1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/idr.h> 18 #include <linux/input/mt.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/major.h> 23 #include <linux/proc_fs.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/poll.h> 27 #include <linux/device.h> 28 #include <linux/mutex.h> 29 #include <linux/rcupdate.h> 30 #include "input-compat.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 53 static inline int is_event_supported(unsigned int code, 54 unsigned long *bm, unsigned int max) 55 { 56 return code <= max && test_bit(code, bm); 57 } 58 59 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 60 { 61 if (fuzz) { 62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 63 return old_val; 64 65 if (value > old_val - fuzz && value < old_val + fuzz) 66 return (old_val * 3 + value) / 4; 67 68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 69 return (old_val + value) / 2; 70 } 71 72 return value; 73 } 74 75 static void input_start_autorepeat(struct input_dev *dev, int code) 76 { 77 if (test_bit(EV_REP, dev->evbit) && 78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 79 dev->timer.data) { 80 dev->repeat_key = code; 81 mod_timer(&dev->timer, 82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 83 } 84 } 85 86 static void input_stop_autorepeat(struct input_dev *dev) 87 { 88 del_timer(&dev->timer); 89 } 90 91 /* 92 * Pass event first through all filters and then, if event has not been 93 * filtered out, through all open handles. This function is called with 94 * dev->event_lock held and interrupts disabled. 95 */ 96 static unsigned int input_to_handler(struct input_handle *handle, 97 struct input_value *vals, unsigned int count) 98 { 99 struct input_handler *handler = handle->handler; 100 struct input_value *end = vals; 101 struct input_value *v; 102 103 for (v = vals; v != vals + count; v++) { 104 if (handler->filter && 105 handler->filter(handle, v->type, v->code, v->value)) 106 continue; 107 if (end != v) 108 *end = *v; 109 end++; 110 } 111 112 count = end - vals; 113 if (!count) 114 return 0; 115 116 if (handler->events) 117 handler->events(handle, vals, count); 118 else if (handler->event) 119 for (v = vals; v != end; v++) 120 handler->event(handle, v->type, v->code, v->value); 121 122 return count; 123 } 124 125 /* 126 * Pass values first through all filters and then, if event has not been 127 * filtered out, through all open handles. This function is called with 128 * dev->event_lock held and interrupts disabled. 129 */ 130 static void input_pass_values(struct input_dev *dev, 131 struct input_value *vals, unsigned int count) 132 { 133 struct input_handle *handle; 134 struct input_value *v; 135 136 if (!count) 137 return; 138 139 rcu_read_lock(); 140 141 handle = rcu_dereference(dev->grab); 142 if (handle) { 143 count = input_to_handler(handle, vals, count); 144 } else { 145 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 146 if (handle->open) 147 count = input_to_handler(handle, vals, count); 148 } 149 150 rcu_read_unlock(); 151 152 add_input_randomness(vals->type, vals->code, vals->value); 153 154 /* trigger auto repeat for key events */ 155 for (v = vals; v != vals + count; v++) { 156 if (v->type == EV_KEY && v->value != 2) { 157 if (v->value) 158 input_start_autorepeat(dev, v->code); 159 else 160 input_stop_autorepeat(dev); 161 } 162 } 163 } 164 165 static void input_pass_event(struct input_dev *dev, 166 unsigned int type, unsigned int code, int value) 167 { 168 struct input_value vals[] = { { type, code, value } }; 169 170 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 171 } 172 173 /* 174 * Generate software autorepeat event. Note that we take 175 * dev->event_lock here to avoid racing with input_event 176 * which may cause keys get "stuck". 177 */ 178 static void input_repeat_key(unsigned long data) 179 { 180 struct input_dev *dev = (void *) data; 181 unsigned long flags; 182 183 spin_lock_irqsave(&dev->event_lock, flags); 184 185 if (test_bit(dev->repeat_key, dev->key) && 186 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 187 struct input_value vals[] = { 188 { EV_KEY, dev->repeat_key, 2 }, 189 input_value_sync 190 }; 191 192 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 193 194 if (dev->rep[REP_PERIOD]) 195 mod_timer(&dev->timer, jiffies + 196 msecs_to_jiffies(dev->rep[REP_PERIOD])); 197 } 198 199 spin_unlock_irqrestore(&dev->event_lock, flags); 200 } 201 202 #define INPUT_IGNORE_EVENT 0 203 #define INPUT_PASS_TO_HANDLERS 1 204 #define INPUT_PASS_TO_DEVICE 2 205 #define INPUT_SLOT 4 206 #define INPUT_FLUSH 8 207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 208 209 static int input_handle_abs_event(struct input_dev *dev, 210 unsigned int code, int *pval) 211 { 212 struct input_mt *mt = dev->mt; 213 bool is_mt_event; 214 int *pold; 215 216 if (code == ABS_MT_SLOT) { 217 /* 218 * "Stage" the event; we'll flush it later, when we 219 * get actual touch data. 220 */ 221 if (mt && *pval >= 0 && *pval < mt->num_slots) 222 mt->slot = *pval; 223 224 return INPUT_IGNORE_EVENT; 225 } 226 227 is_mt_event = input_is_mt_value(code); 228 229 if (!is_mt_event) { 230 pold = &dev->absinfo[code].value; 231 } else if (mt) { 232 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 233 } else { 234 /* 235 * Bypass filtering for multi-touch events when 236 * not employing slots. 237 */ 238 pold = NULL; 239 } 240 241 if (pold) { 242 *pval = input_defuzz_abs_event(*pval, *pold, 243 dev->absinfo[code].fuzz); 244 if (*pold == *pval) 245 return INPUT_IGNORE_EVENT; 246 247 *pold = *pval; 248 } 249 250 /* Flush pending "slot" event */ 251 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 252 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 253 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 254 } 255 256 return INPUT_PASS_TO_HANDLERS; 257 } 258 259 static int input_get_disposition(struct input_dev *dev, 260 unsigned int type, unsigned int code, int *pval) 261 { 262 int disposition = INPUT_IGNORE_EVENT; 263 int value = *pval; 264 265 switch (type) { 266 267 case EV_SYN: 268 switch (code) { 269 case SYN_CONFIG: 270 disposition = INPUT_PASS_TO_ALL; 271 break; 272 273 case SYN_REPORT: 274 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 275 break; 276 case SYN_MT_REPORT: 277 disposition = INPUT_PASS_TO_HANDLERS; 278 break; 279 } 280 break; 281 282 case EV_KEY: 283 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 284 285 /* auto-repeat bypasses state updates */ 286 if (value == 2) { 287 disposition = INPUT_PASS_TO_HANDLERS; 288 break; 289 } 290 291 if (!!test_bit(code, dev->key) != !!value) { 292 293 __change_bit(code, dev->key); 294 disposition = INPUT_PASS_TO_HANDLERS; 295 } 296 } 297 break; 298 299 case EV_SW: 300 if (is_event_supported(code, dev->swbit, SW_MAX) && 301 !!test_bit(code, dev->sw) != !!value) { 302 303 __change_bit(code, dev->sw); 304 disposition = INPUT_PASS_TO_HANDLERS; 305 } 306 break; 307 308 case EV_ABS: 309 if (is_event_supported(code, dev->absbit, ABS_MAX)) 310 disposition = input_handle_abs_event(dev, code, &value); 311 312 break; 313 314 case EV_REL: 315 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 316 disposition = INPUT_PASS_TO_HANDLERS; 317 318 break; 319 320 case EV_MSC: 321 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 322 disposition = INPUT_PASS_TO_ALL; 323 324 break; 325 326 case EV_LED: 327 if (is_event_supported(code, dev->ledbit, LED_MAX) && 328 !!test_bit(code, dev->led) != !!value) { 329 330 __change_bit(code, dev->led); 331 disposition = INPUT_PASS_TO_ALL; 332 } 333 break; 334 335 case EV_SND: 336 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 337 338 if (!!test_bit(code, dev->snd) != !!value) 339 __change_bit(code, dev->snd); 340 disposition = INPUT_PASS_TO_ALL; 341 } 342 break; 343 344 case EV_REP: 345 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 346 dev->rep[code] = value; 347 disposition = INPUT_PASS_TO_ALL; 348 } 349 break; 350 351 case EV_FF: 352 if (value >= 0) 353 disposition = INPUT_PASS_TO_ALL; 354 break; 355 356 case EV_PWR: 357 disposition = INPUT_PASS_TO_ALL; 358 break; 359 } 360 361 *pval = value; 362 return disposition; 363 } 364 365 static void input_handle_event(struct input_dev *dev, 366 unsigned int type, unsigned int code, int value) 367 { 368 int disposition; 369 370 disposition = input_get_disposition(dev, type, code, &value); 371 372 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 373 dev->event(dev, type, code, value); 374 375 if (!dev->vals) 376 return; 377 378 if (disposition & INPUT_PASS_TO_HANDLERS) { 379 struct input_value *v; 380 381 if (disposition & INPUT_SLOT) { 382 v = &dev->vals[dev->num_vals++]; 383 v->type = EV_ABS; 384 v->code = ABS_MT_SLOT; 385 v->value = dev->mt->slot; 386 } 387 388 v = &dev->vals[dev->num_vals++]; 389 v->type = type; 390 v->code = code; 391 v->value = value; 392 } 393 394 if (disposition & INPUT_FLUSH) { 395 if (dev->num_vals >= 2) 396 input_pass_values(dev, dev->vals, dev->num_vals); 397 dev->num_vals = 0; 398 } else if (dev->num_vals >= dev->max_vals - 2) { 399 dev->vals[dev->num_vals++] = input_value_sync; 400 input_pass_values(dev, dev->vals, dev->num_vals); 401 dev->num_vals = 0; 402 } 403 404 } 405 406 /** 407 * input_event() - report new input event 408 * @dev: device that generated the event 409 * @type: type of the event 410 * @code: event code 411 * @value: value of the event 412 * 413 * This function should be used by drivers implementing various input 414 * devices to report input events. See also input_inject_event(). 