1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * The input core 4 * 5 * Copyright (c) 1999-2002 Vojtech Pavlik 6 */ 7 8 9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/types.h> 13 #include <linux/idr.h> 14 #include <linux/input/mt.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/random.h> 18 #include <linux/major.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/poll.h> 23 #include <linux/device.h> 24 #include <linux/mutex.h> 25 #include <linux/rcupdate.h> 26 #include "input-compat.h" 27 #include "input-poller.h" 28 29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 30 MODULE_DESCRIPTION("Input core"); 31 MODULE_LICENSE("GPL"); 32 33 #define INPUT_MAX_CHAR_DEVICES 1024 34 #define INPUT_FIRST_DYNAMIC_DEV 256 35 static DEFINE_IDA(input_ida); 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 49 50 static const unsigned int input_max_code[EV_CNT] = { 51 [EV_KEY] = KEY_MAX, 52 [EV_REL] = REL_MAX, 53 [EV_ABS] = ABS_MAX, 54 [EV_MSC] = MSC_MAX, 55 [EV_SW] = SW_MAX, 56 [EV_LED] = LED_MAX, 57 [EV_SND] = SND_MAX, 58 [EV_FF] = FF_MAX, 59 }; 60 61 static inline int is_event_supported(unsigned int code, 62 unsigned long *bm, unsigned int max) 63 { 64 return code <= max && test_bit(code, bm); 65 } 66 67 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 68 { 69 if (fuzz) { 70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 71 return old_val; 72 73 if (value > old_val - fuzz && value < old_val + fuzz) 74 return (old_val * 3 + value) / 4; 75 76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 77 return (old_val + value) / 2; 78 } 79 80 return value; 81 } 82 83 static void input_start_autorepeat(struct input_dev *dev, int code) 84 { 85 if (test_bit(EV_REP, dev->evbit) && 86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 87 dev->timer.function) { 88 dev->repeat_key = code; 89 mod_timer(&dev->timer, 90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 91 } 92 } 93 94 static void input_stop_autorepeat(struct input_dev *dev) 95 { 96 del_timer(&dev->timer); 97 } 98 99 /* 100 * Pass event first through all filters and then, if event has not been 101 * filtered out, through all open handles. This function is called with 102 * dev->event_lock held and interrupts disabled. 103 */ 104 static unsigned int input_to_handler(struct input_handle *handle, 105 struct input_value *vals, unsigned int count) 106 { 107 struct input_handler *handler = handle->handler; 108 struct input_value *end = vals; 109 struct input_value *v; 110 111 if (handler->filter) { 112 for (v = vals; v != vals + count; v++) { 113 if (handler->filter(handle, v->type, v->code, v->value)) 114 continue; 115 if (end != v) 116 *end = *v; 117 end++; 118 } 119 count = end - vals; 120 } 121 122 if (!count) 123 return 0; 124 125 if (handler->events) 126 handler->events(handle, vals, count); 127 else if (handler->event) 128 for (v = vals; v != vals + count; v++) 129 handler->event(handle, v->type, v->code, v->value); 130 131 return count; 132 } 133 134 /* 135 * Pass values first through all filters and then, if event has not been 136 * filtered out, through all open handles. This function is called with 137 * dev->event_lock held and interrupts disabled. 138 */ 139 static void input_pass_values(struct input_dev *dev, 140 struct input_value *vals, unsigned int count) 141 { 142 struct input_handle *handle; 143 struct input_value *v; 144 145 if (!count) 146 return; 147 148 rcu_read_lock(); 149 150 handle = rcu_dereference(dev->grab); 151 if (handle) { 152 count = input_to_handler(handle, vals, count); 153 } else { 154 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 155 if (handle->open) { 156 count = input_to_handler(handle, vals, count); 157 if (!count) 158 break; 159 } 160 } 161 162 rcu_read_unlock(); 163 164 /* trigger auto repeat for key events */ 165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 166 for (v = vals; v != vals + count; v++) { 167 if (v->type == EV_KEY && v->value != 2) { 168 if (v->value) 169 input_start_autorepeat(dev, v->code); 170 else 171 input_stop_autorepeat(dev); 172 } 173 } 174 } 175 } 176 177 static void input_pass_event(struct input_dev *dev, 178 unsigned int type, unsigned int code, int value) 179 { 180 struct input_value vals[] = { { type, code, value } }; 181 182 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 183 } 184 185 /* 186 * Generate software autorepeat event. Note that we take 187 * dev->event_lock here to avoid racing with input_event 188 * which may cause keys get "stuck". 189 */ 190 static void input_repeat_key(struct timer_list *t) 191 { 192 struct input_dev *dev = from_timer(dev, t, timer); 193 unsigned long flags; 194 195 spin_lock_irqsave(&dev->event_lock, flags); 196 197 if (test_bit(dev->repeat_key, dev->key) && 198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 199 struct input_value vals[] = { 200 { EV_KEY, dev->repeat_key, 2 }, 201 input_value_sync 202 }; 203 204 input_set_timestamp(dev, ktime_get()); 205 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 206 207 if (dev->rep[REP_PERIOD]) 208 mod_timer(&dev->timer, jiffies + 209 msecs_to_jiffies(dev->rep[REP_PERIOD])); 210 } 211 212 spin_unlock_irqrestore(&dev->event_lock, flags); 213 } 214 215 #define INPUT_IGNORE_EVENT 0 216 #define INPUT_PASS_TO_HANDLERS 1 217 #define INPUT_PASS_TO_DEVICE 2 218 #define INPUT_SLOT 4 219 #define INPUT_FLUSH 8 220 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 221 222 static int input_handle_abs_event(struct input_dev *dev, 223 unsigned int code, int *pval) 224 { 225 struct input_mt *mt = dev->mt; 226 bool is_mt_event; 227 int *pold; 228 229 if (code == ABS_MT_SLOT) { 230 /* 231 * "Stage" the event; we'll flush it later, when we 232 * get actual touch data. 233 */ 234 if (mt && *pval >= 0 && *pval < mt->num_slots) 235 mt->slot = *pval; 236 237 return INPUT_IGNORE_EVENT; 238 } 239 240 is_mt_event = input_is_mt_value(code); 241 242 if (!is_mt_event) { 243 pold = &dev->absinfo[code].value; 244 } else if (mt) { 245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 246 } else { 247 /* 248 * Bypass filtering for multi-touch events when 249 * not employing slots. 250 */ 251 pold = NULL; 252 } 253 254 if (pold) { 255 *pval = input_defuzz_abs_event(*pval, *pold, 256 dev->absinfo[code].fuzz); 257 if (*pold == *pval) 258 return INPUT_IGNORE_EVENT; 259 260 *pold = *pval; 261 } 262 263 /* Flush pending "slot" event */ 264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 266 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 267 } 268 269 return INPUT_PASS_TO_HANDLERS; 270 } 271 272 static int input_get_disposition(struct input_dev *dev, 273 unsigned int type, unsigned int code, int *pval) 274 { 275 int disposition = INPUT_IGNORE_EVENT; 276 int value = *pval; 277 278 switch (type) { 279 280 case EV_SYN: 281 switch (code) { 282 case SYN_CONFIG: 283 disposition = INPUT_PASS_TO_ALL; 284 break; 285 286 case SYN_REPORT: 287 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 288 break; 289 case SYN_MT_REPORT: 290 disposition = INPUT_PASS_TO_HANDLERS; 291 break; 292 } 293 break; 294 295 case EV_KEY: 296 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 297 298 /* auto-repeat bypasses state updates */ 299 if (value == 2) { 300 disposition = INPUT_PASS_TO_HANDLERS; 301 break; 302 } 303 304 if (!!test_bit(code, dev->key) != !!value) { 305 306 __change_bit(code, dev->key); 307 disposition = INPUT_PASS_TO_HANDLERS; 308 } 309 } 310 break; 311 312 case EV_SW: 313 if (is_event_supported(code, dev->swbit, SW_MAX) && 314 !!test_bit(code, dev->sw) != !!value) { 315 316 __change_bit(code, dev->sw); 317 disposition = INPUT_PASS_TO_HANDLERS; 318 } 319 break; 320 321 case EV_ABS: 322 if (is_event_supported(code, dev->absbit, ABS_MAX)) 323 disposition = input_handle_abs_event(dev, code, &value); 324 325 break; 326 327 case EV_REL: 328 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 329 disposition = INPUT_PASS_TO_HANDLERS; 330 331 break; 332 333 case EV_MSC: 334 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 335 disposition = INPUT_PASS_TO_ALL; 336 337 break; 338 339 case EV_LED: 340 if (is_event_supported(code, dev->ledbit, LED_MAX) && 341 !!test_bit(code, dev->led) != !!value) { 342 343 __change_bit(code, dev->led); 344 disposition = INPUT_PASS_TO_ALL; 345 } 346 break; 347 348 case EV_SND: 349 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 350 351 if (!!test_bit(code, dev->snd) != !!value) 352 __change_bit(code, dev->snd); 353 disposition = INPUT_PASS_TO_ALL; 354 } 355 break; 356 357 case EV_REP: 358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 359 dev->rep[code] = value; 360 disposition = INPUT_PASS_TO_ALL; 361 } 362 break; 363 364 case EV_FF: 365 if (value >= 0) 366 disposition = INPUT_PASS_TO_ALL; 367 break; 368 369 case EV_PWR: 370 disposition = INPUT_PASS_TO_ALL; 371 break; 372 } 373 374 *pval = value; 375 return disposition; 376 } 377 378 static void input_handle_event(struct input_dev *dev, 379 unsigned int type, unsigned int code, int value) 380 { 381 int disposition; 382 383 /* filter-out events from inhibited devices */ 384 if (dev->inhibited) 385 return; 386 387 disposition = input_get_disposition(dev, type, code, &value); 388 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 389 add_input_randomness(type, code, value); 390 391 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 392 dev->event(dev, type, code, value); 393 394 if (!dev->vals) 395 return; 396 397 if (disposition & INPUT_PASS_TO_HANDLERS) { 398 struct input_value *v; 399 400 if (disposition & INPUT_SLOT) { 401 v = &dev->vals[dev->num_vals++]; 402 v->type = EV_ABS; 403 v->code = ABS_MT_SLOT; 404 v->value = dev->mt->slot; 405 } 406 407 v = &dev->vals[dev->num_vals++]; 408 v->type = type; 409 v->code = code; 410 v->value = value; 411 } 412 413 if (disposition & INPUT_FLUSH) { 414 if (dev->num_vals >= 2) 415 input_pass_values(dev, dev->vals, dev->num_vals); 416 dev->num_vals = 0; 417 /* 418 * Reset the timestamp on flush so we won't end up 419 * with a stale one. Note we only need to reset the 420 * monolithic one as we use its presence when deciding 421 * whether to generate a synthetic timestamp. 