrepeat - enable software autorepeat
2042  * @dev: input device
2043  * @delay: repeat delay
2044  * @period: repeat period
2045  *
2046  * Enable software autorepeat on the input device.
2047  */
2048 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2049 {
2050 	dev->timer.function = input_repeat_key;
2051 	dev->rep[REP_DELAY] = delay;
2052 	dev->rep[REP_PERIOD] = period;
2053 }
2054 EXPORT_SYMBOL(input_enable_softrepeat);
2055 
2056 /**
2057  * input_register_device - register device with input core
2058  * @dev: device to be registered
2059  *
2060  * This function registers device with input core. The device must be
2061  * allocated with input_allocate_device() and all it's capabilities
2062  * set up before registering.
2063  * If function fails the device must be freed with input_free_device().
2064  * Once device has been successfully registered it can be unregistered
2065  * with input_unregister_device(); input_free_device() should not be
2066  * called in this case.
2067  *
2068  * Note that this function is also used to register managed input devices
2069  * (ones allocated with devm_input_allocate_device()). Such managed input
2070  * devices need not be explicitly unregistered or freed, their tear down
2071  * is controlled by the devres infrastructure. It is also worth noting
2072  * that tear down of managed input devices is internally a 2-step process:
2073  * registered managed input device is first unregistered, but stays in
2074  * memory and can still handle input_event() calls (although events will
2075  * not be delivered anywhere). The freeing of managed input device will
2076  * happen later, when devres stack is unwound to the point where device
2077  * allocation was made.
2078  */
2079 int input_register_device(struct input_dev *dev)
2080 {
2081 	struct input_devres *devres = NULL;
2082 	struct input_handler *handler;
2083 	unsigned int packet_size;
2084 	const char *path;
2085 	int error;
2086 
2087 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2088 		dev_err(&dev->dev,
2089 			"Absolute device without dev->absinfo, refusing to register\n");
2090 		return -EINVAL;
2091 	}
2092 
2093 	if (dev->devres_managed) {
2094 		devres = devres_alloc(devm_input_device_unregister,
2095 				      sizeof(*devres), GFP_KERNEL);
2096 		if (!devres)
2097 			return -ENOMEM;
2098 
2099 		devres->input = dev;
2100 	}
2101 
2102 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2103 	__set_bit(EV_SYN, dev->evbit);
2104 
2105 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2106 	__clear_bit(KEY_RESERVED, dev->keybit);
2107 
2108 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2109 	input_cleanse_bitmasks(dev);
2110 
2111 	packet_size = input_estimate_events_per_packet(dev);
2112 	if (dev->hint_events_per_packet < packet_size)
2113 		dev->hint_events_per_packet = packet_size;
2114 
2115 	dev->max_vals = dev->hint_events_per_packet + 2;
2116 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2117 	if (!dev->vals) {
2118 		error = -ENOMEM;
2119 		goto err_devres_free;
2120 	}
2121 
2122 	/*
2123 	 * If delay and period are pre-set by the driver, then autorepeating
2124 	 * is handled by the driver itself and we don't do it in input.c.
2125 	 */
2126 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2127 		input_enable_softrepeat(dev, 250, 33);
2128 
2129 	if (!dev->getkeycode)
2130 		dev->getkeycode = input_default_getkeycode;
2131 
2132 	if (!dev->setkeycode)
2133 		dev->setkeycode = input_default_setkeycode;
2134 
2135 	error = device_add(&dev->dev);
2136 	if (error)
2137 		goto err_free_vals;
2138 
2139 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2140 	pr_info("%s as %s\n",
2141 		dev->name ? dev->name : "Unspecified device",
2142 		path ? path : "N/A");
2143 	kfree(path);
2144 
2145 	error = mutex_lock_interruptible(&input_mutex);
2146 	if (error)
2147 		goto err_device_del;
2148 
2149 	list_add_tail(&dev->node, &input_dev_list);
2150 
2151 	list_for_each_entry(handler, &input_handler_list, node)
2152 		input_attach_handler(dev, handler);
2153 
2154 	input_wakeup_procfs_readers();
2155 
2156 	mutex_unlock(&input_mutex);
2157 
2158 	if (dev->devres_managed) {
2159 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2160 			__func__, dev_name(&dev->dev));
2161 		devres_add(dev->dev.parent, devres);
2162 	}
2163 	return 0;
2164 
2165 err_device_del:
2166 	device_del(&dev->dev);
2167 err_free_vals:
2168 	kfree(dev->vals);
2169 	dev->vals = NULL;
2170 err_devres_free:
2171 	devres_free(devres);
2172 	return error;
2173 }
2174 EXPORT_SYMBOL(input_register_device);
2175 
2176 /**
2177  * input_unregister_device - unregister previously registered device
2178  * @dev: device to be unregistered
2179  *
2180  * This function unregisters an input device. Once device is unregistered
2181  * the caller should not try to access it as it may get freed at any moment.
