xref: /openbmc/linux/drivers/input/input.c (revision b755c25f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass event first through all filters and then, if event has not been
104  * filtered out, through all open handles. This function is called with
105  * dev->event_lock held and interrupts disabled.
106  */
107 static unsigned int input_to_handler(struct input_handle *handle,
108 			struct input_value *vals, unsigned int count)
109 {
110 	struct input_handler *handler = handle->handler;
111 	struct input_value *end = vals;
112 	struct input_value *v;
113 
114 	if (handler->filter) {
115 		for (v = vals; v != vals + count; v++) {
116 			if (handler->filter(handle, v->type, v->code, v->value))
117 				continue;
118 			if (end != v)
119 				*end = *v;
120 			end++;
121 		}
122 		count = end - vals;
123 	}
124 
125 	if (!count)
126 		return 0;
127 
128 	if (handler->events)
129 		handler->events(handle, vals, count);
130 	else if (handler->event)
131 		for (v = vals; v != vals + count; v++)
132 			handler->event(handle, v->type, v->code, v->value);
133 
134 	return count;
135 }
136 
137 /*
138  * Pass values first through all filters and then, if event has not been
139  * filtered out, through all open handles. This function is called with
140  * dev->event_lock held and interrupts disabled.
141  */
142 static void input_pass_values(struct input_dev *dev,
143 			      struct input_value *vals, unsigned int count)
144 {
145 	struct input_handle *handle;
146 	struct input_value *v;
147 
148 	lockdep_assert_held(&dev->event_lock);
149 
150 	if (!count)
151 		return;
152 
153 	rcu_read_lock();
154 
155 	handle = rcu_dereference(dev->grab);
156 	if (handle) {
157 		count = input_to_handler(handle, vals, count);
158 	} else {
159 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
160 			if (handle->open) {
161 				count = input_to_handler(handle, vals, count);
162 				if (!count)
163 					break;
164 			}
165 	}
166 
167 	rcu_read_unlock();
168 
169 	/* trigger auto repeat for key events */
170 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
171 		for (v = vals; v != vals + count; v++) {
172 			if (v->type == EV_KEY && v->value != 2) {
173 				if (v->value)
174 					input_start_autorepeat(dev, v->code);
175 				else
176 					input_stop_autorepeat(dev);
177 			}
178 		}
179 	}
180 }
181 
182 #define INPUT_IGNORE_EVENT	0
183 #define INPUT_PASS_TO_HANDLERS	1
184 #define INPUT_PASS_TO_DEVICE	2
185 #define INPUT_SLOT		4
186 #define INPUT_FLUSH		8
187 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
188 
189 static int input_handle_abs_event(struct input_dev *dev,
190 				  unsigned int code, int *pval)
191 {
192 	struct input_mt *mt = dev->mt;
193 	bool is_new_slot = false;
194 	bool is_mt_event;
195 	int *pold;
196 
197 	if (code == ABS_MT_SLOT) {
198 		/*
199 		 * "Stage" the event; we'll flush it later, when we
200 		 * get actual touch data.
201 		 */
202 		if (mt && *pval >= 0 && *pval < mt->num_slots)
203 			mt->slot = *pval;
204 
205 		return INPUT_IGNORE_EVENT;
206 	}
207 
208 	is_mt_event = input_is_mt_value(code);
209 
210 	if (!is_mt_event) {
211 		pold = &dev->absinfo[code].value;
212 	} else if (mt) {
213 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
214 		is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
215 	} else {
216 		/*
217 		 * Bypass filtering for multi-touch events when
218 		 * not employing slots.
219 		 */
220 		pold = NULL;
221 	}
222 
223 	if (pold) {
224 		*pval = input_defuzz_abs_event(*pval, *pold,
225 						dev->absinfo[code].fuzz);
226 		if (*pold == *pval)
227 			return INPUT_IGNORE_EVENT;
228 
229 		*pold = *pval;
230 	}
231 
232 	/* Flush pending "slot" event */
233 	if (is_new_slot) {
234 		dev->absinfo[ABS_MT_SLOT].value = mt->slot;
235 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
236 	}
237 
238 	return INPUT_PASS_TO_HANDLERS;
239 }
240 
241 static int input_get_disposition(struct input_dev *dev,
242 			  unsigned int type, unsigned int code, int *pval)
243 {
244 	int disposition = INPUT_IGNORE_EVENT;
245 	int value = *pval;
246 
247 	/* filter-out events from inhibited devices */
248 	if (dev->inhibited)
249 		return INPUT_IGNORE_EVENT;
250 
251 	switch (type) {
252 
253 	case EV_SYN:
254 		switch (code) {
255 		case SYN_CONFIG:
256 			disposition = INPUT_PASS_TO_ALL;
257 			break;
258 
259 		case SYN_REPORT:
260 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
261 			break;
262 		case SYN_MT_REPORT:
263 			disposition = INPUT_PASS_TO_HANDLERS;
264 			break;
265 		}
266 		break;
267 
268 	case EV_KEY:
269 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
270 
271 			/* auto-repeat bypasses state updates */
272 			if (value == 2) {
273 				disposition = INPUT_PASS_TO_HANDLERS;
274 				break;
275 			}
276 
277 			if (!!test_bit(code, dev->key) != !!value) {
278 
279 				__change_bit(code, dev->key);
280 				disposition = INPUT_PASS_TO_HANDLERS;
281 			}
282 		}
283 		break;
284 
285 	case EV_SW:
286 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
287 		    !!test_bit(code, dev->sw) != !!value) {
288 
289 			__change_bit(code, dev->sw);
290 			disposition = INPUT_PASS_TO_HANDLERS;
291 		}
292 		break;
293 
294 	case EV_ABS:
295 		if (is_event_supported(code, dev->absbit, ABS_MAX))
296 			disposition = input_handle_abs_event(dev, code, &value);
297 
298 		break;
299 
300 	case EV_REL:
301 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
302 			disposition = INPUT_PASS_TO_HANDLERS;
303 
304 		break;
305 
306 	case EV_MSC:
307 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
308 			disposition = INPUT_PASS_TO_ALL;
309 
310 		break;
311 
312 	case EV_LED:
313 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
314 		    !!test_bit(code, dev->led) != !!value) {
315 
316 			__change_bit(code, dev->led);
317 			disposition = INPUT_PASS_TO_ALL;
318 		}
319 		break;
320 
321 	case EV_SND:
322 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
323 
324 			if (!!test_bit(code, dev->snd) != !!value)
325 				__change_bit(code, dev->snd);
326 			disposition = INPUT_PASS_TO_ALL;
327 		}
328 		break;
329 
330 	case EV_REP:
331 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
332 			dev->rep[code] = value;
333 			disposition = INPUT_PASS_TO_ALL;
334 		}
335 		break;
336 
337 	case EV_FF:
338 		if (value >= 0)
339 			disposition = INPUT_PASS_TO_ALL;
340 		break;
341 
342 	case EV_PWR:
343 		disposition = INPUT_PASS_TO_ALL;
344 		break;
345 	}
346 
347 	*pval = value;
348 	return disposition;
349 }
350 
351 static void input_event_dispose(struct input_dev *dev, int disposition,
352 				unsigned int type, unsigned int code, int value)
353 {
354 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
355 		dev->event(dev, type, code, value);
356 
357 	if (!dev->vals)
358 		return;
359 
360 	if (disposition & INPUT_PASS_TO_HANDLERS) {
361 		struct input_value *v;
362 
363 		if (disposition & INPUT_SLOT) {
364 			v = &dev->vals[dev->num_vals++];
365 			v->type = EV_ABS;
366 			v->code = ABS_MT_SLOT;
367 			v->value = dev->mt->slot;
368 		}
369 
370 		v = &dev->vals[dev->num_vals++];
371 		v->type = type;
372 		v->code = code;
373 		v->value = value;
374 	}
375 
376 	if (disposition & INPUT_FLUSH) {
377 		if (dev->num_vals >= 2)
378 			input_pass_values(dev, dev->vals, dev->num_vals);
379 		dev->num_vals = 0;
380 		/*
381 		 * Reset the timestamp on flush so we won't end up
382 		 * with a stale one. Note we only need to reset the
383 		 * monolithic one as we use its presence when deciding
384 		 * whether to generate a synthetic timestamp.
385 		 */
386 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
387 	} else if (dev->num_vals >= dev->max_vals - 2) {
388 		dev->vals[dev->num_vals++] = input_value_sync;
389 		input_pass_values(dev, dev->vals, dev->num_vals);
390 		dev->num_vals = 0;
391 	}
392 }
393 
394 void input_handle_event(struct input_dev *dev,
395 			unsigned int type, unsigned int code, int value)
396 {
397 	int disposition;
398 
399 	lockdep_assert_held(&dev->event_lock);
400 
401 	disposition = input_get_disposition(dev, type, code, &value);
402 	if (disposition != INPUT_IGNORE_EVENT) {
403 		if (type != EV_SYN)
404 			add_input_randomness(type, code, value);
405 
406 		input_event_dispose(dev, disposition, type, code, value);
407 	}
408 }
409 
410 /**
411  * input_event() - report new input event
412  * @dev: device that generated the event
413  * @type: type of the event
414  * @code: event code
415  * @value: value of the event
416  *
417  * This function should be used by drivers implementing various input
418  * devices to report input events. See also input_inject_event().