422 */ 423 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0); 424 } else if (dev->num_vals >= dev->max_vals - 2) { 425 dev->vals[dev->num_vals++] = input_value_sync; 426 input_pass_values(dev, dev->vals, dev->num_vals); 427 dev->num_vals = 0; 428 } 429 430 } 431 432 /** 433 * input_event() - report new input event 434 * @dev: device that generated the event 435 * @type: type of the event 436 * @code: event code 437 * @value: value of the event 438 * 439 * This function should be used by drivers implementing various input 440 * devices to report input events. See also input_inject_event(). 441 * 442 * NOTE: input_event() may be safely used right after input device was 443 * allocated with input_allocate_device(), even before it is registered 444 * with input_register_device(), but the event will not reach any of the 445 * input handlers. Such early invocation of input_event() may be used 446 * to 'seed' initial state of a switch or initial position of absolute 447 * axis, etc. 448 */ 449 void input_event(struct input_dev *dev, 450 unsigned int type, unsigned int code, int value) 451 { 452 unsigned long flags; 453 454 if (is_event_supported(type, dev->evbit, EV_MAX)) { 455 456 spin_lock_irqsave(&dev->event_lock, flags); 457 input_handle_event(dev, type, code, value); 458 spin_unlock_irqrestore(&dev->event_lock, flags); 459 } 460 } 461 EXPORT_SYMBOL(input_event); 462 463 /** 464 * input_inject_event() - send input event from input handler 465 * @handle: input handle to send event through 466 * @type: type of the event 467 * @code: event code 468 * @value: value of the event 469 * 470 * Similar to input_event() but will ignore event if device is 471 * "grabbed" and handle injecting event is not the one that owns 472 * the device. 473 */ 474 void input_inject_event(struct input_handle *handle, 475 unsigned int type, unsigned int code, int value) 476 { 477 struct input_dev *dev = handle->dev; 478 struct input_handle *grab; 479 unsigned long flags; 480 481 if (is_event_supported(type, dev->evbit, EV_MAX)) { 482 spin_lock_irqsave(&dev->event_lock, flags); 483 484 rcu_read_lock(); 485 grab = rcu_dereference(dev->grab); 486 if (!grab || grab == handle) 487 input_handle_event(dev, type, code, value); 488 rcu_read_unlock(); 489 490 spin_unlock_irqrestore(&dev->event_lock, flags); 491 } 492 } 493 EXPORT_SYMBOL(input_inject_event); 494 495 /** 496 * input_alloc_absinfo - allocates array of input_absinfo structs 497 * @dev: the input device emitting absolute events 498 * 499 * If the absinfo struct the caller asked for is already allocated, this 500 * functions will not do anything. 501 */ 502 void input_alloc_absinfo(struct input_dev *dev) 503 { 504 if (dev->absinfo) 505 return; 506 507 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 508 if (!dev->absinfo) { 509 dev_err(dev->dev.parent ?: &dev->dev, 510 "%s: unable to allocate memory\n", __func__); 511 /* 512 * We will handle this allocation failure in 513 * input_register_device() when we refuse to register input 514 * device with ABS bits but without absinfo. 515 */ 516 } 517 } 518 EXPORT_SYMBOL(input_alloc_absinfo); 519 520 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 521 int min, int max, int fuzz, int flat) 522 { 523 struct input_absinfo *absinfo; 524 525 __set_bit(EV_ABS, dev->evbit); 526 __set_bit(axis, dev->absbit); 527 528 input_alloc_absinfo(dev); 529 if (!dev->absinfo) 530 return; 531 532 absinfo = &dev->absinfo[axis]; 533 absinfo->minimum = min; 534 absinfo->maximum = max; 535 absinfo->fuzz = fuzz; 536 absinfo->flat = flat; 537 } 538 EXPORT_SYMBOL(input_set_abs_params); 539 540 /** 541 * input_copy_abs - Copy absinfo from one input_dev to another 542 * @dst: Destination input device to copy the abs settings to 543 * @dst_axis: ABS_* value selecting the destination axis 544 * @src: Source input device to copy the abs settings from 545 * @src_axis: ABS_* value selecting the source axis 546 * 547 * Set absinfo for the selected destination axis by copying it from 548 * the specified source input device's source axis. 549 * This is useful to e.g. setup a pen/stylus input-device for combined 550 * touchscreen/pen hardware where the pen uses the same coordinates as 551 * the touchscreen. 552 */ 553 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis, 554 const struct input_dev *src, unsigned int src_axis) 555 { 556 /* src must have EV_ABS and src_axis set */ 557 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) && 558 test_bit(src_axis, src->absbit)))) 559 return; 560 561 /* 562 * input_alloc_absinfo() may have failed for the source. Our caller is 563 * expected to catch this when registering the input devices, which may 564 * happen after the input_copy_abs() call. 565 */ 566 if (!src->absinfo) 567 return; 568 569 input_set_capability(dst, EV_ABS, dst_axis); 570 if (!dst->absinfo) 571 return; 572 573 dst->absinfo[dst_axis] = src->absinfo[src_axis]; 574 } 575 EXPORT_SYMBOL(input_copy_abs); 576 577 /** 578 * input_grab_device - grabs device for exclusive use 579 * @handle: input handle that wants to own the device 580 * 581 * When a device is grabbed by an input handle all events generated by 582 * the device are delivered only to this handle. Also events injected 583 * by other input handles are ignored while device is grabbed. 584 */ 585 int input_grab_device(struct input_handle *handle) 586 { 587 struct input_dev *dev = handle->dev; 588 int retval; 589 590 retval = mutex_lock_interruptible(&dev->mutex); 591 if (retval) 592 return retval; 593 594 if (dev->grab) { 595 retval = -EBUSY; 596 goto out; 597 } 598 599 rcu_assign_pointer(dev->grab, handle); 600 601 out: 602 mutex_unlock(&dev->mutex); 603 return retval; 604 } 605 EXPORT_SYMBOL(input_grab_device); 606 607 static void __input_release_device(struct input_handle *handle) 608 { 609 struct input_dev *dev = handle->dev; 610 struct input_handle *grabber; 611 612 grabber = rcu_dereference_protected(dev->grab, 613 lockdep_is_held(&dev->mutex)); 614 if (grabber == handle) { 615 rcu_assign_pointer(dev->grab, NULL); 616 /* Make sure input_pass_event() notices that grab is gone */ 617 synchronize_rcu(); 618 619 list_for_each_entry(handle, &dev->h_list, d_node) 620 if (handle->open && handle->handler->start) 621 handle->handler->start(handle); 622 } 623 } 624 625 /** 626 * input_release_device - release previously grabbed device 627 * @handle: input handle that owns the device 628 * 629 * Releases previously grabbed device so that other input handles can 630 * start receiving input events. Upon release all handlers attached 631 * to the device have their start() method called so they have a change 632 * to synchronize device state with the rest of the system. 633 */ 634 void input_release_device(struct input_handle *handle) 635 { 636 struct input_dev *dev = handle->dev; 637 638 mutex_lock(&dev->mutex); 639 __input_release_device(handle); 640 mutex_unlock(&dev->mutex); 641 } 642 EXPORT_SYMBOL(input_release_device); 643 644 /** 645 * input_open_device - open input device 646 * @handle: handle through which device is being accessed 647 * 648 * This function should be called by input handlers when they 649 * want to start receive events from given input device. 650 */ 651 int input_open_device(struct input_handle *handle) 652 { 653 struct input_dev *dev = handle->dev; 654 int retval; 655 656 retval = mutex_lock_interruptible(&dev->mutex); 657 if (retval) 658 return retval; 659 660 if (dev->going_away) { 661 retval = -ENODEV; 662 goto out; 663 } 664 665 handle->open++; 666 667 if (dev->users++ || dev->inhibited) { 668 /* 669 * Device is already opened and/or inhibited, 670 * so we can exit immediately and report success. 671 */ 672 goto out; 673 } 674 675 if (dev->open) { 676 retval = dev->open(dev); 677 if (retval) { 678 dev->users--; 679 handle->open--; 680 /* 681 * Make sure we are not delivering any more events 682 * through this handle 683 */ 684 synchronize_rcu(); 685 goto out; 686 } 687 } 688 689 if (dev->poller) 690 input_dev_poller_start(dev->poller); 691 692 out: 693 mutex_unlock(&dev->mutex); 694 return retval; 695 } 696 EXPORT_SYMBOL(input_open_device); 697 698 int input_flush_device(struct input_handle *handle, struct file *file) 699 { 700 struct input_dev *dev = handle->dev; 701 int retval; 702 703 retval = mutex_lock_interruptible(&dev->mutex); 704 if (retval) 705 return retval; 706 707 if (dev->flush) 708 retval = dev->flush(dev, file); 709 710 mutex_unlock(&dev->mutex); 711 return retval; 712 } 713 EXPORT_SYMBOL(input_flush_device); 714 715 /** 716 * input_close_device - close input device 717 * @handle: handle through which device is being accessed 718 * 719 * This function should be called by input handlers when they 720 * want to stop receive events from given input device. 