2182  */
2183 void input_unregister_device(struct input_dev *dev)
2184 {
2185 	if (dev->devres_managed) {
2186 		WARN_ON(devres_destroy(dev->dev.parent,
2187 					devm_input_device_unregister,
2188 					devm_input_device_match,
2189 					dev));
2190 		__input_unregister_device(dev);
2191 		/*
2192 		 * We do not do input_put_device() here because it will be done
2193 		 * when 2nd devres fires up.
2194 		 */
2195 	} else {
2196 		__input_unregister_device(dev);
2197 		input_put_device(dev);
2198 	}
2199 }
2200 EXPORT_SYMBOL(input_unregister_device);
2201 
2202 /**
2203  * input_register_handler - register a new input handler
2204  * @handler: handler to be registered
2205  *
2206  * This function registers a new input handler (interface) for input
2207  * devices in the system and attaches it to all input devices that
2208  * are compatible with the handler.
2209  */
2210 int input_register_handler(struct input_handler *handler)
2211 {
2212 	struct input_dev *dev;
2213 	int error;
2214 
2215 	error = mutex_lock_interruptible(&input_mutex);
2216 	if (error)
2217 		return error;
2218 
2219 	INIT_LIST_HEAD(&handler->h_list);
2220 
2221 	list_add_tail(&handler->node, &input_handler_list);
2222 
2223 	list_for_each_entry(dev, &input_dev_list, node)
2224 		input_attach_handler(dev, handler);
2225 
2226 	input_wakeup_procfs_readers();
2227 
2228 	mutex_unlock(&input_mutex);
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(input_register_handler);
2232 
2233 /**
2234  * input_unregister_handler - unregisters an input handler
2235  * @handler: handler to be unregistered
2236  *
2237  * This function disconnects a handler from its input devices and
2238  * removes it from lists of known handlers.
2239  */
2240 void input_unregister_handler(struct input_handler *handler)
2241 {
2242 	struct input_handle *handle, *next;
2243 
2244 	mutex_lock(&input_mutex);
2245 
2246 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2247 		handler->disconnect(handle);
2248 	WARN_ON(!list_empty(&handler->h_list));
2249 
2250 	list_del_init(&handler->node);
2251 
2252 	input_wakeup_procfs_readers();
2253 
2254 	mutex_unlock(&input_mutex);
2255 }
2256 EXPORT_SYMBOL(input_unregister_handler);
2257 
2258 /**
2259  * input_handler_for_each_handle - handle iterator
2260  * @handler: input handler to iterate
2261  * @data: data for the callback
2262  * @fn: function to be called for each handle
2263  *
2264  * Iterate over @bus's list of devices, and call @fn for each, passing
2265  * it @data and stop when @fn returns a non-zero value. The function is
2266  * using RCU to traverse the list and therefore may be using in atomic
2267  * contexts. The @fn callback is invoked from RCU critical section and
2268  * thus must not sleep.
2269  */
2270 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2271 				  int (*fn)(struct input_handle *, void *))
2272 {
2273 	struct input_handle *handle;
2274 	int retval = 0;
2275 
2276 	rcu_read_lock();
2277 
2278 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2279 		retval = fn(handle, data);
2280 		if (retval)
2281 			break;
2282 	}
2283 
2284 	rcu_read_unlock();
2285 
2286 	return retval;
2287 }
2288 EXPORT_SYMBOL(input_handler_for_each_handle);
2289 
2290 /**
2291  * input_register_handle - register a new input handle
2292  * @handle: handle to register
2293  *
2294  * This function puts a new input handle onto device's
2295  * and handler's lists so that events can flow through
2296  * it once it is opened using input_open_device().
2297  *
2298  * This function is supposed to be called from handler's
2299  * connect() method.
2300  */
2301 int input_register_handle(struct input_handle *handle)
2302 {
2303 	struct input_handler *handler = handle->handler;
2304 	struct input_dev *dev = handle->dev;
2305 	int error;
2306 
2307 	/*
2308 	 * We take dev->mutex here to prevent race with
2309 	 * input_release_device().