419  *
420  * NOTE: input_event() may be safely used right after input device was
421  * allocated with input_allocate_device(), even before it is registered
422  * with input_register_device(), but the event will not reach any of the
423  * input handlers. Such early invocation of input_event() may be used
424  * to 'seed' initial state of a switch or initial position of absolute
425  * axis, etc.
426  */
427 void input_event(struct input_dev *dev,
428 		 unsigned int type, unsigned int code, int value)
429 {
430 	unsigned long flags;
431 
432 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
433 
434 		spin_lock_irqsave(&dev->event_lock, flags);
435 		input_handle_event(dev, type, code, value);
436 		spin_unlock_irqrestore(&dev->event_lock, flags);
437 	}
438 }
439 EXPORT_SYMBOL(input_event);
440 
441 /**
442  * input_inject_event() - send input event from input handler
443  * @handle: input handle to send event through
444  * @type: type of the event
445  * @code: event code
446  * @value: value of the event
447  *
448  * Similar to input_event() but will ignore event if device is
449  * "grabbed" and handle injecting event is not the one that owns
450  * the device.
451  */
452 void input_inject_event(struct input_handle *handle,
453 			unsigned int type, unsigned int code, int value)
454 {
455 	struct input_dev *dev = handle->dev;
456 	struct input_handle *grab;
457 	unsigned long flags;
458 
459 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
460 		spin_lock_irqsave(&dev->event_lock, flags);
461 
462 		rcu_read_lock();
463 		grab = rcu_dereference(dev->grab);
464 		if (!grab || grab == handle)
465 			input_handle_event(dev, type, code, value);
466 		rcu_read_unlock();
467 
468 		spin_unlock_irqrestore(&dev->event_lock, flags);
469 	}
470 }
471 EXPORT_SYMBOL(input_inject_event);
472 
473 /**
474  * input_alloc_absinfo - allocates array of input_absinfo structs
475  * @dev: the input device emitting absolute events
476  *
477  * If the absinfo struct the caller asked for is already allocated, this
478  * functions will not do anything.
479  */
480 void input_alloc_absinfo(struct input_dev *dev)
481 {
482 	if (dev->absinfo)
483 		return;
484 
485 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
486 	if (!dev->absinfo) {
487 		dev_err(dev->dev.parent ?: &dev->dev,
488 			"%s: unable to allocate memory\n", __func__);
489 		/*
490 		 * We will handle this allocation failure in
491 		 * input_register_device() when we refuse to register input
492 		 * device with ABS bits but without absinfo.
493 		 */
494 	}
495 }
496 EXPORT_SYMBOL(input_alloc_absinfo);
497 
498 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
499 			  int min, int max, int fuzz, int flat)
500 {
501 	struct input_absinfo *absinfo;
502 
503 	__set_bit(EV_ABS, dev->evbit);
504 	__set_bit(axis, dev->absbit);
505 
506 	input_alloc_absinfo(dev);
507 	if (!dev->absinfo)
508 		return;
509 
510 	absinfo = &dev->absinfo[axis];
511 	absinfo->minimum = min;
512 	absinfo->maximum = max;
513 	absinfo->fuzz = fuzz;
514 	absinfo->flat = flat;
515 }
516 EXPORT_SYMBOL(input_set_abs_params);
517 
518 /**
519  * input_copy_abs - Copy absinfo from one input_dev to another
520  * @dst: Destination input device to copy the abs settings to
521  * @dst_axis: ABS_* value selecting the destination axis
522  * @src: Source input device to copy the abs settings from
523  * @src_axis: ABS_* value selecting the source axis
524  *
525  * Set absinfo for the selected destination axis by copying it from
526  * the specified source input device's source axis.
527  * This is useful to e.g. setup a pen/stylus input-device for combined
528  * touchscreen/pen hardware where the pen uses the same coordinates as
529  * the touchscreen.
530  */
531 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
532 		    const struct input_dev *src, unsigned int src_axis)
533 {
534 	/* src must have EV_ABS and src_axis set */
535 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
536 		      test_bit(src_axis, src->absbit))))
537 		return;
538 
539 	/*
540 	 * input_alloc_absinfo() may have failed for the source. Our caller is
541 	 * expected to catch this when registering the input devices, which may
542 	 * happen after the input_copy_abs() call.
543 	 */
544 	if (!src->absinfo)
545 		return;
546 
547 	input_set_capability(dst, EV_ABS, dst_axis);
548 	if (!dst->absinfo)
549 		return;
550 
551 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
552 }
553 EXPORT_SYMBOL(input_copy_abs);
554 
555 /**
556  * input_grab_device - grabs device for exclusive use
557  * @handle: input handle that wants to own the device
558  *
559  * When a device is grabbed by an input handle all events generated by
560  * the device are delivered only to this handle. Also events injected
561  * by other input handles are ignored while device is grabbed.
562  */
563 int input_grab_device(struct input_handle *handle)
564 {
565 	struct input_dev *dev = handle->dev;
566 	int retval;
567 
568 	retval = mutex_lock_interruptible(&dev->mutex);
569 	if (retval)
570 		return retval;
571 
572 	if (dev->grab) {
573 		retval = -EBUSY;
574 		goto out;
575 	}
576 
577 	rcu_assign_pointer(dev->grab, handle);
578 
579  out:
580 	mutex_unlock(&dev->mutex);
581 	return retval;
582 }
583 EXPORT_SYMBOL(input_grab_device);
584 
585 static void __input_release_device(struct input_handle *handle)
586 {
587 	struct input_dev *dev = handle->dev;
588 	struct input_handle *grabber;
589 
590 	grabber = rcu_dereference_protected(dev->grab,
591 					    lockdep_is_held(&dev->mutex));
592 	if (grabber == handle) {
593 		rcu_assign_pointer(dev->grab, NULL);
594 		/* Make sure input_pass_values() notices that grab is gone */
595 		synchronize_rcu();
596 
597 		list_for_each_entry(handle, &dev->h_list, d_node)
598 			if (handle->open && handle->handler->start)
599 				handle->handler->start(handle);
600 	}
601 }
602 
603 /**
604  * input_release_device - release previously grabbed device
605  * @handle: input handle that owns the device
606  *
607  * Releases previously grabbed device so that other input handles can
608  * start receiving input events. Upon release all handlers attached
609  * to the device have their start() method called so they have a change
610  * to synchronize device state with the rest of the system.
611  */
612 void input_release_device(struct input_handle *handle)
613 {
614 	struct input_dev *dev = handle->dev;
615 
616 	mutex_lock(&dev->mutex);
617 	__input_release_device(handle);
618 	mutex_unlock(&dev->mutex);
619 }
620 EXPORT_SYMBOL(input_release_device);
621 
622 /**
623  * input_open_device - open input device
624  * @handle: handle through which device is being accessed
625  *
626  * This function should be called by input handlers when they
627  * want to start receive events from given input device.
628  */
629 int input_open_device(struct input_handle *handle)
630 {
631 	struct input_dev *dev = handle->dev;
632 	int retval;
633 
634 	retval = mutex_lock_interruptible(&dev->mutex);
635 	if (retval)
636 		return retval;
637 
638 	if (dev->going_away) {
639 		retval = -ENODEV;
640 		goto out;
641 	}
642 
643 	handle->open++;
644 
645 	if (dev->users++ || dev->inhibited) {
646 		/*
647 		 * Device is already opened and/or inhibited,
648 		 * so we can exit immediately and report success.
649 		 */
650 		goto out;
651 	}
652 
653 	if (dev->open) {
654 		retval = dev->open(dev);
655 		if (retval) {
656 			dev->users--;
657 			handle->open--;
658 			/*
659 			 * Make sure we are not delivering any more events
660 			 * through this handle
661 			 */
662 			synchronize_rcu();
663 			goto out;
664 		}
665 	}
666 
667 	if (dev->poller)
668 		input_dev_poller_start(dev->poller);
669 
670  out:
671 	mutex_unlock(&dev->mutex);
672 	return retval;
673 }
674 EXPORT_SYMBOL(input_open_device);
675 
676 int input_flush_device(struct input_handle *handle, struct file *file)
677 {
678 	struct input_dev *dev = handle->dev;
679 	int retval;
680 
681 	retval = mutex_lock_interruptible(&dev->mutex);
682 	if (retval)
683 		return retval;
684 
685 	if (dev->flush)
686 		retval = dev->flush(dev, file);
687 
688 	mutex_unlock(&dev->mutex);
689 	return retval;
690 }
691 EXPORT_SYMBOL(input_flush_device);
692 
693 /**
694  * input_close_device - close input device
695  * @handle: handle through which device is being accessed
696  *
697  * This function should be called by input handlers when they
698  * want to stop receive events from given input device.