721 */ 722 void input_close_device(struct input_handle *handle) 723 { 724 struct input_dev *dev = handle->dev; 725 726 mutex_lock(&dev->mutex); 727 728 __input_release_device(handle); 729 730 if (!dev->inhibited && !--dev->users) { 731 if (dev->poller) 732 input_dev_poller_stop(dev->poller); 733 if (dev->close) 734 dev->close(dev); 735 } 736 737 if (!--handle->open) { 738 /* 739 * synchronize_rcu() makes sure that input_pass_event() 740 * completed and that no more input events are delivered 741 * through this handle 742 */ 743 synchronize_rcu(); 744 } 745 746 mutex_unlock(&dev->mutex); 747 } 748 EXPORT_SYMBOL(input_close_device); 749 750 /* 751 * Simulate keyup events for all keys that are marked as pressed. 752 * The function must be called with dev->event_lock held. 753 */ 754 static void input_dev_release_keys(struct input_dev *dev) 755 { 756 bool need_sync = false; 757 int code; 758 759 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 760 for_each_set_bit(code, dev->key, KEY_CNT) { 761 input_pass_event(dev, EV_KEY, code, 0); 762 need_sync = true; 763 } 764 765 if (need_sync) 766 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 767 768 memset(dev->key, 0, sizeof(dev->key)); 769 } 770 } 771 772 /* 773 * Prepare device for unregistering 774 */ 775 static void input_disconnect_device(struct input_dev *dev) 776 { 777 struct input_handle *handle; 778 779 /* 780 * Mark device as going away. Note that we take dev->mutex here 781 * not to protect access to dev->going_away but rather to ensure 782 * that there are no threads in the middle of input_open_device() 783 */ 784 mutex_lock(&dev->mutex); 785 dev->going_away = true; 786 mutex_unlock(&dev->mutex); 787 788 spin_lock_irq(&dev->event_lock); 789 790 /* 791 * Simulate keyup events for all pressed keys so that handlers 792 * are not left with "stuck" keys. The driver may continue 793 * generate events even after we done here but they will not 794 * reach any handlers. 795 */ 796 input_dev_release_keys(dev); 797 798 list_for_each_entry(handle, &dev->h_list, d_node) 799 handle->open = 0; 800 801 spin_unlock_irq(&dev->event_lock); 802 } 803 804 /** 805 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 806 * @ke: keymap entry containing scancode to be converted. 807 * @scancode: pointer to the location where converted scancode should 808 * be stored. 809 * 810 * This function is used to convert scancode stored in &struct keymap_entry 811 * into scalar form understood by legacy keymap handling methods. These 812 * methods expect scancodes to be represented as 'unsigned int'. 813 */ 814 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 815 unsigned int *scancode) 816 { 817 switch (ke->len) { 818 case 1: 819 *scancode = *((u8 *)ke->scancode); 820 break; 821 822 case 2: 823 *scancode = *((u16 *)ke->scancode); 824 break; 825 826 case 4: 827 *scancode = *((u32 *)ke->scancode); 828 break; 829 830 default: 831 return -EINVAL; 832 } 833 834 return 0; 835 } 836 EXPORT_SYMBOL(input_scancode_to_scalar); 837 838 /* 839 * Those routines handle the default case where no [gs]etkeycode() is 840 * defined. In this case, an array indexed by the scancode is used. 841 */ 842 843 static unsigned int input_fetch_keycode(struct input_dev *dev, 844 unsigned int index) 845 { 846 switch (dev->keycodesize) { 847 case 1: 848 return ((u8 *)dev->keycode)[index]; 849 850 case 2: 851 return ((u16 *)dev->keycode)[index]; 852 853 default: 854 return ((u32 *)dev->keycode)[index]; 855 } 856 } 857 858 static int input_default_getkeycode(struct input_dev *dev, 859 struct input_keymap_entry *ke) 860 { 861 unsigned int index; 862 int error; 863 864 if (!dev->keycodesize) 865 return -EINVAL; 866 867 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 868 index = ke->index; 869 else { 870 error = input_scancode_to_scalar(ke, &index); 871 if (error) 872 return error; 873 } 874 875 if (index >= dev->keycodemax) 876 return -EINVAL; 877 878 ke->keycode = input_fetch_keycode(dev, index); 879 ke->index = index; 880 ke->len = sizeof(index); 881 memcpy(ke->scancode, &index, sizeof(index)); 882 883 return 0; 884 } 885 886 static int input_default_setkeycode(struct input_dev *dev, 887 const struct input_keymap_entry *ke, 888 unsigned int *old_keycode) 889 { 890 unsigned int index; 891 int error; 892 int i; 893 894 if (!dev->keycodesize) 895 return -EINVAL; 896 897 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 898 index = ke->index; 899 } else { 900 error = input_scancode_to_scalar(ke, &index); 901 if (error) 902 return error; 903 } 904 905 if (index >= dev->keycodemax) 906 return -EINVAL; 907 908 if (dev->keycodesize < sizeof(ke->keycode) && 909 (ke->keycode >> (dev->keycodesize * 8))) 910 return -EINVAL; 911 912 switch (dev->keycodesize) { 913 case 1: { 914 u8 *k = (u8 *)dev->keycode; 915 *old_keycode = k[index]; 916 k[index] = ke->keycode; 917 break; 918 } 919 case 2: { 920 u16 *k = (u16 *)dev->keycode; 921 *old_keycode = k[index]; 922 k[index] = ke->keycode; 923 break; 924 } 925 default: { 926 u32 *k = (u32 *)dev->keycode; 927 *old_keycode = k[index]; 928 k[index] = ke->keycode; 929 break; 930 } 931 } 932 933 if (*old_keycode <= KEY_MAX) { 934 __clear_bit(*old_keycode, dev->keybit); 935 for (i = 0; i < dev->keycodemax; i++) { 936 if (input_fetch_keycode(dev, i) == *old_keycode) { 937 __set_bit(*old_keycode, dev->keybit); 938 /* Setting the bit twice is useless, so break */ 939 break; 940 } 941 } 942 } 943 944 __set_bit(ke->keycode, dev->keybit); 945 return 0; 946 } 947 948 /** 949 * input_get_keycode - retrieve keycode currently mapped to a given scancode 950 * @dev: input device which keymap is being queried 951 * @ke: keymap entry 952 * 953 * This function should be called by anyone interested in retrieving current 954 * keymap. Presently evdev handlers use it. 955 */ 956 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 957 { 958 unsigned long flags; 959 int retval; 960 961 spin_lock_irqsave(&dev->event_lock, flags); 962 retval = dev->getkeycode(dev, ke); 963 spin_unlock_irqrestore(&dev->event_lock, flags); 964 965 return retval; 966 } 967 EXPORT_SYMBOL(input_get_keycode); 968 969 /** 970 * input_set_keycode - attribute a keycode to a given scancode 971 * @dev: input device which keymap is being updated 972 * @ke: new keymap entry 973 * 974 * This function should be called by anyone needing to update current 975 * keymap. Presently keyboard and evdev handlers use it. 976 */ 977 int input_set_keycode(struct input_dev *dev, 978 const struct input_keymap_entry *ke) 979 { 980 unsigned long flags; 981 unsigned int old_keycode; 982 int retval; 983 984 if (ke->keycode > KEY_MAX) 985 return -EINVAL; 986 987 spin_lock_irqsave(&dev->event_lock, flags); 988 989 retval = dev->setkeycode(dev, ke, &old_keycode); 990 if (retval) 991 goto out; 992 993 /* Make sure KEY_RESERVED did not get enabled. */ 994 __clear_bit(KEY_RESERVED, dev->keybit); 995 996 /* 997 * Simulate keyup event if keycode is not present 998 * in the keymap anymore 999 */ 1000 if (old_keycode > KEY_MAX) { 1001 dev_warn(dev->dev.parent ?: &dev->dev, 1002 "%s: got too big old keycode %#x\n", 1003 __func__, old_keycode); 1004 } else if (test_bit(EV_KEY, dev->evbit) && 1005 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 1006 __test_and_clear_bit(old_keycode, dev->key)) { 1007 struct input_value vals[] = { 1008 { EV_KEY, old_keycode, 0 }, 1009 input_value_sync 1010 }; 1011 1012 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 1013 } 1014 1015 out: 1016 spin_unlock_irqrestore(&dev->event_lock, flags); 1017 1018 return retval; 1019 } 1020 EXPORT_SYMBOL(input_set_keycode); 1021 1022 bool input_match_device_id(const struct input_dev *dev, 1023 const struct input_device_id *id) 1024 { 1025 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 1026 if (id->bustype != dev->id.bustype) 1027 return false; 1028 1029 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 1030 if (id->vendor != dev->id.vendor) 1031 return false; 1032 1033 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 1034 if (id->product != dev->id.product) 1035 return false; 1036 1037 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 1038 if (id->version != dev->id.version) 1039 return false; 1040 1041 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 1042 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 1043 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 1044 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 1045 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 1046 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 1047 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 1048 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 1049 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 1050 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 1051 return false; 1052 } 1053 1054 return true; 1055 } 1056 EXPORT_SYMBOL(input_match_device_id); 1057 1058 static const struct input_device_id *input_match_device(struct input_handler *handler, 1059 struct input_dev *dev) 1060 { 1061 const struct input_device_id *id; 1062 1063 for (id = handler->id_table; id->flags || id->driver_info; id++) { 1064 if (input_match_device_id(dev, id) && 1065 (!handler->match || handler->match(handler, dev))) { 1066 return id; 1067 } 1068 } 1069 1070 return NULL; 1071 } 1072 1073 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1074 { 1075 const struct input_device_id *id; 1076 int error; 1077 1078 id = input_match_device(handler, dev); 1079 if (!id) 1080 return -ENODEV; 1081 1082 error = handler->connect(handler, dev, id); 1083 if (error && error != -ENODEV) 1084 pr_err("failed to attach handler %s to device %s, error: %d\n", 1085 handler->name, kobject_name(&dev->dev.kobj), error); 1086 1087 return error; 1088 } 1089 1090 #ifdef CONFIG_COMPAT 1091 1092 static int input_bits_to_string(char *buf, int buf_size, 1093 unsigned long bits, bool skip_empty) 1094 { 1095 int len = 0; 1096 1097 if (in_compat_syscall()) { 1098 u32 dword = bits >> 32; 1099 if (dword || !skip_empty) 1100 len += snprintf(buf, buf_size, "%x ", dword); 1101 1102 dword = bits & 0xffffffffUL; 1103 if (dword || !skip_empty || len) 1104 len += snprintf(buf + len, max(buf_size - len, 0), 1105 "%x", dword); 1106 } else { 1107 if (bits || !skip_empty) 1108 len += snprintf(buf, buf_size, "%lx", bits); 1109 } 1110 1111 return len; 1112 } 1113 1114 #else /* !CONFIG_COMPAT */ 1115 1116 static int input_bits_to_string(char *buf, int buf_size, 1117 unsigned long bits, bool skip_empty) 1118 { 1119 return bits || !skip_empty ? 