415 * 416 * NOTE: input_event() may be safely used right after input device was 417 * allocated with input_allocate_device(), even before it is registered 418 * with input_register_device(), but the event will not reach any of the 419 * input handlers. Such early invocation of input_event() may be used 420 * to 'seed' initial state of a switch or initial position of absolute 421 * axis, etc. 422 */ 423 void input_event(struct input_dev *dev, 424 unsigned int type, unsigned int code, int value) 425 { 426 unsigned long flags; 427 428 if (is_event_supported(type, dev->evbit, EV_MAX)) { 429 430 spin_lock_irqsave(&dev->event_lock, flags); 431 input_handle_event(dev, type, code, value); 432 spin_unlock_irqrestore(&dev->event_lock, flags); 433 } 434 } 435 EXPORT_SYMBOL(input_event); 436 437 /** 438 * input_inject_event() - send input event from input handler 439 * @handle: input handle to send event through 440 * @type: type of the event 441 * @code: event code 442 * @value: value of the event 443 * 444 * Similar to input_event() but will ignore event if device is 445 * "grabbed" and handle injecting event is not the one that owns 446 * the device. 447 */ 448 void input_inject_event(struct input_handle *handle, 449 unsigned int type, unsigned int code, int value) 450 { 451 struct input_dev *dev = handle->dev; 452 struct input_handle *grab; 453 unsigned long flags; 454 455 if (is_event_supported(type, dev->evbit, EV_MAX)) { 456 spin_lock_irqsave(&dev->event_lock, flags); 457 458 rcu_read_lock(); 459 grab = rcu_dereference(dev->grab); 460 if (!grab || grab == handle) 461 input_handle_event(dev, type, code, value); 462 rcu_read_unlock(); 463 464 spin_unlock_irqrestore(&dev->event_lock, flags); 465 } 466 } 467 EXPORT_SYMBOL(input_inject_event); 468 469 /** 470 * input_alloc_absinfo - allocates array of input_absinfo structs 471 * @dev: the input device emitting absolute events 472 * 473 * If the absinfo struct the caller asked for is already allocated, this 474 * functions will not do anything. 475 */ 476 void input_alloc_absinfo(struct input_dev *dev) 477 { 478 if (!dev->absinfo) 479 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 480 GFP_KERNEL); 481 482 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 483 } 484 EXPORT_SYMBOL(input_alloc_absinfo); 485 486 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 487 int min, int max, int fuzz, int flat) 488 { 489 struct input_absinfo *absinfo; 490 491 input_alloc_absinfo(dev); 492 if (!dev->absinfo) 493 return; 494 495 absinfo = &dev->absinfo[axis]; 496 absinfo->minimum = min; 497 absinfo->maximum = max; 498 absinfo->fuzz = fuzz; 499 absinfo->flat = flat; 500 501 __set_bit(EV_ABS, dev->evbit); 502 __set_bit(axis, dev->absbit); 503 } 504 EXPORT_SYMBOL(input_set_abs_params); 505 506 507 /** 508 * input_grab_device - grabs device for exclusive use 509 * @handle: input handle that wants to own the device 510 * 511 * When a device is grabbed by an input handle all events generated by 512 * the device are delivered only to this handle. Also events injected 513 * by other input handles are ignored while device is grabbed. 514 */ 515 int input_grab_device(struct input_handle *handle) 516 { 517 struct input_dev *dev = handle->dev; 518 int retval; 519 520 retval = mutex_lock_interruptible(&dev->mutex); 521 if (retval) 522 return retval; 523 524 if (dev->grab) { 525 retval = -EBUSY; 526 goto out; 527 } 528 529 rcu_assign_pointer(dev->grab, handle); 530 531 out: 532 mutex_unlock(&dev->mutex); 533 return retval; 534 } 535 EXPORT_SYMBOL(input_grab_device); 536 537 static void __input_release_device(struct input_handle *handle) 538 { 539 struct input_dev *dev = handle->dev; 540 struct input_handle *grabber; 541 542 grabber = rcu_dereference_protected(dev->grab, 543 lockdep_is_held(&dev->mutex)); 544 if (grabber == handle) { 545 rcu_assign_pointer(dev->grab, NULL); 546 /* Make sure input_pass_event() notices that grab is gone */ 547 synchronize_rcu(); 548 549 list_for_each_entry(handle, &dev->h_list, d_node) 550 if (handle->open && handle->handler->start) 551 handle->handler->start(handle); 552 } 553 } 554 555 /** 556 * input_release_device - release previously grabbed device 557 * @handle: input handle that owns the device 558 * 559 * Releases previously grabbed device so that other input handles can 560 * start receiving input events. Upon release all handlers attached 561 * to the device have their start() method called so they have a change 562 * to synchronize device state with the rest of the system. 563 */ 564 void input_release_device(struct input_handle *handle) 565 { 566 struct input_dev *dev = handle->dev; 567 568 mutex_lock(&dev->mutex); 569 __input_release_device(handle); 570 mutex_unlock(&dev->mutex); 571 } 572 EXPORT_SYMBOL(input_release_device); 573 574 /** 575 * input_open_device - open input device 576 * @handle: handle through which device is being accessed 577 * 578 * This function should be called by input handlers when they 579 * want to start receive events from given input device. 580 */ 581 int input_open_device(struct input_handle *handle) 582 { 583 struct input_dev *dev = handle->dev; 584 int retval; 585 586 retval = mutex_lock_interruptible(&dev->mutex); 587 if (retval) 588 return retval; 589 590 if (dev->going_away) { 591 retval = -ENODEV; 592 goto out; 593 } 594 595 handle->open++; 596 597 if (!dev->users++ && dev->open) 598 retval = dev->open(dev); 599 600 if (retval) { 601 dev->users--; 602 if (!--handle->open) { 603 /* 604 * Make sure we are not delivering any more events 605 * through this handle 606 */ 607 synchronize_rcu(); 608 } 609 } 610 611 out: 612 mutex_unlock(&dev->mutex); 613 return retval; 614 } 615 EXPORT_SYMBOL(input_open_device); 616 617 int input_flush_device(struct input_handle *handle, struct file *file) 618 { 619 struct input_dev *dev = handle->dev; 620 int retval; 621 622 retval = mutex_lock_interruptible(&dev->mutex); 623 if (retval) 624 return retval; 625 626 if (dev->flush) 627 retval = dev->flush(dev, file); 628 629 mutex_unlock(&dev->mutex); 630 return retval; 631 } 632 EXPORT_SYMBOL(input_flush_device); 633 634 /** 635 * input_close_device - close input device 636 * @handle: handle through which device is being accessed 637 * 638 * This function should be called by input handlers when they 639 * want to stop receive events from given input device. 640 */ 641 void input_close_device(struct input_handle *handle) 642 { 643 struct input_dev *dev = handle->dev; 644 645 mutex_lock(&dev->mutex); 646 647 __input_release_device(handle); 648 649 if (!--dev->users && dev->close) 650 dev->close(dev); 651 652 if (!--handle->open) { 653 /* 654 * synchronize_rcu() makes sure that input_pass_event() 655 * completed and that no more input events are delivered 656 * through this handle 657 */ 658 synchronize_rcu(); 659 } 660 661 mutex_unlock(&dev->mutex); 662 } 663 EXPORT_SYMBOL(input_close_device); 664 665 /* 666 * Simulate keyup events for all keys that are marked as pressed. 