699  */
700 void input_close_device(struct input_handle *handle)
701 {
702 	struct input_dev *dev = handle->dev;
703 
704 	mutex_lock(&dev->mutex);
705 
706 	__input_release_device(handle);
707 
708 	if (!--dev->users && !dev->inhibited) {
709 		if (dev->poller)
710 			input_dev_poller_stop(dev->poller);
711 		if (dev->close)
712 			dev->close(dev);
713 	}
714 
715 	if (!--handle->open) {
716 		/*
717 		 * synchronize_rcu() makes sure that input_pass_values()
718 		 * completed and that no more input events are delivered
719 		 * through this handle
720 		 */
721 		synchronize_rcu();
722 	}
723 
724 	mutex_unlock(&dev->mutex);
725 }
726 EXPORT_SYMBOL(input_close_device);
727 
728 /*
729  * Simulate keyup events for all keys that are marked as pressed.
730  * The function must be called with dev->event_lock held.
731  */
732 static bool input_dev_release_keys(struct input_dev *dev)
733 {
734 	bool need_sync = false;
735 	int code;
736 
737 	lockdep_assert_held(&dev->event_lock);
738 
739 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
740 		for_each_set_bit(code, dev->key, KEY_CNT) {
741 			input_handle_event(dev, EV_KEY, code, 0);
742 			need_sync = true;
743 		}
744 	}
745 
746 	return need_sync;
747 }
748 
749 /*
750  * Prepare device for unregistering
751  */
752 static void input_disconnect_device(struct input_dev *dev)
753 {
754 	struct input_handle *handle;
755 
756 	/*
757 	 * Mark device as going away. Note that we take dev->mutex here
758 	 * not to protect access to dev->going_away but rather to ensure
759 	 * that there are no threads in the middle of input_open_device()
760 	 */
761 	mutex_lock(&dev->mutex);
762 	dev->going_away = true;
763 	mutex_unlock(&dev->mutex);
764 
765 	spin_lock_irq(&dev->event_lock);
766 
767 	/*
768 	 * Simulate keyup events for all pressed keys so that handlers
769 	 * are not left with "stuck" keys. The driver may continue
770 	 * generate events even after we done here but they will not
771 	 * reach any handlers.
772 	 */
773 	if (input_dev_release_keys(dev))
774 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
775 
776 	list_for_each_entry(handle, &dev->h_list, d_node)
777 		handle->open = 0;
778 
779 	spin_unlock_irq(&dev->event_lock);
780 }
781 
782 /**
783  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
784  * @ke: keymap entry containing scancode to be converted.
785  * @scancode: pointer to the location where converted scancode should
786  *	be stored.
787  *
788  * This function is used to convert scancode stored in &struct keymap_entry
789  * into scalar form understood by legacy keymap handling methods. These
790  * methods expect scancodes to be represented as 'unsigned int'.
791  */
792 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
793 			     unsigned int *scancode)
794 {
795 	switch (ke->len) {
796 	case 1:
797 		*scancode = *((u8 *)ke->scancode);
798 		break;
799 
800 	case 2:
801 		*scancode = *((u16 *)ke->scancode);
802 		break;
803 
804 	case 4:
805 		*scancode = *((u32 *)ke->scancode);
806 		break;
807 
808 	default:
809 		return -EINVAL;
810 	}
811 
812 	return 0;
813 }
814 EXPORT_SYMBOL(input_scancode_to_scalar);
815 
816 /*
817  * Those routines handle the default case where no [gs]etkeycode() is
818  * defined. In this case, an array indexed by the scancode is used.
819  */
820 
821 static unsigned int input_fetch_keycode(struct input_dev *dev,
822 					unsigned int index)
823 {
824 	switch (dev->keycodesize) {
825 	case 1:
826 		return ((u8 *)dev->keycode)[index];
827 
828 	case 2:
829 		return ((u16 *)dev->keycode)[index];
830 
831 	default:
832 		return ((u32 *)dev->keycode)[index];
833 	}
834 }
835 
836 static int input_default_getkeycode(struct input_dev *dev,
837 				    struct input_keymap_entry *ke)
838 {
839 	unsigned int index;
840 	int error;
841 
842 	if (!dev->keycodesize)
843 		return -EINVAL;
844 
845 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
846 		index = ke->index;
847 	else {
848 		error = input_scancode_to_scalar(ke, &index);
849 		if (error)
850 			return error;
851 	}
852 
853 	if (index >= dev->keycodemax)
854 		return -EINVAL;
855 
856 	ke->keycode = input_fetch_keycode(dev, index);
857 	ke->index = index;
858 	ke->len = sizeof(index);
859 	memcpy(ke->scancode, &index, sizeof(index));
860 
861 	return 0;
862 }
863 
864 static int input_default_setkeycode(struct input_dev *dev,
865 				    const struct input_keymap_entry *ke,
866 				    unsigned int *old_keycode)
867 {
868 	unsigned int index;
869 	int error;
870 	int i;
871 
872 	if (!dev->keycodesize)
873 		return -EINVAL;
874 
875 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
876 		index = ke->index;
877 	} else {
878 		error = input_scancode_to_scalar(ke, &index);
879 		if (error)
880 			return error;
881 	}
882 
883 	if (index >= dev->keycodemax)
884 		return -EINVAL;
885 
886 	if (dev->keycodesize < sizeof(ke->keycode) &&
887 			(ke->keycode >> (dev->keycodesize * 8)))
888 		return -EINVAL;
889 
890 	switch (dev->keycodesize) {
891 		case 1: {
892 			u8 *k = (u8 *)dev->keycode;
893 			*old_keycode = k[index];
894 			k[index] = ke->keycode;
895 			break;
896 		}
897 		case 2: {
898 			u16 *k = (u16 *)dev->keycode;
899 			*old_keycode = k[index];
900 			k[index] = ke->keycode;
901 			break;
902 		}
903 		default: {
904 			u32 *k = (u32 *)dev->keycode;
905 			*old_keycode = k[index];
906 			k[index] = ke->keycode;
907 			break;
908 		}
909 	}
910 
911 	if (*old_keycode <= KEY_MAX) {
912 		__clear_bit(*old_keycode, dev->keybit);
913 		for (i = 0; i < dev->keycodemax; i++) {
914 			if (input_fetch_keycode(dev, i) == *old_keycode) {
915 				__set_bit(*old_keycode, dev->keybit);
916 				/* Setting the bit twice is useless, so break */
917 				break;
918 			}
919 		}
920 	}
921 
922 	__set_bit(ke->keycode, dev->keybit);
923 	return 0;
924 }
925 
926 /**
927  * input_get_keycode - retrieve keycode currently mapped to a given scancode
928  * @dev: input device which keymap is being queried
929  * @ke: keymap entry
930  *
931  * This function should be called by anyone interested in retrieving current
932  * keymap. Presently evdev handlers use it.
933  */
934 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
935 {
936 	unsigned long flags;
937 	int retval;
938 
939 	spin_lock_irqsave(&dev->event_lock, flags);
940 	retval = dev->getkeycode(dev, ke);
941 	spin_unlock_irqrestore(&dev->event_lock, flags);
942 
943 	return retval;
944 }
945 EXPORT_SYMBOL(input_get_keycode);
946 
947 /**
948  * input_set_keycode - attribute a keycode to a given scancode
949  * @dev: input device which keymap is being updated
950  * @ke: new keymap entry
951  *
952  * This function should be called by anyone needing to update current
953  * keymap. Presently keyboard and evdev handlers use it.
954  */
955 int input_set_keycode(struct input_dev *dev,
956 		      const struct input_keymap_entry *ke)
957 {
958 	unsigned long flags;
959 	unsigned int old_keycode;
960 	int retval;
961 
962 	if (ke->keycode > KEY_MAX)
963 		return -EINVAL;
964 
965 	spin_lock_irqsave(&dev->event_lock, flags);
966 
967 	retval = dev->setkeycode(dev, ke, &old_keycode);
968 	if (retval)
969 		goto out;
970 
971 	/* Make sure KEY_RESERVED did not get enabled. */
972 	__clear_bit(KEY_RESERVED, dev->keybit);
973 
974 	/*
975 	 * Simulate keyup event if keycode is not present
976 	 * in the keymap anymore
977 	 */
978 	if (old_keycode > KEY_MAX) {
979 		dev_warn(dev->dev.parent ?: &dev->dev,
980 			 "%s: got too big old keycode %#x\n",
981 			 __func__, old_keycode);
982 	} else if (test_bit(EV_KEY, dev->evbit) &&
983 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
984 		   __test_and_clear_bit(old_keycode, dev->key)) {
985 		/*
986 		 * We have to use input_event_dispose() here directly instead
987 		 * of input_handle_event() because the key we want to release
988 		 * here is considered no longer supported by the device and
989 		 * input_handle_event() will ignore it.