1120 snprintf(buf, buf_size, "%lx", bits) : 0; 1121 } 1122 1123 #endif 1124 1125 #ifdef CONFIG_PROC_FS 1126 1127 static struct proc_dir_entry *proc_bus_input_dir; 1128 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1129 static int input_devices_state; 1130 1131 static inline void input_wakeup_procfs_readers(void) 1132 { 1133 input_devices_state++; 1134 wake_up(&input_devices_poll_wait); 1135 } 1136 1137 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait) 1138 { 1139 poll_wait(file, &input_devices_poll_wait, wait); 1140 if (file->f_version != input_devices_state) { 1141 file->f_version = input_devices_state; 1142 return EPOLLIN | EPOLLRDNORM; 1143 } 1144 1145 return 0; 1146 } 1147 1148 union input_seq_state { 1149 struct { 1150 unsigned short pos; 1151 bool mutex_acquired; 1152 }; 1153 void *p; 1154 }; 1155 1156 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1157 { 1158 union input_seq_state *state = (union input_seq_state *)&seq->private; 1159 int error; 1160 1161 /* We need to fit into seq->private pointer */ 1162 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1163 1164 error = mutex_lock_interruptible(&input_mutex); 1165 if (error) { 1166 state->mutex_acquired = false; 1167 return ERR_PTR(error); 1168 } 1169 1170 state->mutex_acquired = true; 1171 1172 return seq_list_start(&input_dev_list, *pos); 1173 } 1174 1175 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1176 { 1177 return seq_list_next(v, &input_dev_list, pos); 1178 } 1179 1180 static void input_seq_stop(struct seq_file *seq, void *v) 1181 { 1182 union input_seq_state *state = (union input_seq_state *)&seq->private; 1183 1184 if (state->mutex_acquired) 1185 mutex_unlock(&input_mutex); 1186 } 1187 1188 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1189 unsigned long *bitmap, int max) 1190 { 1191 int i; 1192 bool skip_empty = true; 1193 char buf[18]; 1194 1195 seq_printf(seq, "B: %s=", name); 1196 1197 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1198 if (input_bits_to_string(buf, sizeof(buf), 1199 bitmap[i], skip_empty)) { 1200 skip_empty = false; 1201 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1202 } 1203 } 1204 1205 /* 1206 * If no output was produced print a single 0. 1207 */ 1208 if (skip_empty) 1209 seq_putc(seq, '0'); 1210 1211 seq_putc(seq, '\n'); 1212 } 1213 1214 static int input_devices_seq_show(struct seq_file *seq, void *v) 1215 { 1216 struct input_dev *dev = container_of(v, struct input_dev, node); 1217 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1218 struct input_handle *handle; 1219 1220 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1221 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1222 1223 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1224 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1225 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1226 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1227 seq_puts(seq, "H: Handlers="); 1228 1229 list_for_each_entry(handle, &dev->h_list, d_node) 1230 seq_printf(seq, "%s ", handle->name); 1231 seq_putc(seq, '\n'); 1232 1233 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1234 1235 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1236 if (test_bit(EV_KEY, dev->evbit)) 1237 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1238 if (test_bit(EV_REL, dev->evbit)) 1239 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1240 if (test_bit(EV_ABS, dev->evbit)) 1241 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1242 if (test_bit(EV_MSC, dev->evbit)) 1243 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1244 if (test_bit(EV_LED, dev->evbit)) 1245 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1246 if (test_bit(EV_SND, dev->evbit)) 1247 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1248 if (test_bit(EV_FF, dev->evbit)) 1249 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1250 if (test_bit(EV_SW, dev->evbit)) 1251 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1252 1253 seq_putc(seq, '\n'); 1254 1255 kfree(path); 1256 return 0; 1257 } 1258 1259 static const struct seq_operations input_devices_seq_ops = { 1260 .start = input_devices_seq_start, 1261 .next = input_devices_seq_next, 1262 .stop = input_seq_stop, 1263 .show = input_devices_seq_show, 1264 }; 1265 1266 static int input_proc_devices_open(struct inode *inode, struct file *file) 1267 { 1268 return seq_open(file, &input_devices_seq_ops); 1269 } 1270 1271 static const struct proc_ops input_devices_proc_ops = { 1272 .proc_open = input_proc_devices_open, 1273 .proc_poll = input_proc_devices_poll, 1274 .proc_read = seq_read, 1275 .proc_lseek = seq_lseek, 1276 .proc_release = seq_release, 1277 }; 1278 1279 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1280 { 1281 union input_seq_state *state = (union input_seq_state *)&seq->private; 1282 int error; 1283 1284 /* We need to fit into seq->private pointer */ 1285 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1286 1287 error = mutex_lock_interruptible(&input_mutex); 1288 if (error) { 1289 state->mutex_acquired = false; 1290 return ERR_PTR(error); 1291 } 1292 1293 state->mutex_acquired = true; 1294 state->pos = *pos; 1295 1296 return seq_list_start(&input_handler_list, *pos); 1297 } 1298 1299 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1300 { 1301 union input_seq_state *state = (union input_seq_state *)&seq->private; 1302 1303 state->pos = *pos + 1; 1304 return seq_list_next(v, &input_handler_list, pos); 1305 } 1306 1307 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1308 { 1309 struct input_handler *handler = container_of(v, struct input_handler, node); 1310 union input_seq_state *state = (union input_seq_state *)&seq->private; 1311 1312 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1313 if (handler->filter) 1314 seq_puts(seq, " (filter)"); 1315 if (handler->legacy_minors) 1316 seq_printf(seq, " Minor=%d", handler->minor); 1317 seq_putc(seq, '\n'); 1318 1319 return 0; 1320 } 1321 1322 static const struct seq_operations input_handlers_seq_ops = { 1323 .start = input_handlers_seq_start, 1324 .next = input_handlers_seq_next, 1325 .stop = input_seq_stop, 1326 .show = input_handlers_seq_show, 1327 }; 1328 1329 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1330 { 1331 return seq_open(file, &input_handlers_seq_ops); 1332 } 1333 1334 static const struct proc_ops input_handlers_proc_ops = { 1335 .proc_open = input_proc_handlers_open, 1336 .proc_read = seq_read, 1337 .proc_lseek = seq_lseek, 1338 .proc_release = seq_release, 1339 }; 1340 1341 static int __init input_proc_init(void) 1342 { 1343 struct proc_dir_entry *entry; 1344 1345 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1346 if (!proc_bus_input_dir) 1347 return -ENOMEM; 1348 1349 entry = proc_create("devices", 0, proc_bus_input_dir, 1350 &input_devices_proc_ops); 1351 if (!entry) 1352 goto fail1; 1353 1354 entry = proc_create("handlers", 0, proc_bus_input_dir, 1355 &input_handlers_proc_ops); 1356 if (!entry) 1357 goto fail2; 1358 1359 return 0; 1360 1361 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1362 fail1: remove_proc_entry("bus/input", NULL); 1363 return -ENOMEM; 1364 } 1365 1366 static void input_proc_exit(void) 1367 { 1368 remove_proc_entry("devices", proc_bus_input_dir); 1369 remove_proc_entry("handlers", proc_bus_input_dir); 1370 remove_proc_entry("bus/input", NULL); 1371 } 1372 1373 #else /* !CONFIG_PROC_FS */ 1374 static inline void input_wakeup_procfs_readers(void) { } 1375 static inline int input_proc_init(void) { return 0; } 1376 static inline void input_proc_exit(void) { } 1377 #endif 1378 1379 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1380 static ssize_t input_dev_show_##name(struct device *dev, \ 1381 struct device_attribute *attr, \ 1382 char *buf) \ 1383 { \ 1384 struct input_dev *input_dev = to_input_dev(dev); \ 1385 \ 1386 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1387 input_dev->name ? input_dev->name : ""); \ 1388 } \ 1389 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1390 1391 INPUT_DEV_STRING_ATTR_SHOW(name); 1392 INPUT_DEV_STRING_ATTR_SHOW(phys); 