667 * The function must be called with dev->event_lock held. 668 */ 669 static void input_dev_release_keys(struct input_dev *dev) 670 { 671 int code; 672 673 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 674 for (code = 0; code <= KEY_MAX; code++) { 675 if (is_event_supported(code, dev->keybit, KEY_MAX) && 676 __test_and_clear_bit(code, dev->key)) { 677 input_pass_event(dev, EV_KEY, code, 0); 678 } 679 } 680 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 681 } 682 } 683 684 /* 685 * Prepare device for unregistering 686 */ 687 static void input_disconnect_device(struct input_dev *dev) 688 { 689 struct input_handle *handle; 690 691 /* 692 * Mark device as going away. Note that we take dev->mutex here 693 * not to protect access to dev->going_away but rather to ensure 694 * that there are no threads in the middle of input_open_device() 695 */ 696 mutex_lock(&dev->mutex); 697 dev->going_away = true; 698 mutex_unlock(&dev->mutex); 699 700 spin_lock_irq(&dev->event_lock); 701 702 /* 703 * Simulate keyup events for all pressed keys so that handlers 704 * are not left with "stuck" keys. The driver may continue 705 * generate events even after we done here but they will not 706 * reach any handlers. 707 */ 708 input_dev_release_keys(dev); 709 710 list_for_each_entry(handle, &dev->h_list, d_node) 711 handle->open = 0; 712 713 spin_unlock_irq(&dev->event_lock); 714 } 715 716 /** 717 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 718 * @ke: keymap entry containing scancode to be converted. 719 * @scancode: pointer to the location where converted scancode should 720 * be stored. 721 * 722 * This function is used to convert scancode stored in &struct keymap_entry 723 * into scalar form understood by legacy keymap handling methods. These 724 * methods expect scancodes to be represented as 'unsigned int'. 725 */ 726 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 727 unsigned int *scancode) 728 { 729 switch (ke->len) { 730 case 1: 731 *scancode = *((u8 *)ke->scancode); 732 break; 733 734 case 2: 735 *scancode = *((u16 *)ke->scancode); 736 break; 737 738 case 4: 739 *scancode = *((u32 *)ke->scancode); 740 break; 741 742 default: 743 return -EINVAL; 744 } 745 746 return 0; 747 } 748 EXPORT_SYMBOL(input_scancode_to_scalar); 749 750 /* 751 * Those routines handle the default case where no [gs]etkeycode() is 752 * defined. In this case, an array indexed by the scancode is used. 753 */ 754 755 static unsigned int input_fetch_keycode(struct input_dev *dev, 756 unsigned int index) 757 { 758 switch (dev->keycodesize) { 759 case 1: 760 return ((u8 *)dev->keycode)[index]; 761 762 case 2: 763 return ((u16 *)dev->keycode)[index]; 764 765 default: 766 return ((u32 *)dev->keycode)[index]; 767 } 768 } 769 770 static int input_default_getkeycode(struct input_dev *dev, 771 struct input_keymap_entry *ke) 772 { 773 unsigned int index; 774 int error; 775 776 if (!dev->keycodesize) 777 return -EINVAL; 778 779 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 780 index = ke->index; 781 else { 782 error = input_scancode_to_scalar(ke, &index); 783 if (error) 784 return error; 785 } 786 787 if (index >= dev->keycodemax) 788 return -EINVAL; 789 790 ke->keycode = input_fetch_keycode(dev, index); 791 ke->index = index; 792 ke->len = sizeof(index); 793 memcpy(ke->scancode, &index, sizeof(index)); 794 795 return 0; 796 } 797 798 static int input_default_setkeycode(struct input_dev *dev, 799 const struct input_keymap_entry *ke, 800 unsigned int *old_keycode) 801 { 802 unsigned int index; 803 int error; 804 int i; 805 806 if (!dev->keycodesize) 807 return -EINVAL; 808 809 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 810 index = ke->index; 811 } else { 812 error = input_scancode_to_scalar(ke, &index); 813 if (error) 814 return error; 815 } 816 817 if (index >= dev->keycodemax) 818 return -EINVAL; 819 820 if (dev->keycodesize < sizeof(ke->keycode) && 821 (ke->keycode >> (dev->keycodesize * 8))) 822 return -EINVAL; 823 824 switch (dev->keycodesize) { 825 case 1: { 826 u8 *k = (u8 *)dev->keycode; 827 *old_keycode = k[index]; 828 k[index] = ke->keycode; 829 break; 830 } 831 case 2: { 832 u16 *k = (u16 *)dev->keycode; 833 *old_keycode = k[index]; 834 k[index] = ke->keycode; 835 break; 836 } 837 default: { 838 u32 *k = (u32 *)dev->keycode; 839 *old_keycode = k[index]; 840 k[index] = ke->keycode; 841 break; 842 } 843 } 844 845 __clear_bit(*old_keycode, dev->keybit); 846 __set_bit(ke->keycode, dev->keybit); 847 848 for (i = 0; i < dev->keycodemax; i++) { 849 if (input_fetch_keycode(dev, i) == *old_keycode) { 850 __set_bit(*old_keycode, dev->keybit); 851 break; /* Setting the bit twice is useless, so break */ 852 } 853 } 854 855 return 0; 856 } 857 858 /** 859 * input_get_keycode - retrieve keycode currently mapped to a given scancode 860 * @dev: input device which keymap is being queried 861 * @ke: keymap entry 862 * 863 * This function should be called by anyone interested in retrieving current 864 * keymap. Presently evdev handlers use it. 865 */ 866 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 867 { 868 unsigned long flags; 869 int retval; 870 871 spin_lock_irqsave(&dev->event_lock, flags); 872 retval = dev->getkeycode(dev, ke); 873 spin_unlock_irqrestore(&dev->event_lock, flags); 874 875 return retval; 876 } 877 EXPORT_SYMBOL(input_get_keycode); 878 879 /** 880 * input_set_keycode - attribute a keycode to a given scancode 881 * @dev: input device which keymap is being updated 882 * @ke: new keymap entry 883 * 884 * This function should be called by anyone needing to update current 885 * keymap. Presently keyboard and evdev handlers use it. 886 */ 887 int input_set_keycode(struct input_dev *dev, 888 const struct input_keymap_entry *ke) 889 { 890 unsigned long flags; 891 unsigned int old_keycode; 892 int retval; 893 894 if (ke->keycode > KEY_MAX) 895 return -EINVAL; 896 897 spin_lock_irqsave(&dev->event_lock, flags); 898 899 retval = dev->setkeycode(dev, ke, &old_keycode); 900 if (retval) 901 goto out; 902 903 /* Make sure KEY_RESERVED did not get enabled. */ 904 __clear_bit(KEY_RESERVED, dev->keybit); 905 906 /* 907 * Simulate keyup event if keycode is not present 908 * in the keymap anymore 909 */ 910 if (test_bit(EV_KEY, dev->evbit) && 911 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 912 __test_and_clear_bit(old_keycode, dev->key)) { 913 struct input_value vals[] = { 914 { EV_KEY, old_keycode, 0 }, 915 input_value_sync 916 }; 917 918 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 919 } 920 921 out: 922 spin_unlock_irqrestore(&dev->event_lock, flags); 923 924 return retval; 925 } 926 EXPORT_SYMBOL(input_set_keycode); 927 928 static const struct input_device_id *input_match_device(struct input_handler *handler, 929 struct input_dev *dev) 930 { 931 const struct input_device_id *id; 932 933 for (id = handler->id_table; id->flags || id->driver_info; id++) { 934 935 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 936 if (id->bustype != dev->id.bustype) 937 continue; 938 939 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 940 if (id->vendor != dev->id.vendor) 941 continue; 942 943 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 944 if (id->product != dev->id.product) 945 continue; 946 947 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 948 if (id->version != dev->id.version) 949 continue; 950 951 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX)) 952 continue; 953 954 if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX)) 955 continue; 956 957 if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX)) 958 continue; 959 960 if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX)) 961 continue; 962 963 if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX)) 964 continue; 965 966 if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX)) 967 continue; 968 969 if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX)) 970 continue; 971 972 if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX)) 973 continue; 974 975 if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX)) 976 continue; 977 978 if (!handler->match || handler->match(handler, dev)) 979 return id; 980 } 981 982 return NULL; 983 } 984 985 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 986 { 987 const struct input_device_id *id; 988 int error; 989 990 id = input_match_device(handler, dev); 991 if (!id) 992 return -ENODEV; 993 994 error = handler->connect(handler, dev, id); 995 if (error && error != -ENODEV) 996 pr_err("failed to attach handler %s to device %s, error: %d\n", 997 handler->name, kobject_name(&dev->dev.kobj), error); 998 999 return error; 1000 } 1001 1002 #ifdef CONFIG_COMPAT 1003 1004 static int input_bits_to_string(char *buf, int buf_size, 1005 unsigned long bits, bool skip_empty) 1006 { 1007 int len = 0; 1008 1009 if (INPUT_COMPAT_TEST) { 1010 u32 dword = bits >> 32; 1011 if (dword || !skip_empty) 1012 len += snprintf(buf, buf_size, "%x ", dword); 1013 1014 dword = bits & 0xffffffffUL; 1015 if (dword || !skip_empty || len) 1016 len += snprintf(buf + len, max(buf_size - len, 0), 1017 "%x", dword); 1018 } else { 1019 if (bits || !skip_empty) 1020 len += snprintf(buf, buf_size, "%lx", bits); 1021 } 1022 1023 return len; 1024 } 1025 1026 #else /* !CONFIG_COMPAT */ 1027 1028 static int input_bits_to_string(char *buf, int buf_size, 1029 unsigned long bits, bool skip_empty) 1030 { 1031 return bits || !skip_empty ? 