990 		 */
991 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
992 				    EV_KEY, old_keycode, 0);
993 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
994 				    EV_SYN, SYN_REPORT, 1);
995 	}
996 
997  out:
998 	spin_unlock_irqrestore(&dev->event_lock, flags);
999 
1000 	return retval;
1001 }
1002 EXPORT_SYMBOL(input_set_keycode);
1003 
1004 bool input_match_device_id(const struct input_dev *dev,
1005 			   const struct input_device_id *id)
1006 {
1007 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1008 		if (id->bustype != dev->id.bustype)
1009 			return false;
1010 
1011 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1012 		if (id->vendor != dev->id.vendor)
1013 			return false;
1014 
1015 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1016 		if (id->product != dev->id.product)
1017 			return false;
1018 
1019 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1020 		if (id->version != dev->id.version)
1021 			return false;
1022 
1023 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1024 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1025 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1026 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1027 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1028 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1029 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1030 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1031 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1032 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1033 		return false;
1034 	}
1035 
1036 	return true;
1037 }
1038 EXPORT_SYMBOL(input_match_device_id);
1039 
1040 static const struct input_device_id *input_match_device(struct input_handler *handler,
1041 							struct input_dev *dev)
1042 {
1043 	const struct input_device_id *id;
1044 
1045 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1046 		if (input_match_device_id(dev, id) &&
1047 		    (!handler->match || handler->match(handler, dev))) {
1048 			return id;
1049 		}
1050 	}
1051 
1052 	return NULL;
1053 }
1054 
1055 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1056 {
1057 	const struct input_device_id *id;
1058 	int error;
1059 
1060 	id = input_match_device(handler, dev);
1061 	if (!id)
1062 		return -ENODEV;
1063 
1064 	error = handler->connect(handler, dev, id);
1065 	if (error && error != -ENODEV)
1066 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1067 		       handler->name, kobject_name(&dev->dev.kobj), error);
1068 
1069 	return error;
1070 }
1071 
1072 #ifdef CONFIG_COMPAT
1073 
1074 static int input_bits_to_string(char *buf, int buf_size,
1075 				unsigned long bits, bool skip_empty)
1076 {
1077 	int len = 0;
1078 
1079 	if (in_compat_syscall()) {
1080 		u32 dword = bits >> 32;
1081 		if (dword || !skip_empty)
1082 			len += snprintf(buf, buf_size, "%x ", dword);
1083 
1084 		dword = bits & 0xffffffffUL;
1085 		if (dword || !skip_empty || len)
1086 			len += snprintf(buf + len, max(buf_size - len, 0),
1087 					"%x", dword);
1088 	} else {
1089 		if (bits || !skip_empty)
1090 			len += snprintf(buf, buf_size, "%lx", bits);
1091 	}
1092 
1093 	return len;
1094 }
1095 
1096 #else /* !CONFIG_COMPAT */
1097 
1098 static int input_bits_to_string(char *buf, int buf_size,
1099 				unsigned long bits, bool skip_empty)
1100 {
1101 	return bits || !skip_empty ?
1102 		snprintf(buf, buf_size, "%lx", bits) : 0;
1103 }
1104 
1105 #endif
1106 
1107 #ifdef CONFIG_PROC_FS
1108 
1109 static struct proc_dir_entry *proc_bus_input_dir;
1110 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1111 static int input_devices_state;
1112 
1113 static inline void input_wakeup_procfs_readers(void)
1114 {
1115 	input_devices_state++;
1116 	wake_up(&input_devices_poll_wait);
1117 }
1118 
1119 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1120 {
1121 	poll_wait(file, &input_devices_poll_wait, wait);
1122 	if (file->f_version != input_devices_state) {
1123 		file->f_version = input_devices_state;
1124 		return EPOLLIN | EPOLLRDNORM;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 union input_seq_state {
1131 	struct {
1132 		unsigned short pos;
1133 		bool mutex_acquired;
1134 	};
1135 	void *p;
1136 };
1137 
1138 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1139 {
1140 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1141 	int error;
1142 
1143 	/* We need to fit into seq->private pointer */
1144 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1145 
1146 	error = mutex_lock_interruptible(&input_mutex);
1147 	if (error) {
1148 		state->mutex_acquired = false;
1149 		return ERR_PTR(error);
1150 	}
1151 
1152 	state->mutex_acquired = true;
1153 
1154 	return seq_list_start(&input_dev_list, *pos);
1155 }
1156 
1157 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1158 {
1159 	return seq_list_next(v, &input_dev_list, pos);
1160 }
1161 
1162 static void input_seq_stop(struct seq_file *seq, void *v)
1163 {
1164 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1165 
1166 	if (state->mutex_acquired)
1167 		mutex_unlock(&input_mutex);
1168 }
1169 
1170 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1171 				   unsigned long *bitmap, int max)
1172 {
1173 	int i;
1174 	bool skip_empty = true;
1175 	char buf[18];
1176 
1177 	seq_printf(seq, "B: %s=", name);
1178 
1179 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1180 		if (input_bits_to_string(buf, sizeof(buf),
1181 					 bitmap[i], skip_empty)) {
1182 			skip_empty = false;
1183 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * If no output was produced print a single 0.
1189 	 */
1190 	if (skip_empty)
1191 		seq_putc(seq, '0');
1192 
1193 	seq_putc(seq, '\n');
1194 }
1195 
1196 static int input_devices_seq_show(struct seq_file *seq, void *v)
1197 {
1198 	struct input_dev *dev = container_of(v, struct input_dev, node);
1199 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1200 	struct input_handle *handle;
1201 
1202 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1203 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1204 
1205 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1206 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1207 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1208 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1209 	seq_puts(seq, "H: Handlers=");
1210 
1211 	list_for_each_entry(handle, &dev->h_list, d_node)
1212 		seq_printf(seq, "%s ", handle->name);
1213 	seq_putc(seq, '\n');
1214 
1215 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1216 
1217 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1218 	if (test_bit(EV_KEY, dev->evbit))
1219 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1220 	if (test_bit(EV_REL, dev->evbit))
1221 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1222 	if (test_bit(EV_ABS, dev->evbit))
1223 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1224 	if (test_bit(EV_MSC, dev->evbit))
1225 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1226 	if (test_bit(EV_LED, dev->evbit))
1227 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1228 	if (test_bit(EV_SND, dev->evbit))
1229 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1230 	if (test_bit(EV_FF, dev->evbit))
1231 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1232 	if (test_bit(EV_SW, dev->evbit))
1233 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1234 
1235 	seq_putc(seq, '\n');
1236 
1237 	kfree(path);
1238 	return 0;
1239 }
1240 
1241 static const struct seq_operations input_devices_seq_ops = {
1242 	.start	= input_devices_seq_start,
1243 	.next	= input_devices_seq_next,
1244 	.stop	= input_seq_stop,
1245 	.show	= input_devices_seq_show,
1246 };
1247 
1248 static int input_proc_devices_open(struct inode *inode, struct file *file)
1249 {
1250 	return seq_open(file, &input_devices_seq_ops);
1251 }
1252 
1253 static const struct proc_ops input_devices_proc_ops = {
1254 	.proc_open	= input_proc_devices_open,
1255 	.proc_poll	= input_proc_devices_poll,
1256 	.proc_read	= seq_read,
1257 	.proc_lseek	= seq_lseek,
1258 	.proc_release	= seq_release,
1259 };
1260 
1261 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1262 {
1263 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1264 	int error;
1265 
1266 	/* We need to fit into seq->private pointer */
1267 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1268 
1269 	error = mutex_lock_interruptible(&input_mutex);
1270 	if (error) {
1271 		state->mutex_acquired = false;
1272 		return ERR_PTR(error);
1273 	}
1274 
1275 	state->mutex_acquired = true;
1276 	state->pos = *pos;
1277 
1278 	return seq_list_start(&input_handler_list, *pos);
1279 }
1280 
1281 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1282 {
1283 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1284 
1285 	state->pos = *pos + 1;
1286 	return seq_list_next(v, &input_handler_list, pos);
1287 }
1288 
1289 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1290 {
1291 	struct input_handler *handler = container_of(v, struct input_handler, node);
1292 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1293 
1294 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1295 	if (handler->filter)
1296 		seq_puts(seq, " (filter)");
1297 	if (handler->legacy_minors)
1298 		seq_printf(seq, " Minor=%d", handler->minor);
1299 	seq_putc(seq, '\n');
1300 
1301 	return 0;
1302 }
1303 
1304 static const struct seq_operations input_handlers_seq_ops = {
1305 	.start	= input_handlers_seq_start,
1306 	.next	= input_handlers_seq_next,
1307 	.stop	= input_seq_stop,
1308 	.show	= input_handlers_seq_show,
1309 };
1310 