1393 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1394 1395 static int input_print_modalias_bits(char *buf, int size, 1396 char name, unsigned long *bm, 1397 unsigned int min_bit, unsigned int max_bit) 1398 { 1399 int len = 0, i; 1400 1401 len += snprintf(buf, max(size, 0), "%c", name); 1402 for (i = min_bit; i < max_bit; i++) 1403 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1404 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1405 return len; 1406 } 1407 1408 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1409 int add_cr) 1410 { 1411 int len; 1412 1413 len = snprintf(buf, max(size, 0), 1414 "input:b%04Xv%04Xp%04Xe%04X-", 1415 id->id.bustype, id->id.vendor, 1416 id->id.product, id->id.version); 1417 1418 len += input_print_modalias_bits(buf + len, size - len, 1419 'e', id->evbit, 0, EV_MAX); 1420 len += input_print_modalias_bits(buf + len, size - len, 1421 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1422 len += input_print_modalias_bits(buf + len, size - len, 1423 'r', id->relbit, 0, REL_MAX); 1424 len += input_print_modalias_bits(buf + len, size - len, 1425 'a', id->absbit, 0, ABS_MAX); 1426 len += input_print_modalias_bits(buf + len, size - len, 1427 'm', id->mscbit, 0, MSC_MAX); 1428 len += input_print_modalias_bits(buf + len, size - len, 1429 'l', id->ledbit, 0, LED_MAX); 1430 len += input_print_modalias_bits(buf + len, size - len, 1431 's', id->sndbit, 0, SND_MAX); 1432 len += input_print_modalias_bits(buf + len, size - len, 1433 'f', id->ffbit, 0, FF_MAX); 1434 len += input_print_modalias_bits(buf + len, size - len, 1435 'w', id->swbit, 0, SW_MAX); 1436 1437 if (add_cr) 1438 len += snprintf(buf + len, max(size - len, 0), "\n"); 1439 1440 return len; 1441 } 1442 1443 static ssize_t input_dev_show_modalias(struct device *dev, 1444 struct device_attribute *attr, 1445 char *buf) 1446 { 1447 struct input_dev *id = to_input_dev(dev); 1448 ssize_t len; 1449 1450 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1451 1452 return min_t(int, len, PAGE_SIZE); 1453 } 1454 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1455 1456 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1457 int max, int add_cr); 1458 1459 static ssize_t input_dev_show_properties(struct device *dev, 1460 struct device_attribute *attr, 1461 char *buf) 1462 { 1463 struct input_dev *input_dev = to_input_dev(dev); 1464 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1465 INPUT_PROP_MAX, true); 1466 return min_t(int, len, PAGE_SIZE); 1467 } 1468 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1469 1470 static int input_inhibit_device(struct input_dev *dev); 1471 static int input_uninhibit_device(struct input_dev *dev); 1472 1473 static ssize_t inhibited_show(struct device *dev, 1474 struct device_attribute *attr, 1475 char *buf) 1476 { 1477 struct input_dev *input_dev = to_input_dev(dev); 1478 1479 return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited); 1480 } 1481 1482 static ssize_t inhibited_store(struct device *dev, 1483 struct device_attribute *attr, const char *buf, 1484 size_t len) 1485 { 1486 struct input_dev *input_dev = to_input_dev(dev); 1487 ssize_t rv; 1488 bool inhibited; 1489 1490 if (strtobool(buf, &inhibited)) 1491 return -EINVAL; 1492 1493 if (inhibited) 1494 rv = input_inhibit_device(input_dev); 1495 else 1496 rv = input_uninhibit_device(input_dev); 1497 1498 if (rv != 0) 1499 return rv; 1500 1501 return len; 1502 } 1503 1504 static DEVICE_ATTR_RW(inhibited); 1505 1506 static struct attribute *input_dev_attrs[] = { 1507 &dev_attr_name.attr, 1508 &dev_attr_phys.attr, 1509 &dev_attr_uniq.attr, 1510 &dev_attr_modalias.attr, 1511 &dev_attr_properties.attr, 1512 &dev_attr_inhibited.attr, 1513 NULL 1514 }; 1515 1516 static const struct attribute_group input_dev_attr_group = { 1517 .attrs = input_dev_attrs, 1518 }; 1519 1520 #define INPUT_DEV_ID_ATTR(name) \ 1521 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1522 struct device_attribute *attr, \ 1523 char *buf) \ 1524 { \ 1525 struct input_dev *input_dev = to_input_dev(dev); \ 1526 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1527 } \ 1528 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1529 1530 INPUT_DEV_ID_ATTR(bustype); 1531 INPUT_DEV_ID_ATTR(vendor); 1532 INPUT_DEV_ID_ATTR(product); 1533 INPUT_DEV_ID_ATTR(version); 1534 1535 static struct attribute *input_dev_id_attrs[] = { 1536 &dev_attr_bustype.attr, 1537 &dev_attr_vendor.attr, 1538 &dev_attr_product.attr, 1539 &dev_attr_version.attr, 1540 NULL 1541 }; 1542 1543 static const struct attribute_group input_dev_id_attr_group = { 1544 .name = "id", 1545 .attrs = input_dev_id_attrs, 1546 }; 1547 1548 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1549 int max, int add_cr) 1550 { 1551 int i; 1552 int len = 0; 1553 bool skip_empty = true; 1554 1555 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1556 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1557 bitmap[i], skip_empty); 1558 if (len) { 1559 skip_empty = false; 1560 if (i > 0) 1561 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1562 } 1563 } 1564 1565 /* 1566 * If no output was produced print a single 0. 1567 */ 1568 if (len == 0) 1569 len = snprintf(buf, buf_size, "%d", 0); 1570 1571 if (add_cr) 1572 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1573 1574 return len; 1575 } 1576 1577 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1578 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1579 struct device_attribute *attr, \ 1580 char *buf) \ 1581 { \ 1582 struct input_dev *input_dev = to_input_dev(dev); \ 1583 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1584 input_dev->bm##bit, ev##_MAX, \ 1585 true); \ 1586 return min_t(int, len, PAGE_SIZE); \ 1587 } \ 1588 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1589 1590 INPUT_DEV_CAP_ATTR(EV, ev); 1591 INPUT_DEV_CAP_ATTR(KEY, key); 1592 INPUT_DEV_CAP_ATTR(REL, rel); 1593 INPUT_DEV_CAP_ATTR(ABS, abs); 1594 INPUT_DEV_CAP_ATTR(MSC, msc); 1595 INPUT_DEV_CAP_ATTR(LED, led); 1596 INPUT_DEV_CAP_ATTR(SND, snd); 1597 INPUT_DEV_CAP_ATTR(FF, ff); 1598 INPUT_DEV_CAP_ATTR(SW, sw); 1599 1600 static struct attribute *input_dev_caps_attrs[] = { 1601 &dev_attr_ev.attr, 1602 &dev_attr_key.attr, 1603 &dev_attr_rel.attr, 1604 &dev_attr_abs.attr, 1605 &dev_attr_msc.attr, 1606 &dev_attr_led.attr, 1607 &dev_attr_snd.attr, 1608 &dev_attr_ff.attr, 1609 &dev_attr_sw.attr, 1610 NULL 1611 }; 1612 1613 static const struct attribute_group input_dev_caps_attr_group = { 1614 .name = "capabilities", 1615 .attrs = input_dev_caps_attrs, 1616 }; 1617 1618 static const struct attribute_group *input_dev_attr_groups[] = { 1619 &input_dev_attr_group, 1620 &input_dev_id_attr_group, 1621 &input_dev_caps_attr_group, 1622 &input_poller_attribute_group, 1623 NULL 1624 }; 1625 1626 static void input_dev_release(struct device *device) 1627 { 1628 struct input_dev *dev = to_input_dev(device); 1629 1630 input_ff_destroy(dev); 1631 input_mt_destroy_slots(dev); 1632 kfree(dev->poller); 1633 kfree(dev->absinfo); 1634 kfree(dev->vals); 1635 kfree(dev); 1636 1637 module_put(THIS_MODULE); 1638 } 1639 1640 /* 1641 * Input uevent interface - loading event handlers based on 1642 * device bitfields. 1643 */ 1644 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1645 const char *name, unsigned long *bitmap, int max) 1646 { 1647 int len; 1648 1649 if (add_uevent_var(env, "%s", name)) 1650 return -ENOMEM; 1651 1652 len = input_print_bitmap(&env->buf[env->buflen - 1], 1653 sizeof(env->buf) - env->buflen, 1654 bitmap, max, false); 1655 if (len >= (sizeof(env->buf) - env->buflen)) 1656 return -ENOMEM; 1657 1658 env->buflen += len; 1659 return 0; 1660 } 1661 1662 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1663 struct input_dev *dev) 1664 { 1665 int len; 1666 1667 if (add_uevent_var(env, "MODALIAS=")) 1668 return -ENOMEM; 1669 1670 len = input_print_modalias(&env->buf[env->buflen - 1], 1671 sizeof(env->buf) - env->buflen, 1672 dev, 0); 1673 if (len >= (sizeof(env->buf) - env->buflen)) 1674 return -ENOMEM; 1675 1676 env->buflen += len; 1677 return 0; 1678 } 1679 1680 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1681 do { \ 1682 int err = add_uevent_var(env, fmt, val); \ 1683 if (err) \ 1684 return err; \ 1685 } while (0) 1686 1687 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1688 do { \ 1689 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1690 if (err) \ 1691 return err; \ 1692 } while (0) 1693 1694 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1695 do { \ 1696 int err = input_add_uevent_modalias_var(env, dev); \ 1697 if (err) \ 1698 return err; \ 1699 } while (0) 1700 1701 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1702 { 1703 struct input_dev *dev = to_input_dev(device); 1704 1705 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1706 dev->id.bustype, dev->id.vendor, 1707 dev->id.product, dev->id.version); 1708 if (dev->name) 1709 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1710 if (dev->phys) 1711 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1712 if (dev->uniq) 1713 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1714 1715 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1716 1717 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1718 if (test_bit(EV_KEY, dev->evbit)) 1719 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1720 if (test_bit(EV_REL, dev->evbit)) 1721 