1032 snprintf(buf, buf_size, "%lx", bits) : 0; 1033 } 1034 1035 #endif 1036 1037 #ifdef CONFIG_PROC_FS 1038 1039 static struct proc_dir_entry *proc_bus_input_dir; 1040 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1041 static int input_devices_state; 1042 1043 static inline void input_wakeup_procfs_readers(void) 1044 { 1045 input_devices_state++; 1046 wake_up(&input_devices_poll_wait); 1047 } 1048 1049 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1050 { 1051 poll_wait(file, &input_devices_poll_wait, wait); 1052 if (file->f_version != input_devices_state) { 1053 file->f_version = input_devices_state; 1054 return POLLIN | POLLRDNORM; 1055 } 1056 1057 return 0; 1058 } 1059 1060 union input_seq_state { 1061 struct { 1062 unsigned short pos; 1063 bool mutex_acquired; 1064 }; 1065 void *p; 1066 }; 1067 1068 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1069 { 1070 union input_seq_state *state = (union input_seq_state *)&seq->private; 1071 int error; 1072 1073 /* We need to fit into seq->private pointer */ 1074 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1075 1076 error = mutex_lock_interruptible(&input_mutex); 1077 if (error) { 1078 state->mutex_acquired = false; 1079 return ERR_PTR(error); 1080 } 1081 1082 state->mutex_acquired = true; 1083 1084 return seq_list_start(&input_dev_list, *pos); 1085 } 1086 1087 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1088 { 1089 return seq_list_next(v, &input_dev_list, pos); 1090 } 1091 1092 static void input_seq_stop(struct seq_file *seq, void *v) 1093 { 1094 union input_seq_state *state = (union input_seq_state *)&seq->private; 1095 1096 if (state->mutex_acquired) 1097 mutex_unlock(&input_mutex); 1098 } 1099 1100 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1101 unsigned long *bitmap, int max) 1102 { 1103 int i; 1104 bool skip_empty = true; 1105 char buf[18]; 1106 1107 seq_printf(seq, "B: %s=", name); 1108 1109 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1110 if (input_bits_to_string(buf, sizeof(buf), 1111 bitmap[i], skip_empty)) { 1112 skip_empty = false; 1113 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1114 } 1115 } 1116 1117 /* 1118 * If no output was produced print a single 0. 1119 */ 1120 if (skip_empty) 1121 seq_puts(seq, "0"); 1122 1123 seq_putc(seq, '\n'); 1124 } 1125 1126 static int input_devices_seq_show(struct seq_file *seq, void *v) 1127 { 1128 struct input_dev *dev = container_of(v, struct input_dev, node); 1129 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1130 struct input_handle *handle; 1131 1132 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1133 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1134 1135 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1136 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1137 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1138 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1139 seq_printf(seq, "H: Handlers="); 1140 1141 list_for_each_entry(handle, &dev->h_list, d_node) 1142 seq_printf(seq, "%s ", handle->name); 1143 seq_putc(seq, '\n'); 1144 1145 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1146 1147 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1148 if (test_bit(EV_KEY, dev->evbit)) 1149 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1150 if (test_bit(EV_REL, dev->evbit)) 1151 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1152 if (test_bit(EV_ABS, dev->evbit)) 1153 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1154 if (test_bit(EV_MSC, dev->evbit)) 1155 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1156 if (test_bit(EV_LED, dev->evbit)) 1157 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1158 if (test_bit(EV_SND, dev->evbit)) 1159 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1160 if (test_bit(EV_FF, dev->evbit)) 1161 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1162 if (test_bit(EV_SW, dev->evbit)) 1163 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1164 1165 seq_putc(seq, '\n'); 1166 1167 kfree(path); 1168 return 0; 1169 } 1170 1171 static const struct seq_operations input_devices_seq_ops = { 1172 .start = input_devices_seq_start, 1173 .next = input_devices_seq_next, 1174 .stop = input_seq_stop, 1175 .show = input_devices_seq_show, 1176 }; 1177 1178 static int input_proc_devices_open(struct inode *inode, struct file *file) 1179 { 1180 return seq_open(file, &input_devices_seq_ops); 1181 } 1182 1183 static const struct file_operations input_devices_fileops = { 1184 .owner = THIS_MODULE, 1185 .open = input_proc_devices_open, 1186 .poll = input_proc_devices_poll, 1187 .read = seq_read, 1188 .llseek = seq_lseek, 1189 .release = seq_release, 1190 }; 1191 1192 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1193 { 1194 union input_seq_state *state = (union input_seq_state *)&seq->private; 1195 int error; 1196 1197 /* We need to fit into seq->private pointer */ 1198 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1199 1200 error = mutex_lock_interruptible(&input_mutex); 1201 if (error) { 1202 state->mutex_acquired = false; 1203 return ERR_PTR(error); 1204 } 1205 1206 state->mutex_acquired = true; 1207 state->pos = *pos; 1208 1209 return seq_list_start(&input_handler_list, *pos); 1210 } 1211 1212 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1213 { 1214 union input_seq_state *state = (union input_seq_state *)&seq->private; 1215 1216 state->pos = *pos + 1; 1217 return seq_list_next(v, &input_handler_list, pos); 1218 } 1219 1220 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1221 { 1222 struct input_handler *handler = container_of(v, struct input_handler, node); 1223 union input_seq_state *state = (union input_seq_state *)&seq->private; 1224 1225 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1226 if (handler->filter) 1227 seq_puts(seq, " (filter)"); 1228 if (handler->legacy_minors) 1229 seq_printf(seq, " Minor=%d", handler->minor); 1230 seq_putc(seq, '\n'); 1231 1232 return 0; 1233 } 1234 1235 static const struct seq_operations input_handlers_seq_ops = { 1236 .start = input_handlers_seq_start, 1237 .next = input_handlers_seq_next, 1238 .stop = input_seq_stop, 1239 .show = input_handlers_seq_show, 1240 }; 1241 1242 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1243 { 1244 return seq_open(file, &input_handlers_seq_ops); 1245 } 1246 1247 static const struct file_operations input_handlers_fileops = { 1248 .owner = THIS_MODULE, 1249 .open = input_proc_handlers_open, 1250 .read = seq_read, 1251 .llseek = seq_lseek, 1252 .release = seq_release, 1253 }; 1254 1255 static int __init input_proc_init(void) 1256 { 1257 struct proc_dir_entry *entry; 1258 1259 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1260 if (!proc_bus_input_dir) 1261 return -ENOMEM; 1262 1263 entry = proc_create("devices", 0, proc_bus_input_dir, 1264 &input_devices_fileops); 1265 if (!entry) 1266 goto fail1; 1267 1268 entry = proc_create("handlers", 0, proc_bus_input_dir, 1269 &input_handlers_fileops); 1270 if (!entry) 1271 goto fail2; 1272 1273 return 0; 1274 1275 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1276 fail1: remove_proc_entry("bus/input", NULL); 1277 return -ENOMEM; 1278 } 1279 1280 static void input_proc_exit(void) 1281 { 1282 remove_proc_entry("devices", proc_bus_input_dir); 1283 remove_proc_entry("handlers", proc_bus_input_dir); 1284 remove_proc_entry("bus/input", NULL); 1285 } 1286 1287 #else /* !CONFIG_PROC_FS */ 1288 static inline void input_wakeup_procfs_readers(void) { } 1289 static inline int input_proc_init(void) { return 0; } 1290 static inline void input_proc_exit(void) { } 1291 #endif 1292 1293 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1294 