1311 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1312 {
1313 	return seq_open(file, &input_handlers_seq_ops);
1314 }
1315 
1316 static const struct proc_ops input_handlers_proc_ops = {
1317 	.proc_open	= input_proc_handlers_open,
1318 	.proc_read	= seq_read,
1319 	.proc_lseek	= seq_lseek,
1320 	.proc_release	= seq_release,
1321 };
1322 
1323 static int __init input_proc_init(void)
1324 {
1325 	struct proc_dir_entry *entry;
1326 
1327 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1328 	if (!proc_bus_input_dir)
1329 		return -ENOMEM;
1330 
1331 	entry = proc_create("devices", 0, proc_bus_input_dir,
1332 			    &input_devices_proc_ops);
1333 	if (!entry)
1334 		goto fail1;
1335 
1336 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1337 			    &input_handlers_proc_ops);
1338 	if (!entry)
1339 		goto fail2;
1340 
1341 	return 0;
1342 
1343  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1344  fail1: remove_proc_entry("bus/input", NULL);
1345 	return -ENOMEM;
1346 }
1347 
1348 static void input_proc_exit(void)
1349 {
1350 	remove_proc_entry("devices", proc_bus_input_dir);
1351 	remove_proc_entry("handlers", proc_bus_input_dir);
1352 	remove_proc_entry("bus/input", NULL);
1353 }
1354 
1355 #else /* !CONFIG_PROC_FS */
1356 static inline void input_wakeup_procfs_readers(void) { }
1357 static inline int input_proc_init(void) { return 0; }
1358 static inline void input_proc_exit(void) { }
1359 #endif
1360 
1361 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1362 static ssize_t input_dev_show_##name(struct device *dev,		\
1363 				     struct device_attribute *attr,	\
1364 				     char *buf)				\
1365 {									\
1366 	struct input_dev *input_dev = to_input_dev(dev);		\
1367 									\
1368 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1369 			 input_dev->name ? input_dev->name : "");	\
1370 }									\
1371 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1372 
1373 INPUT_DEV_STRING_ATTR_SHOW(name);
1374 INPUT_DEV_STRING_ATTR_SHOW(phys);
1375 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1376 
1377 static int input_print_modalias_bits(char *buf, int size,
1378 				     char name, const unsigned long *bm,
1379 				     unsigned int min_bit, unsigned int max_bit)
1380 {
1381 	int len = 0, i;
1382 
1383 	len += snprintf(buf, max(size, 0), "%c", name);
1384 	for (i = min_bit; i < max_bit; i++)
1385 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1386 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1387 	return len;
1388 }
1389 
1390 static int input_print_modalias(char *buf, int size, const struct input_dev *id,
1391 				int add_cr)
1392 {
1393 	int len;
1394 
1395 	len = snprintf(buf, max(size, 0),
1396 		       "input:b%04Xv%04Xp%04Xe%04X-",
1397 		       id->id.bustype, id->id.vendor,
1398 		       id->id.product, id->id.version);
1399 
1400 	len += input_print_modalias_bits(buf + len, size - len,
1401 				'e', id->evbit, 0, EV_MAX);
1402 	len += input_print_modalias_bits(buf + len, size - len,
1403 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1404 	len += input_print_modalias_bits(buf + len, size - len,
1405 				'r', id->relbit, 0, REL_MAX);
1406 	len += input_print_modalias_bits(buf + len, size - len,
1407 				'a', id->absbit, 0, ABS_MAX);
1408 	len += input_print_modalias_bits(buf + len, size - len,
1409 				'm', id->mscbit, 0, MSC_MAX);
1410 	len += input_print_modalias_bits(buf + len, size - len,
1411 				'l', id->ledbit, 0, LED_MAX);
1412 	len += input_print_modalias_bits(buf + len, size - len,
1413 				's', id->sndbit, 0, SND_MAX);
1414 	len += input_print_modalias_bits(buf + len, size - len,
1415 				'f', id->ffbit, 0, FF_MAX);
1416 	len += input_print_modalias_bits(buf + len, size - len,
1417 				'w', id->swbit, 0, SW_MAX);
1418 
1419 	if (add_cr)
1420 		len += snprintf(buf + len, max(size - len, 0), "\n");
1421 
1422 	return len;
1423 }
1424 
1425 static ssize_t input_dev_show_modalias(struct device *dev,
1426 				       struct device_attribute *attr,
1427 				       char *buf)
1428 {
1429 	struct input_dev *id = to_input_dev(dev);
1430 	ssize_t len;
1431 
1432 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1433 
1434 	return min_t(int, len, PAGE_SIZE);
1435 }
1436 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1437 
1438 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1439 			      int max, int add_cr);
1440 
1441 static ssize_t input_dev_show_properties(struct device *dev,
1442 					 struct device_attribute *attr,
1443 					 char *buf)
1444 {
1445 	struct input_dev *input_dev = to_input_dev(dev);
1446 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1447 				     INPUT_PROP_MAX, true);
1448 	return min_t(int, len, PAGE_SIZE);
1449 }
1450 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1451 
1452 static int input_inhibit_device(struct input_dev *dev);
1453 static int input_uninhibit_device(struct input_dev *dev);
1454 
1455 static ssize_t inhibited_show(struct device *dev,
1456 			      struct device_attribute *attr,
1457 			      char *buf)
1458 {
1459 	struct input_dev *input_dev = to_input_dev(dev);
1460 
1461 	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1462 }
1463 
1464 static ssize_t inhibited_store(struct device *dev,
1465 			       struct device_attribute *attr, const char *buf,
1466 			       size_t len)
1467 {
1468 	struct input_dev *input_dev = to_input_dev(dev);
1469 	ssize_t rv;
1470 	bool inhibited;
1471 
1472 	if (kstrtobool(buf, &inhibited))
1473 		return -EINVAL;
1474 
1475 	if (inhibited)
1476 		rv = input_inhibit_device(input_dev);
1477 	else
1478 		rv = input_uninhibit_device(input_dev);
1479 
1480 	if (rv != 0)
1481 		return rv;
1482 
1483 	return len;
1484 }
1485 
1486 static DEVICE_ATTR_RW(inhibited);
1487 
1488 static struct attribute *input_dev_attrs[] = {
1489 	&dev_attr_name.attr,
1490 	&dev_attr_phys.attr,
1491 	&dev_attr_uniq.attr,
1492 	&dev_attr_modalias.attr,
1493 	&dev_attr_properties.attr,
1494 	&dev_attr_inhibited.attr,
1495 	NULL
1496 };
1497 
1498 static const struct attribute_group input_dev_attr_group = {
1499 	.attrs	= input_dev_attrs,
1500 };
1501 
1502 #define INPUT_DEV_ID_ATTR(name)						\
1503 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1504 					struct device_attribute *attr,	\
1505 					char *buf)			\
1506 {									\
1507 	struct input_dev *input_dev = to_input_dev(dev);		\
1508 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1509 }									\
1510 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1511 
1512 INPUT_DEV_ID_ATTR(bustype);
1513 INPUT_DEV_ID_ATTR(vendor);
1514 INPUT_DEV_ID_ATTR(product);
1515 INPUT_DEV_ID_ATTR(version);
1516 
1517 static struct attribute *input_dev_id_attrs[] = {
1518 	&dev_attr_bustype.attr,
1519 	&dev_attr_vendor.attr,
1520 	&dev_attr_product.attr,
1521 	&dev_attr_version.attr,
1522 	NULL
1523 };
1524 
1525 static const struct attribute_group input_dev_id_attr_group = {
1526 	.name	= "id",
1527 	.attrs	= input_dev_id_attrs,
1528 };
1529 
1530 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1531 			      int max, int add_cr)
1532 {
1533 	int i;
1534 	int len = 0;
1535 	bool skip_empty = true;
1536 
1537 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1538 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1539 					    bitmap[i], skip_empty);
1540 		if (len) {
1541 			skip_empty = false;
1542 			if (i > 0)
1543 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * If no output was produced print a single 0.
1549 	 */
1550 	if (len == 0)
1551 		len = snprintf(buf, buf_size, "%d", 0);
1552 
1553 	if (add_cr)
1554 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1555 
1556 	return len;
1557 }
1558 
1559 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1560 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1561 				       struct device_attribute *attr,	\
1562 				       char *buf)			\
1563 {									\
1564 	struct input_dev *input_dev = to_input_dev(dev);		\
1565 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1566 				     input_dev->bm##bit, ev##_MAX,	\
1567 				     true);				\
1568 	return min_t(int, len, PAGE_SIZE);				\
1569 }									\
1570 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1571 
1572 INPUT_DEV_CAP_ATTR(EV, ev);
1573 INPUT_DEV_CAP_ATTR(KEY, key);
1574 INPUT_DEV_CAP_ATTR(REL, rel);
1575 INPUT_DEV_CAP_ATTR(ABS, abs);
1576 INPUT_DEV_CAP_ATTR(MSC, msc);
1577 INPUT_DEV_CAP_ATTR(LED, led);
1578 INPUT_DEV_CAP_ATTR(SND, snd);
1579 INPUT_DEV_CAP_ATTR(FF, ff);
1580 INPUT_DEV_CAP_ATTR(SW, sw);
1581 
1582 static struct attribute *input_dev_caps_attrs[] = {
1583 	&dev_attr_ev.attr,
1584 	&dev_attr_key.attr,
1585 	&dev_attr_rel.attr,
1586 	&dev_attr_abs.attr,
1587 	&dev_attr_msc.attr,
1588 	&dev_attr_led.attr,
1589 	&dev_attr_snd.attr,
1590 	&dev_attr_ff.attr,
1591 	&dev_attr_sw.attr,
1592 	NULL
1593 };
1594 
1595 static const struct attribute_group input_dev_caps_attr_group = {
1596 	.name	= "capabilities",
1597 	.attrs	= input_dev_caps_attrs,
1598 };
1599 
1600 static const struct attribute_group *input_dev_attr_groups[] = {
1601 	&input_dev_attr_group,
1602 	&input_dev_id_attr_group,
1603 	&input_dev_caps_attr_group,
1604 	&input_poller_attribute_group,
1605 	NULL
1606 };
1607 
1608 static void input_dev_release(struct device *device)
1609 {
1610 	struct input_dev *dev = to_input_dev(device);
1611 
1612 	input_ff_destroy(dev);
1613 	input_mt_destroy_slots(dev);
1614 	kfree(dev->poller);
1615 	kfree(dev->absinfo);
1616 	kfree(dev->vals);
1617 	kfree(dev);
1618 
1619 	module_put(THIS_MODULE);
1620 }
1621 
1622 /*
1623  * Input uevent interface - loading event handlers based on
1624  * device bitfields.