2310 	 */
2311 	error = mutex_lock_interruptible(&dev->mutex);
2312 	if (error)
2313 		return error;
2314 
2315 	/*
2316 	 * Filters go to the head of the list, normal handlers
2317 	 * to the tail.
2318 	 */
2319 	if (handler->filter)
2320 		list_add_rcu(&handle->d_node, &dev->h_list);
2321 	else
2322 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2323 
2324 	mutex_unlock(&dev->mutex);
2325 
2326 	/*
2327 	 * Since we are supposed to be called from ->connect()
2328 	 * which is mutually exclusive with ->disconnect()
2329 	 * we can't be racing with input_unregister_handle()
2330 	 * and so separate lock is not needed here.
2331 	 */
2332 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2333 
2334 	if (handler->start)
2335 		handler->start(handle);
2336 
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL(input_register_handle);
2340 
2341 /**
2342  * input_unregister_handle - unregister an input handle
2343  * @handle: handle to unregister
2344  *
2345  * This function removes input handle from device's
2346  * and handler's lists.
2347  *
2348  * This function is supposed to be called from handler's
2349  * disconnect() method.
2350  */
2351 void input_unregister_handle(struct input_handle *handle)
2352 {
2353 	struct input_dev *dev = handle->dev;
2354 
2355 	list_del_rcu(&handle->h_node);
2356 
2357 	/*
2358 	 * Take dev->mutex to prevent race with input_release_device().
2359 	 */
2360 	mutex_lock(&dev->mutex);
2361 	list_del_rcu(&handle->d_node);
2362 	mutex_unlock(&dev->mutex);
2363 
2364 	synchronize_rcu();
2365 }
2366 EXPORT_SYMBOL(input_unregister_handle);
2367 
2368 /**
2369  * input_get_new_minor - allocates a new input minor number
2370  * @legacy_base: beginning or the legacy range to be searched
2371  * @legacy_num: size of legacy range
2372  * @allow_dynamic: whether we can also take ID from the dynamic range
2373  *
2374  * This function allocates a new device minor for from input major namespace.
2375  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2376  * parameters and whether ID can be allocated from dynamic range if there are
2377  * no free IDs in legacy range.
2378  */
2379 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2380 			bool allow_dynamic)
2381 {
2382 	/*
2383 	 * This function should be called from input handler's ->connect()
2384 	 * methods, which are serialized with input_mutex, so no additional
2385 	 * locking is needed here.
2386 	 */
2387 	if (legacy_base >= 0) {
2388 		int minor = ida_simple_get(&input_ida,
2389 					   legacy_base,
2390 					   legacy_base + legacy_num,
2391 					   GFP_KERNEL);
2392 		if (minor >= 0 || !allow_dynamic)
2393 			return minor;
2394 	}
2395 
2396 	return ida_simple_get(&input_ida,
2397 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2398 			      GFP_KERNEL);
2399 }
2400 EXPORT_SYMBOL(input_get_new_minor);
2401 
2402 /**
2403  * input_free_minor - release previously allocated minor
2404  * @minor: minor to be released
2405  *
2406  * This function releases previously allocated input minor so that it can be
2407  * reused later.
2408  */
2409 void input_free_minor(unsigned int minor)
2410 {
2411 	ida_simple_remove(&input_ida, minor);
2412 }
2413 EXPORT_SYMBOL(input_free_minor);
2414 
2415 static int __init input_init(void)
2416 {
2417 	int err;
2418 
2419 	err = class_register(&input_class);
2420 	if (err) {
2421 		pr_err("unable to register input_dev class\n");
2422 		return err;
2423 	}
2424 
2425 	err = input_proc_init();
2426 	if (err)
2427 		goto fail1;
2428 
2429 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2430 				     INPUT_MAX_CHAR_DEVICES, "input");
2431 	if (err) {
2432 		pr_err("unable to register char major %d", INPUT_MAJOR);
2433 		goto fail2;
2434 	}
2435 
2436 	return 0;
2437 
2438  fail2:	input_proc_exit();
2439  fail1:	class_unregister(&input_class);
2440 	return err;
2441 }
2442 
2443 static void __exit input_exit(void)
2444 {
2445 	input_proc_exit();
2446 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2447 				 INPUT_MAX_CHAR_DEVICES);
2448 	class_unregister(&input_class);
2449 }
2450 
2451 subsys_initcall(input_init);
2452 module_exit(input_exit);
2453