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1722 if (test_bit(EV_ABS, dev->evbit)) 1723 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1724 if (test_bit(EV_MSC, dev->evbit)) 1725 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1726 if (test_bit(EV_LED, dev->evbit)) 1727 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1728 if (test_bit(EV_SND, dev->evbit)) 1729 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1730 if (test_bit(EV_FF, dev->evbit)) 1731 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1732 if (test_bit(EV_SW, dev->evbit)) 1733 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1734 1735 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1736 1737 return 0; 1738 } 1739 1740 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1741 do { \ 1742 int i; \ 1743 bool active; \ 1744 \ 1745 if (!test_bit(EV_##type, dev->evbit)) \ 1746 break; \ 1747 \ 1748 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1749 active = test_bit(i, dev->bits); \ 1750 if (!active && !on) \ 1751 continue; \ 1752 \ 1753 dev->event(dev, EV_##type, i, on ? active : 0); \ 1754 } \ 1755 } while (0) 1756 1757 static void input_dev_toggle(struct input_dev *dev, bool activate) 1758 { 1759 if (!dev->event) 1760 return; 1761 1762 INPUT_DO_TOGGLE(dev, LED, led, activate); 1763 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1764 1765 if (activate && test_bit(EV_REP, dev->evbit)) { 1766 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1767 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1768 } 1769 } 1770 1771 /** 1772 * input_reset_device() - reset/restore the state of input device 1773 * @dev: input device whose state needs to be reset 1774 * 1775 * This function tries to reset the state of an opened input device and 1776 * bring internal state and state if the hardware in sync with each other. 1777 * We mark all keys as released, restore LED state, repeat rate, etc. 1778 */ 1779 void input_reset_device(struct input_dev *dev) 1780 { 1781 unsigned long flags; 1782 1783 mutex_lock(&dev->mutex); 1784 spin_lock_irqsave(&dev->event_lock, flags); 1785 1786 input_dev_toggle(dev, true); 1787 input_dev_release_keys(dev); 1788 1789 spin_unlock_irqrestore(&dev->event_lock, flags); 1790 mutex_unlock(&dev->mutex); 1791 } 1792 EXPORT_SYMBOL(input_reset_device); 1793 1794 static int input_inhibit_device(struct input_dev *dev) 1795 { 1796 int ret = 0; 1797 1798 mutex_lock(&dev->mutex); 1799 1800 if (dev->inhibited) 1801 goto out; 1802 1803 if (dev->users) { 1804 if (dev->close) 1805 dev->close(dev); 1806 if (dev->poller) 1807 input_dev_poller_stop(dev->poller); 1808 } 1809 1810 spin_lock_irq(&dev->event_lock); 1811 input_dev_release_keys(dev); 1812 input_dev_toggle(dev, false); 1813 spin_unlock_irq(&dev->event_lock); 1814 1815 dev->inhibited = true; 1816 1817 out: 1818 mutex_unlock(&dev->mutex); 1819 return ret; 1820 } 1821 1822 static int input_uninhibit_device(struct input_dev *dev) 1823 { 1824 int ret = 0; 1825 1826 mutex_lock(&dev->mutex); 1827 1828 if (!dev->inhibited) 1829 goto out; 1830 1831 if (dev->users) { 1832 if (dev->open) { 1833 ret = dev->open(dev); 1834 if (ret) 1835 goto out; 1836 } 1837 if (dev->poller) 1838 input_dev_poller_start(dev->poller); 1839 } 1840 1841 dev->inhibited = false; 1842 spin_lock_irq(&dev->event_lock); 1843 input_dev_toggle(dev, true); 1844 spin_unlock_irq(&dev->event_lock); 1845 1846 out: 1847 mutex_unlock(&dev->mutex); 1848 return ret; 1849 } 1850 1851 #ifdef CONFIG_PM_SLEEP 1852 static int input_dev_suspend(struct device *dev) 1853 { 1854 struct input_dev *input_dev = to_input_dev(dev); 1855 1856 spin_lock_irq(&input_dev->event_lock); 1857 1858 /* 1859 * Keys that are pressed now are unlikely to be 1860 * still pressed when we resume. 1861 */ 1862 input_dev_release_keys(input_dev); 1863 1864 /* Turn off LEDs and sounds, if any are active. */ 1865 input_dev_toggle(input_dev, false); 1866 1867 spin_unlock_irq(&input_dev->event_lock); 1868 1869 return 0; 1870 } 1871 1872 static int input_dev_resume(struct device *dev) 1873 { 1874 struct input_dev *input_dev = to_input_dev(dev); 1875 1876 spin_lock_irq(&input_dev->event_lock); 1877 1878 /* Restore state of LEDs and sounds, if any were active. */ 1879 input_dev_toggle(input_dev, true); 1880 1881 spin_unlock_irq(&input_dev->event_lock); 1882 1883 return 0; 1884 } 1885 1886 static int input_dev_freeze(struct device *dev) 1887 { 1888 struct input_dev *input_dev = to_input_dev(dev); 1889 1890 spin_lock_irq(&input_dev->event_lock); 1891 1892 /* 1893 * Keys that are pressed now are unlikely to be 1894 * still pressed when we resume. 1895 */ 1896 input_dev_release_keys(input_dev); 1897 1898 spin_unlock_irq(&input_dev->event_lock); 1899 1900 return 0; 1901 } 1902 1903 static int input_dev_poweroff(struct device *dev) 1904 { 1905 struct input_dev *input_dev = to_input_dev(dev); 1906 1907 spin_lock_irq(&input_dev->event_lock); 1908 1909 /* Turn off LEDs and sounds, if any are active. */ 1910 input_dev_toggle(input_dev, false); 1911 1912 spin_unlock_irq(&input_dev->event_lock); 1913 1914 return 0; 1915 } 1916 1917 static const struct dev_pm_ops input_dev_pm_ops = { 1918 .suspend = input_dev_suspend, 1919 .resume = input_dev_resume, 1920 .freeze = input_dev_freeze, 1921 .poweroff = input_dev_poweroff, 1922 .restore = input_dev_resume, 1923 }; 1924 #endif /* CONFIG_PM */ 1925 1926 static const struct device_type input_dev_type = { 1927 .groups = input_dev_attr_groups, 1928 .release = input_dev_release, 1929 .uevent = input_dev_uevent, 1930 #ifdef CONFIG_PM_SLEEP 1931 .pm = &input_dev_pm_ops, 1932 #endif 1933 }; 1934 1935 static char *input_devnode(struct device *dev, umode_t *mode) 1936 { 1937 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1938 } 1939 1940 struct class input_class = { 1941 .name = "input", 1942 .devnode = input_devnode, 1943 }; 1944 EXPORT_SYMBOL_GPL(input_class); 1945 1946 /** 1947 * input_allocate_device - allocate memory for new input device 1948 * 1949 * Returns prepared struct input_dev or %NULL. 1950 * 1951 * NOTE: Use input_free_device() to free devices that have not been 1952 * registered; input_unregister_device() should be used for already 1953 * registered devices. 1954 */ 1955 struct input_dev *input_allocate_device(void) 1956 { 1957 static atomic_t input_no = ATOMIC_INIT(-1); 1958 struct input_dev *dev; 1959 1960 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1961 if (dev) { 1962 dev->dev.type = &input_dev_type; 1963 dev->dev.class = &input_class; 1964 device_initialize(&dev->dev); 1965 mutex_init(&dev->mutex); 1966 spin_lock_init(&dev->event_lock); 1967 timer_setup(&dev->timer, NULL, 0); 1968 INIT_LIST_HEAD(&dev->h_list); 1969 INIT_LIST_HEAD(&dev->node); 1970 1971 dev_set_name(&dev->dev, "input%lu", 1972 (unsigned long)atomic_inc_return(&input_no)); 1973 1974 __module_get(THIS_MODULE); 1975 } 1976 1977 return dev; 1978 } 1979 EXPORT_SYMBOL(input_allocate_device); 1980 1981 struct input_devres { 1982 struct input_dev *input; 1983 }; 1984 1985 static int devm_input_device_match(struct device *dev, void *res, void *data) 1986 { 1987 struct input_devres *devres = res; 1988 1989 return devres->input == data; 1990 } 1991 1992 static void devm_input_device_release(struct device *dev, void *res) 1993 { 1994 struct input_devres *devres = res; 1995 struct input_dev *input = devres->input; 1996 1997 dev_dbg(dev, "%s: dropping reference to %s\n", 1998 __func__, dev_name(&input->dev)); 1999 input_put_device(input); 2000 } 2001 2002 /** 2003 * devm_input_allocate_device - allocate managed input device 2004 * @dev: device owning the input device being created 2005 * 2006 * Returns prepared struct input_dev or %NULL. 2007 * 2008 * Managed input devices do not need to be explicitly unregistered or 2009 * freed as it will be done automatically when owner device unbinds from 2010 * its driver (or binding fails). Once managed input device is allocated, 2011 * it is ready to be set up and registered in the same fashion as regular 2012 * input device. There are no special devm_input_device_[un]register() 2013 * variants, regular ones work with both managed and unmanaged devices, 2014 * should you need them. In most cases however, managed input device need 2015 * not be explicitly unregistered or freed. 2016 * 2017 * NOTE: the owner device is set up as parent of input device and users 2018 * should not override it. 2019 */ 2020 struct input_dev *devm_input_allocate_device(struct device *dev) 2021 { 2022 struct input_dev *input; 2023 struct input_devres *devres; 2024 2025 devres = devres_alloc(devm_input_device_release, 2026 sizeof(*devres), GFP_KERNEL); 2027 if (!devres) 2028 return NULL; 2029 2030 input = input_allocate_device(); 2031 if (!input) { 2032 devres_free(devres); 2033 return NULL; 2034 } 2035 2036 input->dev.parent = dev; 2037 input->devres_managed = true; 2038 2039 devres->input = input; 2040 devres_add(dev, devres); 2041 2042 return input; 2043 } 2044 EXPORT_SYMBOL(devm_input_allocate_device); 2045 2046 /** 2047 * input_free_device - free memory occupied by input_dev structure 2048 * @dev: input device to free 2049 * 2050 * This function should only be used if input_register_device() 2051 * was not called yet or if it failed. Once device was registered 2052 * use input_unregister_device() and memory will be freed once last 2053 * reference to the device is dropped. 