1625  */
1626 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1627 				   const char *name, const unsigned long *bitmap, int max)
1628 {
1629 	int len;
1630 
1631 	if (add_uevent_var(env, "%s", name))
1632 		return -ENOMEM;
1633 
1634 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1635 				 sizeof(env->buf) - env->buflen,
1636 				 bitmap, max, false);
1637 	if (len >= (sizeof(env->buf) - env->buflen))
1638 		return -ENOMEM;
1639 
1640 	env->buflen += len;
1641 	return 0;
1642 }
1643 
1644 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1645 					 const struct input_dev *dev)
1646 {
1647 	int len;
1648 
1649 	if (add_uevent_var(env, "MODALIAS="))
1650 		return -ENOMEM;
1651 
1652 	len = input_print_modalias(&env->buf[env->buflen - 1],
1653 				   sizeof(env->buf) - env->buflen,
1654 				   dev, 0);
1655 	if (len >= (sizeof(env->buf) - env->buflen))
1656 		return -ENOMEM;
1657 
1658 	env->buflen += len;
1659 	return 0;
1660 }
1661 
1662 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1663 	do {								\
1664 		int err = add_uevent_var(env, fmt, val);		\
1665 		if (err)						\
1666 			return err;					\
1667 	} while (0)
1668 
1669 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1670 	do {								\
1671 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1672 		if (err)						\
1673 			return err;					\
1674 	} while (0)
1675 
1676 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1677 	do {								\
1678 		int err = input_add_uevent_modalias_var(env, dev);	\
1679 		if (err)						\
1680 			return err;					\
1681 	} while (0)
1682 
1683 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1684 {
1685 	const struct input_dev *dev = to_input_dev(device);
1686 
1687 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1688 				dev->id.bustype, dev->id.vendor,
1689 				dev->id.product, dev->id.version);
1690 	if (dev->name)
1691 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1692 	if (dev->phys)
1693 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1694 	if (dev->uniq)
1695 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1696 
1697 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1698 
1699 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1700 	if (test_bit(EV_KEY, dev->evbit))
1701 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1702 	if (test_bit(EV_REL, dev->evbit))
1703 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1704 	if (test_bit(EV_ABS, dev->evbit))
1705 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1706 	if (test_bit(EV_MSC, dev->evbit))
1707 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1708 	if (test_bit(EV_LED, dev->evbit))
1709 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1710 	if (test_bit(EV_SND, dev->evbit))
1711 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1712 	if (test_bit(EV_FF, dev->evbit))
1713 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1714 	if (test_bit(EV_SW, dev->evbit))
1715 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1716 
1717 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1718 
1719 	return 0;
1720 }
1721 
1722 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1723 	do {								\
1724 		int i;							\
1725 		bool active;						\
1726 									\
1727 		if (!test_bit(EV_##type, dev->evbit))			\
1728 			break;						\
1729 									\
1730 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1731 			active = test_bit(i, dev->bits);		\
1732 			if (!active && !on)				\
1733 				continue;				\
1734 									\
1735 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1736 		}							\
1737 	} while (0)
1738 
1739 static void input_dev_toggle(struct input_dev *dev, bool activate)
1740 {
1741 	if (!dev->event)
1742 		return;
1743 
1744 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1745 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1746 
1747 	if (activate && test_bit(EV_REP, dev->evbit)) {
1748 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1749 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1750 	}
1751 }
1752 
1753 /**
1754  * input_reset_device() - reset/restore the state of input device
1755  * @dev: input device whose state needs to be reset
1756  *
1757  * This function tries to reset the state of an opened input device and
1758  * bring internal state and state if the hardware in sync with each other.
1759  * We mark all keys as released, restore LED state, repeat rate, etc.
1760  */
1761 void input_reset_device(struct input_dev *dev)
1762 {
1763 	unsigned long flags;
1764 
1765 	mutex_lock(&dev->mutex);
1766 	spin_lock_irqsave(&dev->event_lock, flags);
1767 
1768 	input_dev_toggle(dev, true);
1769 	if (input_dev_release_keys(dev))
1770 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1771 
1772 	spin_unlock_irqrestore(&dev->event_lock, flags);
1773 	mutex_unlock(&dev->mutex);
1774 }
1775 EXPORT_SYMBOL(input_reset_device);
1776 
1777 static int input_inhibit_device(struct input_dev *dev)
1778 {
1779 	mutex_lock(&dev->mutex);
1780 
1781 	if (dev->inhibited)
1782 		goto out;
1783 
1784 	if (dev->users) {
1785 		if (dev->close)
1786 			dev->close(dev);
1787 		if (dev->poller)
1788 			input_dev_poller_stop(dev->poller);
1789 	}
1790 
1791 	spin_lock_irq(&dev->event_lock);
1792 	input_mt_release_slots(dev);
1793 	input_dev_release_keys(dev);
1794 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1795 	input_dev_toggle(dev, false);
1796 	spin_unlock_irq(&dev->event_lock);
1797 
1798 	dev->inhibited = true;
1799 
1800 out:
1801 	mutex_unlock(&dev->mutex);
1802 	return 0;
1803 }
1804 
1805 static int input_uninhibit_device(struct input_dev *dev)
1806 {
1807 	int ret = 0;
1808 
1809 	mutex_lock(&dev->mutex);
1810 
1811 	if (!dev->inhibited)
1812 		goto out;
1813 
1814 	if (dev->users) {
1815 		if (dev->open) {
1816 			ret = dev->open(dev);
1817 			if (ret)
1818 				goto out;
1819 		}
1820 		if (dev->poller)
1821 			input_dev_poller_start(dev->poller);
1822 	}
1823 
1824 	dev->inhibited = false;
1825 	spin_lock_irq(&dev->event_lock);
1826 	input_dev_toggle(dev, true);
1827 	spin_unlock_irq(&dev->event_lock);
1828 
1829 out:
1830 	mutex_unlock(&dev->mutex);
1831 	return ret;
1832 }
1833 
1834 static int input_dev_suspend(struct device *dev)
1835 {
1836 	struct input_dev *input_dev = to_input_dev(dev);
1837 
1838 	spin_lock_irq(&input_dev->event_lock);
1839 
1840 	/*
1841 	 * Keys that are pressed now are unlikely to be
1842 	 * still pressed when we resume.
1843 	 */
1844 	if (input_dev_release_keys(input_dev))
1845 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1846 
1847 	/* Turn off LEDs and sounds, if any are active. */
1848 	input_dev_toggle(input_dev, false);
1849 
1850 	spin_unlock_irq(&input_dev->event_lock);
1851 
1852 	return 0;
1853 }
1854 
1855 static int input_dev_resume(struct device *dev)
1856 {
1857 	struct input_dev *input_dev = to_input_dev(dev);
1858 
1859 	spin_lock_irq(&input_dev->event_lock);
1860 
1861 	/* Restore state of LEDs and sounds, if any were active. */
1862 	input_dev_toggle(input_dev, true);
1863 
1864 	spin_unlock_irq(&input_dev->event_lock);
1865 
1866 	return 0;
1867 }
1868 
1869 static int input_dev_freeze(struct device *dev)
1870 {
1871 	struct input_dev *input_dev = to_input_dev(dev);
1872 
1873 	spin_lock_irq(&input_dev->event_lock);
1874 
1875 	/*
1876 	 * Keys that are pressed now are unlikely to be
1877 	 * still pressed when we resume.