static ssize_t input_dev_show_##name(struct device *dev, \ 1295 struct device_attribute *attr, \ 1296 char *buf) \ 1297 { \ 1298 struct input_dev *input_dev = to_input_dev(dev); \ 1299 \ 1300 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1301 input_dev->name ? input_dev->name : ""); \ 1302 } \ 1303 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1304 1305 INPUT_DEV_STRING_ATTR_SHOW(name); 1306 INPUT_DEV_STRING_ATTR_SHOW(phys); 1307 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1308 1309 static int input_print_modalias_bits(char *buf, int size, 1310 char name, unsigned long *bm, 1311 unsigned int min_bit, unsigned int max_bit) 1312 { 1313 int len = 0, i; 1314 1315 len += snprintf(buf, max(size, 0), "%c", name); 1316 for (i = min_bit; i < max_bit; i++) 1317 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1318 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1319 return len; 1320 } 1321 1322 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1323 int add_cr) 1324 { 1325 int len; 1326 1327 len = snprintf(buf, max(size, 0), 1328 "input:b%04Xv%04Xp%04Xe%04X-", 1329 id->id.bustype, id->id.vendor, 1330 id->id.product, id->id.version); 1331 1332 len += input_print_modalias_bits(buf + len, size - len, 1333 'e', id->evbit, 0, EV_MAX); 1334 len += input_print_modalias_bits(buf + len, size - len, 1335 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1336 len += input_print_modalias_bits(buf + len, size - len, 1337 'r', id->relbit, 0, REL_MAX); 1338 len += input_print_modalias_bits(buf + len, size - len, 1339 'a', id->absbit, 0, ABS_MAX); 1340 len += input_print_modalias_bits(buf + len, size - len, 1341 'm', id->mscbit, 0, MSC_MAX); 1342 len += input_print_modalias_bits(buf + len, size - len, 1343 'l', id->ledbit, 0, LED_MAX); 1344 len += input_print_modalias_bits(buf + len, size - len, 1345 's', id->sndbit, 0, SND_MAX); 1346 len += input_print_modalias_bits(buf + len, size - len, 1347 'f', id->ffbit, 0, FF_MAX); 1348 len += input_print_modalias_bits(buf + len, size - len, 1349 'w', id->swbit, 0, SW_MAX); 1350 1351 if (add_cr) 1352 len += snprintf(buf + len, max(size - len, 0), "\n"); 1353 1354 return len; 1355 } 1356 1357 static ssize_t input_dev_show_modalias(struct device *dev, 1358 struct device_attribute *attr, 1359 char *buf) 1360 { 1361 struct input_dev *id = to_input_dev(dev); 1362 ssize_t len; 1363 1364 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1365 1366 return min_t(int, len, PAGE_SIZE); 1367 } 1368 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1369 1370 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1371 int max, int add_cr); 1372 1373 static ssize_t input_dev_show_properties(struct device *dev, 1374 struct device_attribute *attr, 1375 char *buf) 1376 { 1377 struct input_dev *input_dev = to_input_dev(dev); 1378 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1379 INPUT_PROP_MAX, true); 1380 return min_t(int, len, PAGE_SIZE); 1381 } 1382 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1383 1384 static struct attribute *input_dev_attrs[] = { 1385 &dev_attr_name.attr, 1386 &dev_attr_phys.attr, 1387 &dev_attr_uniq.attr, 1388 &dev_attr_modalias.attr, 1389 &dev_attr_properties.attr, 1390 NULL 1391 }; 1392 1393 static struct attribute_group input_dev_attr_group = { 1394 .attrs = input_dev_attrs, 1395 }; 1396 1397 #define INPUT_DEV_ID_ATTR(name) \ 1398 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1399 struct device_attribute *attr, \ 1400 char *buf) \ 1401 { \ 1402 struct input_dev *input_dev = to_input_dev(dev); \ 1403 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1404 } \ 1405 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1406 1407 INPUT_DEV_ID_ATTR(bustype); 1408 INPUT_DEV_ID_ATTR(vendor); 1409 INPUT_DEV_ID_ATTR(product); 1410 INPUT_DEV_ID_ATTR(version); 1411 1412 static struct attribute *input_dev_id_attrs[] = { 1413 &dev_attr_bustype.attr, 1414 &dev_attr_vendor.attr, 1415 &dev_attr_product.attr, 1416 &dev_attr_version.attr, 1417 NULL 1418 }; 1419 1420 static struct attribute_group input_dev_id_attr_group = { 1421 .name = "id", 1422 .attrs = input_dev_id_attrs, 1423 }; 1424 1425 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1426 int max, int add_cr) 1427 { 1428 int i; 1429 int len = 0; 1430 bool skip_empty = true; 1431 1432 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1433 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1434 bitmap[i], skip_empty); 1435 if (len) { 1436 skip_empty = false; 1437 if (i > 0) 1438 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1439 } 1440 } 1441 1442 /* 1443 * If no output was produced print a single 0. 1444 */ 1445 if (len == 0) 1446 len = snprintf(buf, buf_size, "%d", 0); 1447 1448 if (add_cr) 1449 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1450 1451 return len; 1452 } 1453 1454 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1455 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1456 struct device_attribute *attr, \ 1457 char *buf) \ 1458 { \ 1459 struct input_dev *input_dev = to_input_dev(dev); \ 1460 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1461 input_dev->bm##bit, ev##_MAX, \ 1462 true); \ 1463 return min_t(int, len, PAGE_SIZE); \ 1464 } \ 1465 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1466 1467 INPUT_DEV_CAP_ATTR(EV, ev); 1468 INPUT_DEV_CAP_ATTR(KEY, key); 1469 INPUT_DEV_CAP_ATTR(REL, rel); 1470 INPUT_DEV_CAP_ATTR(ABS, abs); 1471 INPUT_DEV_CAP_ATTR(MSC, msc); 1472 INPUT_DEV_CAP_ATTR(LED, led); 1473 INPUT_DEV_CAP_ATTR(SND, snd); 1474 INPUT_DEV_CAP_ATTR(FF, ff); 1475 INPUT_DEV_CAP_ATTR(SW, sw); 1476 1477 static struct attribute *input_dev_caps_attrs[] = { 1478 &dev_attr_ev.attr, 1479 &dev_attr_key.attr, 1480 &dev_attr_rel.attr, 1481 &dev_attr_abs.attr, 1482 &dev_attr_msc.attr, 1483 &dev_attr_led.attr, 1484 &dev_attr_snd.attr, 1485 &dev_attr_ff.attr, 1486 &dev_attr_sw.attr, 1487 NULL 1488 }; 1489 1490 static struct attribute_group input_dev_caps_attr_group = { 1491 .name = "capabilities", 1492 .attrs = input_dev_caps_attrs, 1493 }; 1494 1495 static const struct attribute_group *input_dev_attr_groups[] = { 1496 &input_dev_attr_group, 1497 &input_dev_id_attr_group, 1498 &input_dev_caps_attr_group, 1499 NULL 1500 }; 1501 1502 static void input_dev_release(struct device *device) 1503 { 1504 struct input_dev *dev = to_input_dev(device); 1505 1506 input_ff_destroy(dev); 1507 input_mt_destroy_slots(dev); 1508 kfree(dev->absinfo); 1509 kfree(dev->vals); 1510 kfree(dev); 1511 1512 module_put(THIS_MODULE); 1513 } 1514 1515 /* 1516 * Input uevent interface - loading event handlers based on 1517 * device bitfields. 1518 */ 1519 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1520 const char *name, unsigned long *bitmap, int max) 1521 { 1522 int len; 1523 1524 if (add_uevent_var(env, "%s", name)) 1525 return -ENOMEM; 1526 1527 len = input_print_bitmap(&env->buf[env->buflen - 1], 1528 sizeof(env->buf) - env->buflen, 1529 bitmap, max, false); 1530 if (len >= (sizeof(env->buf) - env->buflen)) 1531 return -ENOMEM; 1532 1533 env->buflen += len; 1534 return 0; 1535 } 1536 1537 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1538 struct input_dev *dev) 1539 { 1540 int len; 1541 1542 if (add_uevent_var(env, "MODALIAS=")) 1543 return -ENOMEM; 1544 1545 len = input_print_modalias(&env->buf[env->buflen - 1], 1546 sizeof(env->buf) - env->buflen, 1547 dev, 0); 1548 if (len >= (sizeof(env->buf) - env->buflen)) 1549 return -ENOMEM; 1550 1551 env->buflen += len; 1552 return 0; 1553 } 1554 1555 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1556 do { \ 1557 int err = add_uevent_var(env, fmt, val); \ 1558 if (err) \ 1559 return err; \ 1560 } while (0) 1561 1562 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1563 do { \ 1564 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1565 if (err) \ 1566 return err; \ 1567 } while (0) 1568 1569 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1570 do { \ 1571 int err = input_add_uevent_modalias_var(env, dev); \ 1572 if (err) \ 1573 return err; \ 1574 } while (0) 1575 1576 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1577 { 1578 struct input_dev *dev = to_input_dev(device); 1579 1580 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1581 dev->id.bustype, dev->id.vendor, 1582 dev->id.product, dev->id.version); 1583 if (dev->name) 1584 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1585 