2054 * 2055 * Device should be allocated by input_allocate_device(). 2056 * 2057 * NOTE: If there are references to the input device then memory 2058 * will not be freed until last reference is dropped. 2059 */ 2060 void input_free_device(struct input_dev *dev) 2061 { 2062 if (dev) { 2063 if (dev->devres_managed) 2064 WARN_ON(devres_destroy(dev->dev.parent, 2065 devm_input_device_release, 2066 devm_input_device_match, 2067 dev)); 2068 input_put_device(dev); 2069 } 2070 } 2071 EXPORT_SYMBOL(input_free_device); 2072 2073 /** 2074 * input_set_timestamp - set timestamp for input events 2075 * @dev: input device to set timestamp for 2076 * @timestamp: the time at which the event has occurred 2077 * in CLOCK_MONOTONIC 2078 * 2079 * This function is intended to provide to the input system a more 2080 * accurate time of when an event actually occurred. The driver should 2081 * call this function as soon as a timestamp is acquired ensuring 2082 * clock conversions in input_set_timestamp are done correctly. 2083 * 2084 * The system entering suspend state between timestamp acquisition and 2085 * calling input_set_timestamp can result in inaccurate conversions. 2086 */ 2087 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp) 2088 { 2089 dev->timestamp[INPUT_CLK_MONO] = timestamp; 2090 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp); 2091 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp, 2092 TK_OFFS_BOOT); 2093 } 2094 EXPORT_SYMBOL(input_set_timestamp); 2095 2096 /** 2097 * input_get_timestamp - get timestamp for input events 2098 * @dev: input device to get timestamp from 2099 * 2100 * A valid timestamp is a timestamp of non-zero value. 2101 */ 2102 ktime_t *input_get_timestamp(struct input_dev *dev) 2103 { 2104 const ktime_t invalid_timestamp = ktime_set(0, 0); 2105 2106 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp)) 2107 input_set_timestamp(dev, ktime_get()); 2108 2109 return dev->timestamp; 2110 } 2111 EXPORT_SYMBOL(input_get_timestamp); 2112 2113 /** 2114 * input_set_capability - mark device as capable of a certain event 2115 * @dev: device that is capable of emitting or accepting event 2116 * @type: type of the event (EV_KEY, EV_REL, etc...) 2117 * @code: event code 2118 * 2119 * In addition to setting up corresponding bit in appropriate capability 2120 * bitmap the function also adjusts dev->evbit. 2121 */ 2122 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 2123 { 2124 if (type < EV_CNT && input_max_code[type] && 2125 code > input_max_code[type]) { 2126 pr_err("%s: invalid code %u for type %u\n", __func__, code, 2127 type); 2128 dump_stack(); 2129 return; 2130 } 2131 2132 switch (type) { 2133 case EV_KEY: 2134 __set_bit(code, dev->keybit); 2135 break; 2136 2137 case EV_REL: 2138 __set_bit(code, dev->relbit); 2139 break; 2140 2141 case EV_ABS: 2142 input_alloc_absinfo(dev); 2143 __set_bit(code, dev->absbit); 2144 break; 2145 2146 case EV_MSC: 2147 __set_bit(code, dev->mscbit); 2148 break; 2149 2150 case EV_SW: 2151 __set_bit(code, dev->swbit); 2152 break; 2153 2154 case EV_LED: 2155 __set_bit(code, dev->ledbit); 2156 break; 2157 2158 case EV_SND: 2159 __set_bit(code, dev->sndbit); 2160 break; 2161 2162 case EV_FF: 2163 __set_bit(code, dev->ffbit); 2164 break; 2165 2166 case EV_PWR: 2167 /* do nothing */ 2168 break; 2169 2170 default: 2171 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code); 2172 dump_stack(); 2173 return; 2174 } 2175 2176 __set_bit(type, dev->evbit); 2177 } 2178 EXPORT_SYMBOL(input_set_capability); 2179 2180 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 2181 { 2182 int mt_slots; 2183 int i; 2184 unsigned int events; 2185 2186 if (dev->mt) { 2187 mt_slots = dev->mt->num_slots; 2188 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 2189 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 2190 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 2191 mt_slots = clamp(mt_slots, 2, 32); 2192 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 2193 mt_slots = 2; 2194 } else { 2195 mt_slots = 0; 2196 } 2197 2198 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 2199 2200 if (test_bit(EV_ABS, dev->evbit)) 2201 for_each_set_bit(i, dev->absbit, ABS_CNT) 2202 events += input_is_mt_axis(i) ? mt_slots : 1; 2203 2204 if (test_bit(EV_REL, dev->evbit)) 2205 events += bitmap_weight(dev->relbit, REL_CNT); 2206 2207 /* Make room for KEY and MSC events */ 2208 events += 7; 2209 2210 return events; 2211 } 2212 2213 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2214 do { \ 2215 if (!test_bit(EV_##type, dev->evbit)) \ 2216 memset(dev->bits##bit, 0, \ 2217 sizeof(dev->bits##bit)); \ 2218 } while (0) 2219 2220 static void input_cleanse_bitmasks(struct input_dev *dev) 2221 { 2222 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2223 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2224 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2225 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2226 INPUT_CLEANSE_BITMASK(dev, LED, led); 2227 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2228 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2229 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2230 } 2231 2232 static void __input_unregister_device(struct input_dev *dev) 2233 { 2234 struct input_handle *handle, *next; 2235 2236 input_disconnect_device(dev); 2237 2238 mutex_lock(&input_mutex); 2239 2240 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2241 handle->handler->disconnect(handle); 2242 WARN_ON(!list_empty(&dev->h_list)); 2243 2244 del_timer_sync(&dev->timer); 2245 list_del_init(&dev->node); 2246 2247 input_wakeup_procfs_readers(); 2248 2249 mutex_unlock(&input_mutex); 2250 2251 device_del(&dev->dev); 2252 } 2253 2254 static void devm_input_device_unregister(struct device *dev, void *res) 2255 { 2256 struct input_devres *devres = res; 2257 struct input_dev *input = devres->input; 2258 2259 dev_dbg(dev, "%s: unregistering device %s\n", 2260 __func__, dev_name(&input->dev)); 2261 __input_unregister_device(input); 2262 } 2263 2264 /** 2265 * input_enable_softrepeat - enable software autorepeat 2266 * @dev: input device 2267 * @delay: repeat delay 2268 * @period: repeat period 2269 * 2270 * Enable software autorepeat on the input device. 2271 */ 2272 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2273 { 2274 dev->timer.function = input_repeat_key; 2275 dev->rep[REP_DELAY] = delay; 2276 dev->rep[REP_PERIOD] = period; 2277 } 2278 EXPORT_SYMBOL(input_enable_softrepeat); 2279 2280 bool input_device_enabled(struct input_dev *dev) 2281 { 2282 lockdep_assert_held(&dev->mutex); 2283 2284 return !dev->inhibited && dev->users > 0; 2285 } 2286 EXPORT_SYMBOL_GPL(input_device_enabled); 2287 2288 /** 2289 * input_register_device - register device with input core 2290 * @dev: device to be registered 2291 * 2292 * This function registers device with input core. The device must be 2293 * allocated with input_allocate_device() and all it's capabilities 2294 * set up before registering. 2295 * If function fails the device must be freed with input_free_device(). 2296 * Once device has been successfully registered it can be unregistered 2297 * with input_unregister_device(); input_free_device() should not be 2298 * called in this case. 2299 * 2300 * Note that this function is also used to register managed input devices 2301 * (ones allocated with devm_input_allocate_device()). Such managed input 2302 * devices need not be explicitly unregistered or freed, their tear down 2303 * is controlled by the devres infrastructure. It is also worth noting 2304 * that tear down of managed input devices is internally a 2-step process: 2305 * registered managed input device is first unregistered, but stays in 2306 * memory and can still handle input_event() calls (although events will 2307 * not be delivered anywhere). The freeing of managed input device will 2308 * happen later, when devres stack is unwound to the point where device 2309 * allocation was made. 2310 */ 2311 int input_register_device(struct input_dev *dev) 2312 { 2313 struct input_devres *devres = NULL; 2314 struct input_handler *handler; 2315 unsigned int packet_size; 2316 const char *path; 2317 int error; 2318 2319 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2320 dev_err(&dev->dev, 2321 "Absolute device without dev->absinfo, refusing to register\n"); 2322 return -EINVAL; 2323 } 2324 2325 if (dev->devres_managed) { 2326 devres = devres_alloc(devm_input_device_unregister, 2327 sizeof(*devres), GFP_KERNEL); 2328 if (!devres) 2329 return -ENOMEM; 2330 2331 devres->input = dev; 2332 } 2333 2334 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2335 __set_bit(EV_SYN, dev->evbit); 2336 2337 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2338 __clear_bit(KEY_RESERVED, dev->keybit); 2339 2340 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2341 input_cleanse_bitmasks(dev); 2342 2343 packet_size = input_estimate_events_per_packet(dev); 2344 if (dev->hint_events_per_packet < packet_size) 2345 dev->hint_events_per_packet = packet_size; 2346 2347 dev->max_vals = dev->hint_events_per_packet + 2; 2348 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2349 if (!dev->vals) { 2350 error = -ENOMEM; 2351 goto err_devres_free; 2352 } 2353 2354 /* 2355 * If delay and period are pre-set by the driver, then autorepeating 2356 * is handled by the driver itself and we don't do it in input.c. 2357 */ 2358 