1878 	 */
1879 	if (input_dev_release_keys(input_dev))
1880 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1881 
1882 	spin_unlock_irq(&input_dev->event_lock);
1883 
1884 	return 0;
1885 }
1886 
1887 static int input_dev_poweroff(struct device *dev)
1888 {
1889 	struct input_dev *input_dev = to_input_dev(dev);
1890 
1891 	spin_lock_irq(&input_dev->event_lock);
1892 
1893 	/* Turn off LEDs and sounds, if any are active. */
1894 	input_dev_toggle(input_dev, false);
1895 
1896 	spin_unlock_irq(&input_dev->event_lock);
1897 
1898 	return 0;
1899 }
1900 
1901 static const struct dev_pm_ops input_dev_pm_ops = {
1902 	.suspend	= input_dev_suspend,
1903 	.resume		= input_dev_resume,
1904 	.freeze		= input_dev_freeze,
1905 	.poweroff	= input_dev_poweroff,
1906 	.restore	= input_dev_resume,
1907 };
1908 
1909 static const struct device_type input_dev_type = {
1910 	.groups		= input_dev_attr_groups,
1911 	.release	= input_dev_release,
1912 	.uevent		= input_dev_uevent,
1913 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1914 };
1915 
1916 static char *input_devnode(const struct device *dev, umode_t *mode)
1917 {
1918 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1919 }
1920 
1921 struct class input_class = {
1922 	.name		= "input",
1923 	.devnode	= input_devnode,
1924 };
1925 EXPORT_SYMBOL_GPL(input_class);
1926 
1927 /**
1928  * input_allocate_device - allocate memory for new input device
1929  *
1930  * Returns prepared struct input_dev or %NULL.
1931  *
1932  * NOTE: Use input_free_device() to free devices that have not been
1933  * registered; input_unregister_device() should be used for already
1934  * registered devices.
1935  */
1936 struct input_dev *input_allocate_device(void)
1937 {
1938 	static atomic_t input_no = ATOMIC_INIT(-1);
1939 	struct input_dev *dev;
1940 
1941 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1942 	if (dev) {
1943 		dev->dev.type = &input_dev_type;
1944 		dev->dev.class = &input_class;
1945 		device_initialize(&dev->dev);
1946 		mutex_init(&dev->mutex);
1947 		spin_lock_init(&dev->event_lock);
1948 		timer_setup(&dev->timer, NULL, 0);
1949 		INIT_LIST_HEAD(&dev->h_list);
1950 		INIT_LIST_HEAD(&dev->node);
1951 
1952 		dev_set_name(&dev->dev, "input%lu",
1953 			     (unsigned long)atomic_inc_return(&input_no));
1954 
1955 		__module_get(THIS_MODULE);
1956 	}
1957 
1958 	return dev;
1959 }
1960 EXPORT_SYMBOL(input_allocate_device);
1961 
1962 struct input_devres {
1963 	struct input_dev *input;
1964 };
1965 
1966 static int devm_input_device_match(struct device *dev, void *res, void *data)
1967 {
1968 	struct input_devres *devres = res;
1969 
1970 	return devres->input == data;
1971 }
1972 
1973 static void devm_input_device_release(struct device *dev, void *res)
1974 {
1975 	struct input_devres *devres = res;
1976 	struct input_dev *input = devres->input;
1977 
1978 	dev_dbg(dev, "%s: dropping reference to %s\n",
1979 		__func__, dev_name(&input->dev));
1980 	input_put_device(input);
1981 }
1982 
1983 /**
1984  * devm_input_allocate_device - allocate managed input device
1985  * @dev: device owning the input device being created
1986  *
1987  * Returns prepared struct input_dev or %NULL.
1988  *
1989  * Managed input devices do not need to be explicitly unregistered or
1990  * freed as it will be done automatically when owner device unbinds from
1991  * its driver (or binding fails). Once managed input device is allocated,
1992  * it is ready to be set up and registered in the same fashion as regular
1993  * input device. There are no special devm_input_device_[un]register()
1994  * variants, regular ones work with both managed and unmanaged devices,
1995  * should you need them. In most cases however, managed input device need
1996  * not be explicitly unregistered or freed.
1997  *
1998  * NOTE: the owner device is set up as parent of input device and users
1999  * should not override it.
2000  */
2001 struct input_dev *devm_input_allocate_device(struct device *dev)
2002 {
2003 	struct input_dev *input;
2004 	struct input_devres *devres;
2005 
2006 	devres = devres_alloc(devm_input_device_release,
2007 			      sizeof(*devres), GFP_KERNEL);
2008 	if (!devres)
2009 		return NULL;
2010 
2011 	input = input_allocate_device();
2012 	if (!input) {
2013 		devres_free(devres);
2014 		return NULL;
2015 	}
2016 
2017 	input->dev.parent = dev;
2018 	input->devres_managed = true;
2019 
2020 	devres->input = input;
2021 	devres_add(dev, devres);
2022 
2023 	return input;
2024 }
2025 EXPORT_SYMBOL(devm_input_allocate_device);
2026 
2027 /**
2028  * input_free_device - free memory occupied by input_dev structure
2029  * @dev: input device to free
2030  *
2031  * This function should only be used if input_register_device()
2032  * was not called yet or if it failed. Once device was registered
2033  * use input_unregister_device() and memory will be freed once last
2034  * reference to the device is dropped.
2035  *
2036  * Device should be allocated by input_allocate_device().
2037  *
2038  * NOTE: If there are references to the input device then memory
2039  * will not be freed until last reference is dropped.
2040  */
2041 void input_free_device(struct input_dev *dev)
2042 {
2043 	if (dev) {
2044 		if (dev->devres_managed)
2045 			WARN_ON(devres_destroy(dev->dev.parent,
2046 						devm_input_device_release,
2047 						devm_input_device_match,
2048 						dev));
2049 		input_put_device(dev);
2050 	}
2051 }
2052 EXPORT_SYMBOL(input_free_device);
2053 
2054 /**
2055  * input_set_timestamp - set timestamp for input events
2056  * @dev: input device to set timestamp for
2057  * @timestamp: the time at which the event has occurred
2058  *   in CLOCK_MONOTONIC
2059  *
2060  * This function is intended to provide to the input system a more
2061  * accurate time of when an event actually occurred. The driver should
2062  * call this function as soon as a timestamp is acquired ensuring
2063  * clock conversions in input_set_timestamp are done correctly.
2064  *
2065  * The system entering suspend state between timestamp acquisition and
2066  * calling input_set_timestamp can result in inaccurate conversions.
2067  */
2068 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2069 {
2070 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2071 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2072 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2073 							   TK_OFFS_BOOT);
2074 }
2075 EXPORT_SYMBOL(input_set_timestamp);
2076 
2077 /**
2078  * input_get_timestamp - get timestamp for input events
2079  * @dev: input device to get timestamp from
2080  *
2081  * A valid timestamp is a timestamp of non-zero value.
2082  */
2083 ktime_t *input_get_timestamp(struct input_dev *dev)
2084 {
2085 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2086 
2087 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2088 		input_set_timestamp(dev, ktime_get());
2089 
2090 	return dev->timestamp;
2091 }
2092 EXPORT_SYMBOL(input_get_timestamp);
2093 
2094 /**
2095  * input_set_capability - mark device as capable of a certain event
2096  * @dev: device that is capable of emitting or accepting event
2097  * @type: type of the event (EV_KEY, EV_REL, etc...)
2098  * @code: event code
2099  *
2100  * In addition to setting up corresponding bit in appropriate capability
2101  * bitmap the function also adjusts dev->evbit.