if (dev->phys) 1586 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1587 if (dev->uniq) 1588 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1589 1590 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1591 1592 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1593 if (test_bit(EV_KEY, dev->evbit)) 1594 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1595 if (test_bit(EV_REL, dev->evbit)) 1596 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1597 if (test_bit(EV_ABS, dev->evbit)) 1598 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1599 if (test_bit(EV_MSC, dev->evbit)) 1600 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1601 if (test_bit(EV_LED, dev->evbit)) 1602 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1603 if (test_bit(EV_SND, dev->evbit)) 1604 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1605 if (test_bit(EV_FF, dev->evbit)) 1606 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1607 if (test_bit(EV_SW, dev->evbit)) 1608 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1609 1610 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1611 1612 return 0; 1613 } 1614 1615 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1616 do { \ 1617 int i; \ 1618 bool active; \ 1619 \ 1620 if (!test_bit(EV_##type, dev->evbit)) \ 1621 break; \ 1622 \ 1623 for (i = 0; i < type##_MAX; i++) { \ 1624 if (!test_bit(i, dev->bits##bit)) \ 1625 continue; \ 1626 \ 1627 active = test_bit(i, dev->bits); \ 1628 if (!active && !on) \ 1629 continue; \ 1630 \ 1631 dev->event(dev, EV_##type, i, on ? active : 0); \ 1632 } \ 1633 } while (0) 1634 1635 static void input_dev_toggle(struct input_dev *dev, bool activate) 1636 { 1637 if (!dev->event) 1638 return; 1639 1640 INPUT_DO_TOGGLE(dev, LED, led, activate); 1641 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1642 1643 if (activate && test_bit(EV_REP, dev->evbit)) { 1644 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1645 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1646 } 1647 } 1648 1649 /** 1650 * input_reset_device() - reset/restore the state of input device 1651 * @dev: input device whose state needs to be reset 1652 * 1653 * This function tries to reset the state of an opened input device and 1654 * bring internal state and state if the hardware in sync with each other. 1655 * We mark all keys as released, restore LED state, repeat rate, etc. 1656 */ 1657 void input_reset_device(struct input_dev *dev) 1658 { 1659 unsigned long flags; 1660 1661 mutex_lock(&dev->mutex); 1662 spin_lock_irqsave(&dev->event_lock, flags); 1663 1664 input_dev_toggle(dev, true); 1665 input_dev_release_keys(dev); 1666 1667 spin_unlock_irqrestore(&dev->event_lock, flags); 1668 mutex_unlock(&dev->mutex); 1669 } 1670 EXPORT_SYMBOL(input_reset_device); 1671 1672 #ifdef CONFIG_PM_SLEEP 1673 static int input_dev_suspend(struct device *dev) 1674 { 1675 struct input_dev *input_dev = to_input_dev(dev); 1676 1677 spin_lock_irq(&input_dev->event_lock); 1678 1679 /* 1680 * Keys that are pressed now are unlikely to be 1681 * still pressed when we resume. 1682 */ 1683 input_dev_release_keys(input_dev); 1684 1685 /* Turn off LEDs and sounds, if any are active. */ 1686 input_dev_toggle(input_dev, false); 1687 1688 spin_unlock_irq(&input_dev->event_lock); 1689 1690 return 0; 1691 } 1692 1693 static int input_dev_resume(struct device *dev) 1694 { 1695 struct input_dev *input_dev = to_input_dev(dev); 1696 1697 spin_lock_irq(&input_dev->event_lock); 1698 1699 /* Restore state of LEDs and sounds, if any were active. */ 1700 input_dev_toggle(input_dev, true); 1701 1702 spin_unlock_irq(&input_dev->event_lock); 1703 1704 return 0; 1705 } 1706 1707 static int input_dev_freeze(struct device *dev) 1708 { 1709 struct input_dev *input_dev = to_input_dev(dev); 1710 1711 spin_lock_irq(&input_dev->event_lock); 1712 1713 /* 1714 * Keys that are pressed now are unlikely to be 1715 * still pressed when we resume. 1716 */ 1717 input_dev_release_keys(input_dev); 1718 1719 spin_unlock_irq(&input_dev->event_lock); 1720 1721 return 0; 1722 } 1723 1724 static int input_dev_poweroff(struct device *dev) 1725 { 1726 struct input_dev *input_dev = to_input_dev(dev); 1727 1728 spin_lock_irq(&input_dev->event_lock); 1729 1730 /* Turn off LEDs and sounds, if any are active. */ 1731 input_dev_toggle(input_dev, false); 1732 1733 spin_unlock_irq(&input_dev->event_lock); 1734 1735 return 0; 1736 } 1737 1738 static const struct dev_pm_ops input_dev_pm_ops = { 1739 .suspend = input_dev_suspend, 1740 .resume = input_dev_resume, 1741 .freeze = input_dev_freeze, 1742 .poweroff = input_dev_poweroff, 1743 .restore = input_dev_resume, 1744 }; 1745 #endif /* CONFIG_PM */ 1746 1747 static struct device_type input_dev_type = { 1748 .groups = input_dev_attr_groups, 1749 .release = input_dev_release, 1750 .uevent = input_dev_uevent, 1751 #ifdef CONFIG_PM_SLEEP 1752 .pm = &input_dev_pm_ops, 1753 #endif 1754 }; 1755 1756 static char *input_devnode(struct device *dev, umode_t *mode) 1757 { 1758 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1759 } 1760 1761 struct class input_class = { 1762 .name = "input", 1763 .devnode = input_devnode, 1764 }; 1765 EXPORT_SYMBOL_GPL(input_class); 1766 1767 /** 1768 * input_allocate_device - allocate memory for new input device 1769 * 1770 * Returns prepared struct input_dev or %NULL. 1771 * 1772 * NOTE: Use input_free_device() to free devices that have not been 1773 * registered; input_unregister_device() should be used for already 1774 * registered devices. 1775 */ 1776 struct input_dev *input_allocate_device(void) 1777 { 1778 static atomic_t input_no = ATOMIC_INIT(-1); 1779 struct input_dev *dev; 1780 1781 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1782 if (dev) { 1783 dev->dev.type = &input_dev_type; 1784 dev->dev.class = &input_class; 1785 device_initialize(&dev->dev); 1786 mutex_init(&dev->mutex); 1787 spin_lock_init(&dev->event_lock); 1788 init_timer(&dev->timer); 1789 INIT_LIST_HEAD(&dev->h_list); 1790 INIT_LIST_HEAD(&dev->node); 1791 1792 dev_set_name(&dev->dev, "input%lu", 1793 (unsigned long)atomic_inc_return(&input_no)); 1794 1795 __module_get(THIS_MODULE); 1796 } 1797 1798 return dev; 1799 } 1800 EXPORT_SYMBOL(input_allocate_device); 1801 1802 struct input_devres { 1803 struct input_dev *input; 1804 }; 1805 1806 static int devm_input_device_match(struct device *dev, void *res, void *data) 1807 { 1808 struct input_devres *devres = res; 1809 1810 return devres->input == data; 1811 } 1812 1813 static void devm_input_device_release(struct device *dev, void *res) 1814 { 1815 struct input_devres *devres = res; 1816 struct input_dev *input = devres->input; 1817 1818 dev_dbg(dev, "%s: dropping reference to %s\n", 1819 __func__, dev_name(&input->dev)); 1820 input_put_device(input); 1821 } 1822 1823 /** 1824 * devm_input_allocate_device - allocate managed input device 1825 * @dev: device owning the input device being created 1826 * 1827 * Returns prepared struct input_dev or %NULL. 1828 * 1829 * Managed input devices do not need to be explicitly unregistered or 1830 * freed as it will be done automatically when owner device unbinds from 1831 * its driver (or binding fails). Once managed input device is allocated, 1832 * it is ready to be set up and registered in the same fashion as regular 1833 * input device. There are no special devm_input_device_[un]register() 1834 * variants, regular ones work with both managed and unmanaged devices, 1835 * should you need them. In most cases however, managed input device need 1836 * not be explicitly unregistered or freed. 1837 * 1838 * NOTE: the owner device is set up as parent of input device and users 1839 * should not override it. 1840 */ 1841 struct input_dev *devm_input_allocate_device(struct device *dev) 1842 { 1843 struct input_dev *input; 1844 struct input_devres *devres; 1845 1846 devres = devres_alloc(devm_input_device_release, 1847 sizeof(struct input_devres), GFP_KERNEL); 1848 if (!devres) 1849 return NULL; 1850 1851 input = input_allocate_device(); 1852 if (!input) { 1853 devres_free(devres); 1854 return NULL; 1855 } 1856 1857 input->dev.parent = dev; 1858 input->devres_managed = true; 1859 1860 devres->input = input; 1861 devres_add(dev, devres); 1862 1863 return input; 1864 } 1865 EXPORT_SYMBOL(devm_input_allocate_device); 1866 1867 /** 1868 * input_free_device - free memory occupied by input_dev structure 1869 * @dev: input device to free 1870 * 1871 * This function should only be used if input_register_device() 1872 * was not called yet or if it failed. Once device was registered 1873 * use input_unregister_device() and memory will be freed once last 1874 * reference to the device is dropped. 