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2359 input_enable_softrepeat(dev, 250, 33); 2360 2361 if (!dev->getkeycode) 2362 dev->getkeycode = input_default_getkeycode; 2363 2364 if (!dev->setkeycode) 2365 dev->setkeycode = input_default_setkeycode; 2366 2367 if (dev->poller) 2368 input_dev_poller_finalize(dev->poller); 2369 2370 error = device_add(&dev->dev); 2371 if (error) 2372 goto err_free_vals; 2373 2374 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2375 pr_info("%s as %s\n", 2376 dev->name ? dev->name : "Unspecified device", 2377 path ? path : "N/A"); 2378 kfree(path); 2379 2380 error = mutex_lock_interruptible(&input_mutex); 2381 if (error) 2382 goto err_device_del; 2383 2384 list_add_tail(&dev->node, &input_dev_list); 2385 2386 list_for_each_entry(handler, &input_handler_list, node) 2387 input_attach_handler(dev, handler); 2388 2389 input_wakeup_procfs_readers(); 2390 2391 mutex_unlock(&input_mutex); 2392 2393 if (dev->devres_managed) { 2394 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2395 __func__, dev_name(&dev->dev)); 2396 devres_add(dev->dev.parent, devres); 2397 } 2398 return 0; 2399 2400 err_device_del: 2401 device_del(&dev->dev); 2402 err_free_vals: 2403 kfree(dev->vals); 2404 dev->vals = NULL; 2405 err_devres_free: 2406 devres_free(devres); 2407 return error; 2408 } 2409 EXPORT_SYMBOL(input_register_device); 2410 2411 /** 2412 * input_unregister_device - unregister previously registered device 2413 * @dev: device to be unregistered 2414 * 2415 * This function unregisters an input device. Once device is unregistered 2416 * the caller should not try to access it as it may get freed at any moment. 2417 */ 2418 void input_unregister_device(struct input_dev *dev) 2419 { 2420 if (dev->devres_managed) { 2421 WARN_ON(devres_destroy(dev->dev.parent, 2422 devm_input_device_unregister, 2423 devm_input_device_match, 2424 dev)); 2425 __input_unregister_device(dev); 2426 /* 2427 * We do not do input_put_device() here because it will be done 2428 * when 2nd devres fires up. 2429 */ 2430 } else { 2431 __input_unregister_device(dev); 2432 input_put_device(dev); 2433 } 2434 } 2435 EXPORT_SYMBOL(input_unregister_device); 2436 2437 /** 2438 * input_register_handler - register a new input handler 2439 * @handler: handler to be registered 2440 * 2441 * This function registers a new input handler (interface) for input 2442 * devices in the system and attaches it to all input devices that 2443 * are compatible with the handler. 2444 */ 2445 int input_register_handler(struct input_handler *handler) 2446 { 2447 struct input_dev *dev; 2448 int error; 2449 2450 error = mutex_lock_interruptible(&input_mutex); 2451 if (error) 2452 return error; 2453 2454 INIT_LIST_HEAD(&handler->h_list); 2455 2456 list_add_tail(&handler->node, &input_handler_list); 2457 2458 list_for_each_entry(dev, &input_dev_list, node) 2459 input_attach_handler(dev, handler); 2460 2461 input_wakeup_procfs_readers(); 2462 2463 mutex_unlock(&input_mutex); 2464 return 0; 2465 } 2466 EXPORT_SYMBOL(input_register_handler); 2467 2468 /** 2469 * input_unregister_handler - unregisters an input handler 2470 * @handler: handler to be unregistered 2471 * 2472 * This function disconnects a handler from its input devices and 2473 * removes it from lists of known handlers. 2474 */ 2475 void input_unregister_handler(struct input_handler *handler) 2476 { 2477 struct input_handle *handle, *next; 2478 2479 mutex_lock(&input_mutex); 2480 2481 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2482 handler->disconnect(handle); 2483 WARN_ON(!list_empty(&handler->h_list)); 2484 2485 list_del_init(&handler->node); 2486 2487 input_wakeup_procfs_readers(); 2488 2489 mutex_unlock(&input_mutex); 2490 } 2491 EXPORT_SYMBOL(input_unregister_handler); 2492 2493 /** 2494 * input_handler_for_each_handle - handle iterator 2495 * @handler: input handler to iterate 2496 * @data: data for the callback 2497 * @fn: function to be called for each handle 2498 * 2499 * Iterate over @bus's list of devices, and call @fn for each, passing 2500 * it @data and stop when @fn returns a non-zero value. The function is 2501 * using RCU to traverse the list and therefore may be using in atomic 2502 * contexts. The @fn callback is invoked from RCU critical section and 2503 * thus must not sleep. 2504 */ 2505 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2506 int (*fn)(struct input_handle *, void *)) 2507 { 2508 struct input_handle *handle; 2509 int retval = 0; 2510 2511 rcu_read_lock(); 2512 2513 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2514 retval = fn(handle, data); 2515 if (retval) 2516 break; 2517 } 2518 2519 rcu_read_unlock(); 2520 2521 return retval; 2522 } 2523 EXPORT_SYMBOL(input_handler_for_each_handle); 2524 2525 /** 2526 * input_register_handle - register a new input handle 2527 * @handle: handle to register 2528 * 2529 * This function puts a new input handle onto device's 2530 * and handler's lists so that events can flow through 2531 * it once it is opened using input_open_device(). 2532 * 2533 * This function is supposed to be called from handler's 2534 * connect() method. 2535 */ 2536 int input_register_handle(struct input_handle *handle) 2537 { 2538 struct input_handler *handler = handle->handler; 2539 struct input_dev *dev = handle->dev; 2540 int error; 2541 2542 /* 2543 * We take dev->mutex here to prevent race with 2544 * input_release_device(). 2545 */ 2546 error = mutex_lock_interruptible(&dev->mutex); 2547 if (error) 2548 return error; 2549 2550 /* 2551 * Filters go to the head of the list, normal handlers 2552 * to the tail. 2553 */ 2554 if (handler->filter) 2555 list_add_rcu(&handle->d_node, &dev->h_list); 2556 else 2557 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2558 2559 mutex_unlock(&dev->mutex); 2560 2561 /* 2562 * Since we are supposed to be called from ->connect() 2563 * which is mutually exclusive with ->disconnect() 2564 * we can't be racing with input_unregister_handle() 2565 * and so separate lock is not needed here. 2566 */ 2567 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2568 2569 if (handler->start) 2570 handler->start(handle); 2571 2572 return 0; 2573 } 2574 EXPORT_SYMBOL(input_register_handle); 2575 2576 /** 2577 * input_unregister_handle - unregister an input handle 2578 * @handle: handle to unregister 2579 * 2580 * This function removes input handle from device's 2581 * and handler's lists. 2582 * 2583 * This function is supposed to be called from handler's 2584 * disconnect() method. 2585 */ 2586 void input_unregister_handle(struct input_handle *handle) 2587 { 2588 struct input_dev *dev = handle->dev; 2589 2590 list_del_rcu(&handle->h_node); 2591 2592 /* 2593 * Take dev->mutex to prevent race with input_release_device(). 2594 */ 2595 mutex_lock(&dev->mutex); 2596 list_del_rcu(&handle->d_node); 2597 mutex_unlock(&dev->mutex); 2598 2599 synchronize_rcu(); 2600 } 2601 EXPORT_SYMBOL(input_unregister_handle); 2602 2603 /** 2604 * input_get_new_minor - allocates a new input minor number 2605 * @legacy_base: beginning or the legacy range to be searched 2606 * @legacy_num: size of legacy range 2607 * @allow_dynamic: whether we can also take ID from the dynamic range 2608 * 2609 * This function allocates a new device minor for from input major namespace. 2610 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2611 * parameters and whether ID can be allocated from dynamic range if there are 2612 * no free IDs in legacy range. 2613 */ 2614 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2615 bool allow_dynamic) 2616 { 2617 /* 2618 * This function should be called from input handler's ->connect() 2619 * methods, which are serialized with input_mutex, so no additional 2620 * locking is needed here. 2621 */ 2622 if (legacy_base >= 0) { 2623 int minor = ida_simple_get(&input_ida, 2624 legacy_base, 2625 legacy_base + legacy_num, 2626 GFP_KERNEL); 2627 if (minor >= 0 || !allow_dynamic) 2628 return minor; 2629 } 2630 2631 return ida_simple_get(&input_ida, 2632 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2633 GFP_KERNEL); 2634 } 2635 EXPORT_SYMBOL(input_get_new_minor); 2636 2637 /** 2638 * input_free_minor - release previously allocated minor 2639 * @minor: minor to be released 2640 * 2641 * This function releases previously allocated input minor so that it can be 2642 * reused later. 2643 */ 2644 void input_free_minor(unsigned int minor) 2645 { 2646 ida_simple_remove(&input_ida, minor); 2647 } 2648 EXPORT_SYMBOL(input_free_minor); 2649 2650 static int __init input_init(void) 2651 { 2652 int err; 2653 2654 err = class_register(&input_class); 2655 if (err) { 2656 pr_err("unable to register input_dev class\n"); 2657 return err; 2658 } 2659 2660 err = input_proc_init(); 2661 if (err) 2662 goto fail1; 2663 2664 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2665 INPUT_MAX_CHAR_DEVICES, "input"); 2666 if (err) { 2667 pr_err("unable to register char major %d", INPUT_MAJOR); 2668 goto fail2; 2669 } 2670 2671 return 0; 2672 2673 fail2: input_proc_exit(); 2674 fail1: class_unregister(&input_class); 2675 return err; 2676 } 2677 2678 static void __exit input_exit(void) 2679 { 2680 input_proc_exit(); 2681 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2682 INPUT_MAX_CHAR_DEVICES); 2683 class_unregister(&input_class); 2684 } 2685 2686 subsys_initcall(input_init); 2687 module_exit(input_exit); 2688