1875 * 1876 * Device should be allocated by input_allocate_device(). 1877 * 1878 * NOTE: If there are references to the input device then memory 1879 * will not be freed until last reference is dropped. 1880 */ 1881 void input_free_device(struct input_dev *dev) 1882 { 1883 if (dev) { 1884 if (dev->devres_managed) 1885 WARN_ON(devres_destroy(dev->dev.parent, 1886 devm_input_device_release, 1887 devm_input_device_match, 1888 dev)); 1889 input_put_device(dev); 1890 } 1891 } 1892 EXPORT_SYMBOL(input_free_device); 1893 1894 /** 1895 * input_set_capability - mark device as capable of a certain event 1896 * @dev: device that is capable of emitting or accepting event 1897 * @type: type of the event (EV_KEY, EV_REL, etc...) 1898 * @code: event code 1899 * 1900 * In addition to setting up corresponding bit in appropriate capability 1901 * bitmap the function also adjusts dev->evbit. 1902 */ 1903 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1904 { 1905 switch (type) { 1906 case EV_KEY: 1907 __set_bit(code, dev->keybit); 1908 break; 1909 1910 case EV_REL: 1911 __set_bit(code, dev->relbit); 1912 break; 1913 1914 case EV_ABS: 1915 input_alloc_absinfo(dev); 1916 if (!dev->absinfo) 1917 return; 1918 1919 __set_bit(code, dev->absbit); 1920 break; 1921 1922 case EV_MSC: 1923 __set_bit(code, dev->mscbit); 1924 break; 1925 1926 case EV_SW: 1927 __set_bit(code, dev->swbit); 1928 break; 1929 1930 case EV_LED: 1931 __set_bit(code, dev->ledbit); 1932 break; 1933 1934 case EV_SND: 1935 __set_bit(code, dev->sndbit); 1936 break; 1937 1938 case EV_FF: 1939 __set_bit(code, dev->ffbit); 1940 break; 1941 1942 case EV_PWR: 1943 /* do nothing */ 1944 break; 1945 1946 default: 1947 pr_err("input_set_capability: unknown type %u (code %u)\n", 1948 type, code); 1949 dump_stack(); 1950 return; 1951 } 1952 1953 __set_bit(type, dev->evbit); 1954 } 1955 EXPORT_SYMBOL(input_set_capability); 1956 1957 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1958 { 1959 int mt_slots; 1960 int i; 1961 unsigned int events; 1962 1963 if (dev->mt) { 1964 mt_slots = dev->mt->num_slots; 1965 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1966 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1967 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1968 mt_slots = clamp(mt_slots, 2, 32); 1969 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1970 mt_slots = 2; 1971 } else { 1972 mt_slots = 0; 1973 } 1974 1975 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1976 1977 if (test_bit(EV_ABS, dev->evbit)) { 1978 for (i = 0; i < ABS_CNT; i++) { 1979 if (test_bit(i, dev->absbit)) { 1980 if (input_is_mt_axis(i)) 1981 events += mt_slots; 1982 else 1983 events++; 1984 } 1985 } 1986 } 1987 1988 if (test_bit(EV_REL, dev->evbit)) { 1989 for (i = 0; i < REL_CNT; i++) 1990 if (test_bit(i, dev->relbit)) 1991 events++; 1992 } 1993 1994 /* Make room for KEY and MSC events */ 1995 events += 7; 1996 1997 return events; 1998 } 1999 2000 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2001 do { \ 2002 if (!test_bit(EV_##type, dev->evbit)) \ 2003 memset(dev->bits##bit, 0, \ 2004 sizeof(dev->bits##bit)); \ 2005 } while (0) 2006 2007 static void input_cleanse_bitmasks(struct input_dev *dev) 2008 { 2009 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2010 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2011 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2012 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2013 INPUT_CLEANSE_BITMASK(dev, LED, led); 2014 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2015 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2016 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2017 } 2018 2019 static void __input_unregister_device(struct input_dev *dev) 2020 { 2021 struct input_handle *handle, *next; 2022 2023 input_disconnect_device(dev); 2024 2025 mutex_lock(&input_mutex); 2026 2027 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2028 handle->handler->disconnect(handle); 2029 WARN_ON(!list_empty(&dev->h_list)); 2030 2031 del_timer_sync(&dev->timer); 2032 list_del_init(&dev->node); 2033 2034 input_wakeup_procfs_readers(); 2035 2036 mutex_unlock(&input_mutex); 2037 2038 device_del(&dev->dev); 2039 } 2040 2041 static void devm_input_device_unregister(struct device *dev, void *res) 2042 { 2043 struct input_devres *devres = res; 2044 struct input_dev *input = devres->input; 2045 2046 dev_dbg(dev, "%s: unregistering device %s\n", 2047 __func__, dev_name(&input->dev)); 2048 __input_unregister_device(input); 2049 } 2050 2051 /** 2052 * input_register_device - register device with input core 2053 * @dev: device to be registered 2054 * 2055 * This function registers device with input core. The device must be 2056 * allocated with input_allocate_device() and all it's capabilities 2057 * set up before registering. 2058 * If function fails the device must be freed with input_free_device(). 2059 * Once device has been successfully registered it can be unregistered 2060 * with input_unregister_device(); input_free_device() should not be 2061 * called in this case. 2062 * 2063 * Note that this function is also used to register managed input devices 2064 * (ones allocated with devm_input_allocate_device()). Such managed input 2065 * devices need not be explicitly unregistered or freed, their tear down 2066 * is controlled by the devres infrastructure. It is also worth noting 2067 * that tear down of managed input devices is internally a 2-step process: 2068 * registered managed input device is first unregistered, but stays in 2069 * memory and can still handle input_event() calls (although events will 2070 * not be delivered anywhere). The freeing of managed input device will 2071 * happen later, when devres stack is unwound to the point where device 2072 * allocation was made. 2073 */ 2074 int input_register_device(struct input_dev *dev) 2075 { 2076 struct input_devres *devres = NULL; 2077 struct input_handler *handler; 2078 unsigned int packet_size; 2079 const char *path; 2080 int error; 2081 2082 if (dev->devres_managed) { 2083 devres = devres_alloc(devm_input_device_unregister, 2084 sizeof(struct input_devres), GFP_KERNEL); 2085 if (!devres) 2086 return -ENOMEM; 2087 2088 devres->input = dev; 2089 } 2090 2091 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2092 __set_bit(EV_SYN, dev->evbit); 2093 2094 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2095 __clear_bit(KEY_RESERVED, dev->keybit); 2096 2097 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2098 input_cleanse_bitmasks(dev); 2099 2100 packet_size = input_estimate_events_per_packet(dev); 2101 if (dev->hint_events_per_packet < packet_size) 2102 dev->hint_events_per_packet = packet_size; 2103 2104 dev->max_vals = dev->hint_events_per_packet + 2; 2105 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2106 if (!dev->vals) { 2107 error = -ENOMEM; 2108 goto err_devres_free; 2109 } 2110 2111 /* 2112 * If delay and period are pre-set by the driver, then autorepeating 2113 * is handled by the driver itself and we don't do it in input.c. 2114 */ 2115 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 2116 dev->timer.data = (long) dev; 2117 dev->timer.function = input_repeat_key; 2118 dev->rep[REP_DELAY] = 250; 2119 dev->rep[REP_PERIOD] = 33; 2120 } 2121 2122 if (!dev->getkeycode) 2123 dev->getkeycode = input_default_getkeycode; 2124 2125 if (!dev->setkeycode) 2126 dev->setkeycode = input_default_setkeycode; 2127 2128 error = device_add(&dev->dev); 2129 if (error) 2130 goto err_free_vals; 2131 2132 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2133 pr_info("%s as %s\n", 2134 dev->name ? dev->name : "Unspecified device", 2135 path ? path : "N/A"); 2136 kfree(path); 2137 2138 error = mutex_lock_interruptible(&input_mutex); 2139 if (error) 2140 goto err_device_del; 2141 2142 list_add_tail(&dev->node, &input_dev_list); 2143 2144 list_for_each_entry(handler, &input_handler_list, node) 2145 input_attach_handler(dev, handler); 2146 2147 input_wakeup_procfs_readers(); 2148 2149 mutex_unlock(&input_mutex); 2150 2151 if (dev->devres_managed) { 2152 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2153 __func__, dev_name(&dev->dev)); 2154 devres_add(dev->dev.parent, devres); 2155 } 2156 return 0; 2157 2158 err_device_del: 2159 device_del(&dev->dev); 2160 err_free_vals: 2161 kfree(dev->vals); 2162 dev->vals = NULL; 2163 err_devres_free: 2164 devres_free(devres); 2165 return error; 2166 } 2167 EXPORT_SYMBOL(input_register_device); 2168 2169 /** 2170 * input_unregister_device - unregister previously registered device 2171 * @dev: device to be unregistered 2172 * 2173 * This function unregisters an input device. Once device is unregistered 2174 * the caller should not try to access it as it may get freed at any moment. 2175 */ 2176 void input_unregister_device(struct input_dev *dev) 2177 { 2178 if (dev->devres_managed) { 2179 WARN_ON(devres_destroy(dev->dev.parent, 2180 devm_input_device_unregister, 2181 devm_input_device_match, 2182 dev)); 2183 __input_unregister_device(dev); 2184 /* 2185 * We do not do input_put_device() here because it will be done 2186 * when 2nd devres fires up. 2187 */ 2188 } else { 2189 __input_unregister_device(dev); 2190 input_put_device(dev); 2191 } 2192 } 2193 EXPORT_SYMBOL(input_unregister_device); 2194 2195 /** 2196 * input_register_handler - register a new input handler 2197 * @handler: handler to be registered 2198 * 2199 * This function registers a new input handler (interface) for input 2200 * devices in the system and attaches it to all input devices that 2201 * are compatible with the handler. 2202 */ 2203 int input_register_handler(struct input_handler *handler) 2204 { 2205 struct input_dev *dev; 2206 int error; 2207 2208 error = mutex_lock_interruptible(&input_mutex); 2209 if (error) 2210 return error; 2211 2212 INIT_LIST_HEAD(&handler->h_list); 2213 2214 list_add_tail(&handler->node, &input_handler_list); 2215 2216 list_for_each_entry(dev, &input_dev_list, node) 2217 input_attach_handler(dev, handler); 2218 2219 input_wakeup_procfs_readers(); 2220 2221 mutex_unlock(&input_mutex); 2222 return 0; 2223 } 2224 EXPORT_SYMBOL(input_register_handler); 2225 2226 /** 2227 * input_unregister_handler - unregisters an input handler 2228 * @handler: handler to be unregistered 2229 * 2230 * This function disconnects a handler from its input devices and 2231 * removes it from lists of known handlers. 2232 */ 2233 void input_unregister_handler(struct input_handler *handler) 2234 { 2235 struct input_handle *handle, *next; 2236 2237 mutex_lock(&input_mutex); 2238 2239 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2240 handler->disconnect(handle); 2241 WARN_ON(!list_empty(&handler->h_list)); 2242 2243 list_del_init(&handler->node); 2244 2245 input_wakeup_procfs_readers(); 2246 2247 mutex_unlock(&input_mutex); 2248 } 2249 EXPORT_SYMBOL(input_unregister_handler); 2250 2251 /** 2252 * input_handler_for_each_handle - handle iterator 2253 * @handler: input handler to iterate 2254 * @data: data for the callback 2255 * @fn: function to be called for each handle 2256 * 2257 * Iterate over @bus's list of devices, and call @fn for each, passing 2258 * it @data and stop when @fn returns a non-zero value. The function is 2259 * using RCU to traverse the list and therefore may be usind in atonic 2260 * contexts. The @fn callback is invoked from RCU critical section and 2261 * thus must not sleep. 2262 */ 2263 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2264 int (*fn)(struct input_handle *, void *)) 2265 { 2266 struct input_handle *handle; 2267 int retval = 0; 2268 2269 rcu_read_lock(); 2270 2271 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2272 retval = fn(handle, data); 2273 if (retval) 2274 break; 2275 } 2276 2277 rcu_read_unlock(); 2278 2279 return retval; 2280 } 2281 EXPORT_SYMBOL(input_handler_for_each_handle); 2282 2283 /** 2284 * input_register_handle - register a new input handle 2285 * @handle: handle to register 2286 * 2287 * This function puts a new input handle onto device's 2288 * and handler's lists so that events can flow through 2289 * it once it is opened using input_open_device(). 2290 * 2291 * This function is supposed to be called from handler's 2292 * connect() method. 2293 */ 2294 int input_register_handle(struct input_handle *handle) 2295 { 2296 struct input_handler *handler = handle->handler; 2297 struct input_dev *dev = handle->dev; 2298 int error; 2299 2300 /* 2301 * We take dev->mutex here to prevent race with 2302 * input_release_device(). 2303 */ 2304 error = mutex_lock_interruptible(&dev->mutex); 2305 if (error) 2306 return error; 2307 2308 /* 2309 * Filters go to the head of the list, normal handlers 2310 * to the tail. 2311 */ 2312 if (handler->filter) 2313 list_add_rcu(&handle->d_node, &dev->h_list); 2314 else 2315 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2316 2317 mutex_unlock(&dev->mutex); 2318 2319 /* 2320 * Since we are supposed to be called from ->connect() 2321 * which is mutually exclusive with ->disconnect() 2322 * we can't be racing with input_unregister_handle() 2323 * and so separate lock is not needed here. 2324 */ 2325 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2326 2327 if (handler->start) 2328 handler->start(handle); 2329 2330 return 0; 2331 } 2332 EXPORT_SYMBOL(input_register_handle); 2333 2334 /** 2335 * input_unregister_handle - unregister an input handle 2336 * @handle: handle to unregister 2337 * 2338 * This function removes input handle from device's 2339 * and handler's lists. 2340 * 2341 * This function is supposed to be called from handler's 2342 * disconnect() method. 2343 */ 2344 void input_unregister_handle(struct input_handle *handle) 2345 { 2346 struct input_dev *dev = handle->dev; 2347 2348 list_del_rcu(&handle->h_node); 2349 2350 /* 2351 * Take dev->mutex to prevent race with input_release_device(). 2352 */ 2353 mutex_lock(&dev->mutex); 2354 list_del_rcu(&handle->d_node); 2355 mutex_unlock(&dev->mutex); 2356 2357 synchronize_rcu(); 2358 } 2359 EXPORT_SYMBOL(input_unregister_handle); 2360 2361 /** 2362 * input_get_new_minor - allocates a new input minor number 2363 * @legacy_base: beginning or the legacy range to be searched 2364 * @legacy_num: size of legacy range 2365 * @allow_dynamic: whether we can also take ID from the dynamic range 2366 * 2367 * This function allocates a new device minor for from input major namespace. 2368 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2369 * parameters and whether ID can be allocated from dynamic range if there are 2370 * no free IDs in legacy range. 2371 */ 2372 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2373 bool allow_dynamic) 2374 { 2375 /* 2376 * This function should be called from input handler's ->connect() 2377 * methods, which are serialized with input_mutex, so no additional 2378 * locking is needed here. 2379 */ 2380 if (legacy_base >= 0) { 2381 int minor = ida_simple_get(&input_ida, 2382 legacy_base, 2383 legacy_base + legacy_num, 2384 GFP_KERNEL); 2385 if (minor >= 0 || !allow_dynamic) 2386 return minor; 2387 } 2388 2389 return ida_simple_get(&input_ida, 2390 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2391 GFP_KERNEL); 2392 } 2393 EXPORT_SYMBOL(input_get_new_minor); 2394 2395 /** 2396 * input_free_minor - release previously allocated minor 2397 * @minor: minor to be released 2398 * 2399 * This function releases previously allocated input minor so that it can be 2400 * reused later. 2401 */ 2402 void input_free_minor(unsigned int minor) 2403 { 2404 ida_simple_remove(&input_ida, minor); 2405 } 2406 EXPORT_SYMBOL(input_free_minor); 2407 2408 static int __init input_init(void) 2409 { 2410 int err; 2411 2412 err = class_register(&input_class); 2413 if (err) { 2414 pr_err("unable to register input_dev class\n"); 2415 return err; 2416 } 2417 2418 err = input_proc_init(); 2419 if (err) 2420 goto fail1; 2421 2422 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2423 INPUT_MAX_CHAR_DEVICES, "input"); 2424 if (err) { 2425 pr_err("unable to register char major %d", INPUT_MAJOR); 2426 goto fail2; 2427 } 2428 2429 return 0; 2430 2431 fail2: input_proc_exit(); 2432 fail1: class_unregister(&input_class); 2433 return err; 2434 } 2435 2436 static void __exit input_exit(void) 2437 { 2438 input_proc_exit(); 2439 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2440 INPUT_MAX_CHAR_DEVICES); 2441 class_unregister(&input_class); 2442 } 2443 2444 subsys_initcall(input_init); 2445 module_exit(input_exit); 2446