2102  */
2103 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2104 {
2105 	if (type < EV_CNT && input_max_code[type] &&
2106 	    code > input_max_code[type]) {
2107 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2108 		       type);
2109 		dump_stack();
2110 		return;
2111 	}
2112 
2113 	switch (type) {
2114 	case EV_KEY:
2115 		__set_bit(code, dev->keybit);
2116 		break;
2117 
2118 	case EV_REL:
2119 		__set_bit(code, dev->relbit);
2120 		break;
2121 
2122 	case EV_ABS:
2123 		input_alloc_absinfo(dev);
2124 		__set_bit(code, dev->absbit);
2125 		break;
2126 
2127 	case EV_MSC:
2128 		__set_bit(code, dev->mscbit);
2129 		break;
2130 
2131 	case EV_SW:
2132 		__set_bit(code, dev->swbit);
2133 		break;
2134 
2135 	case EV_LED:
2136 		__set_bit(code, dev->ledbit);
2137 		break;
2138 
2139 	case EV_SND:
2140 		__set_bit(code, dev->sndbit);
2141 		break;
2142 
2143 	case EV_FF:
2144 		__set_bit(code, dev->ffbit);
2145 		break;
2146 
2147 	case EV_PWR:
2148 		/* do nothing */
2149 		break;
2150 
2151 	default:
2152 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2153 		dump_stack();
2154 		return;
2155 	}
2156 
2157 	__set_bit(type, dev->evbit);
2158 }
2159 EXPORT_SYMBOL(input_set_capability);
2160 
2161 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2162 {
2163 	int mt_slots;
2164 	int i;
2165 	unsigned int events;
2166 
2167 	if (dev->mt) {
2168 		mt_slots = dev->mt->num_slots;
2169 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2170 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2171 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2172 		mt_slots = clamp(mt_slots, 2, 32);
2173 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2174 		mt_slots = 2;
2175 	} else {
2176 		mt_slots = 0;
2177 	}
2178 
2179 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2180 
2181 	if (test_bit(EV_ABS, dev->evbit))
2182 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2183 			events += input_is_mt_axis(i) ? mt_slots : 1;
2184 
2185 	if (test_bit(EV_REL, dev->evbit))
2186 		events += bitmap_weight(dev->relbit, REL_CNT);
2187 
2188 	/* Make room for KEY and MSC events */
2189 	events += 7;
2190 
2191 	return events;
2192 }
2193 
2194 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2195 	do {								\
2196 		if (!test_bit(EV_##type, dev->evbit))			\
2197 			memset(dev->bits##bit, 0,			\
2198 				sizeof(dev->bits##bit));		\
2199 	} while (0)
2200 
2201 static void input_cleanse_bitmasks(struct input_dev *dev)
2202 {
2203 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2204 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2205 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2206 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2207 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2208 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2209 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2210 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2211 }
2212 
2213 static void __input_unregister_device(struct input_dev *dev)
2214 {
2215 	struct input_handle *handle, *next;
2216 
2217 	input_disconnect_device(dev);
2218 
2219 	mutex_lock(&input_mutex);
2220 
2221 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2222 		handle->handler->disconnect(handle);
2223 	WARN_ON(!list_empty(&dev->h_list));
2224 
2225 	del_timer_sync(&dev->timer);
2226 	list_del_init(&dev->node);
2227 
2228 	input_wakeup_procfs_readers();
2229 
2230 	mutex_unlock(&input_mutex);
2231 
2232 	device_del(&dev->dev);
2233 }
2234 
2235 static void devm_input_device_unregister(struct device *dev, void *res)
2236 {
2237 	struct input_devres *devres = res;
2238 	struct input_dev *input = devres->input;
2239 
2240 	dev_dbg(dev, "%s: unregistering device %s\n",
2241 		__func__, dev_name(&input->dev));
2242 	__input_unregister_device(input);
2243 }
2244 
2245 /*
2246  * Generate software autorepeat event. Note that we take
2247  * dev->event_lock here to avoid racing with input_event
2248  * which may cause keys get "stuck".
2249  */
2250 static void input_repeat_key(struct timer_list *t)
2251 {
2252 	struct input_dev *dev = from_timer(dev, t, timer);
2253 	unsigned long flags;
2254 
2255 	spin_lock_irqsave(&dev->event_lock, flags);
2256 
2257 	if (!dev->inhibited &&
2258 	    test_bit(dev->repeat_key, dev->key) &&
2259 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2260 
2261 		input_set_timestamp(dev, ktime_get());
2262 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2263 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2264 
2265 		if (dev->rep[REP_PERIOD])
2266 			mod_timer(&dev->timer, jiffies +
2267 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2268 	}
2269 
2270 	spin_unlock_irqrestore(&dev->event_lock, flags);
2271 }
2272 
2273 /**
2274  * input_enable_softrepeat - enable software autorepeat
2275  * @dev: input device
2276  * @delay: repeat delay
2277  * @period: repeat period
2278  *
2279  * Enable software autorepeat on the input device.
2280  */
2281 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2282 {
2283 	dev->timer.function = input_repeat_key;
2284 	dev->rep[REP_DELAY] = delay;
2285 	dev->rep[REP_PERIOD] = period;
2286 }
2287 EXPORT_SYMBOL(input_enable_softrepeat);
2288 
2289 bool input_device_enabled(struct input_dev *dev)
2290 {
2291 	lockdep_assert_held(&dev->mutex);
2292 
2293 	return !dev->inhibited && dev->users > 0;
2294 }
2295 EXPORT_SYMBOL_GPL(input_device_enabled);
2296 
2297 /**
2298  * input_register_device - register device with input core
2299  * @dev: device to be registered
2300  *
2301  * This function registers device with input core. The device must be
2302  * allocated with input_allocate_device() and all it's capabilities
2303  * set up before registering.
2304  * If function fails the device must be freed with input_free_device().
2305  * Once device has been successfully registered it can be unregistered
2306  * with input_unregister_device(); input_free_device() should not be
2307  * called in this case.
2308  *
2309  * Note that this function is also used to register managed input devices
2310  * (ones allocated with devm_input_allocate_device()). Such managed input
2311  * devices need not be explicitly unregistered or freed, their tear down
2312  * is controlled by the devres infrastructure. It is also worth noting
2313  * that tear down of managed input devices is internally a 2-step process:
2314  * registered managed input device is first unregistered, but stays in
2315  * memory and can still handle input_event() calls (although events will
2316  * not be delivered anywhere). The freeing of managed input device will
2317  * happen later, when devres stack is unwound to the point where device
2318  * allocation was made.
2319  */
2320 int input_register_device(struct input_dev *dev)
2321 {
2322 	struct input_devres *devres = NULL;
2323 	struct input_handler *handler;
2324 	unsigned int packet_size;
2325 	const char *path;
2326 	int error;
2327 
2328 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2329 		dev_err(&dev->dev,
2330 			"Absolute device without dev->absinfo, refusing to register\n");
2331 		return -EINVAL;
2332 	}
2333 
2334 	if (dev->devres_managed) {
2335 		devres = devres_alloc(devm_input_device_unregister,
2336 				      sizeof(*devres), GFP_KERNEL);
2337 		if (!devres)
2338 			return -ENOMEM;
2339 
2340 		devres->input = dev;
2341 	}
2342 
2343 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2344 	__set_bit(EV_SYN, dev->evbit);
2345 
2346 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2347 	__clear_bit(KEY_RESERVED, dev->keybit);
2348 
2349 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2350 	input_cleanse_bitmasks(dev);
2351 
2352 	packet_size = input_estimate_events_per_packet(dev);
2353 	if (dev->hint_events_per_packet < packet_size)
2354 		dev->hint_events_per_packet = packet_size;
2355 
2356 	dev->max_vals = dev->hint_events_per_packet + 2;
2357 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2358 	if (!dev->vals) {
2359 		error = -ENOMEM;
2360 		goto err_devres_free;
2361 	}
2362 
2363 	/*
2364 	 * If delay and period are pre-set by the driver, then autorepeating
2365 	 * is handled by the driver itself and we don't do it in input.c.
2366 	 */
2367 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2368 		input_enable_softrepeat(dev, 250, 33);
2369 
2370 	if (!dev->getkeycode)
2371 		dev->getkeycode = input_default_getkeycode;
2372 
2373 	if (!dev->setkeycode)
2374 		dev->setkeycode = input_default_setkeycode;
2375 
2376 	if (dev->poller)
2377 		input_dev_poller_finalize(dev->poller);
2378 
2379 	error = device_add(&dev->dev);
2380 	if (error)
2381 		goto err_free_vals;
2382 
2383 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2384 	pr_info("%s as %s\n",
2385 		dev->name ? dev->name : "Unspecified device",
2386 		path ? path : "N/A");
2387 	kfree(path);
2388 
2389 	error = mutex_lock_interruptible(&input_mutex);
2390 	if (error)
2391 		goto err_device_del;
2392 
2393 	list_add_tail(&dev->node, &input_dev_list);
2394 
2395 	list_for_each_entry(handler, &input_handler_list, node)
2396 		input_attach_handler(dev, handler);
2397 
2398 	input_wakeup_procfs_readers();
2399 
2400 	mutex_unlock(&input_mutex);
2401 
2402 	if (dev->devres_managed) {
2403 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2404 			__func__, dev_name(&dev->dev));
2405 		devres_add(dev->dev.parent, devres);
2406 	}
2407 	return 0;
2408 
2409 err_device_del:
2410 	device_del(&dev->dev);
2411 err_free_vals:
2412 	kfree(dev->vals);
2413 	dev->vals = NULL;
2414 err_devres_free:
2415 	devres_free(devres);
2416 	return error;
2417 }
2418 EXPORT_SYMBOL(input_register_device);
2419 
2420 /**
2421  * input_unregister_device - unregister previously registered device
2422  * @dev: device to be unregistered
2423  *
2424  * This function unregisters an input device. Once device is unregistered
2425  * the caller should not try to access it as it may get freed at any moment.
2426  */
2427 void input_unregister_device(struct input_dev *dev)
2428 {
2429 	if (dev->devres_managed) {
2430 		WARN_ON(devres_destroy(dev->dev.parent,
2431 					devm_input_device_unregister,
2432 					devm_input_device_match,
2433 					dev));
2434 		__input_unregister_device(dev);
2435 		/*
2436 		 * We do not do input_put_device() here because it will be done
2437 		 * when 2nd devres fires up.
2438 		 */
2439 	} else {
2440 		__input_unregister_device(dev);
2441 		input_put_device(dev);
2442 	}
2443 }
2444 EXPORT_SYMBOL(input_unregister_device);
2445 
2446 /**
2447  * input_register_handler - register a new input handler
2448  * @handler: handler to be registered
2449  *
2450  * This function registers a new input handler (interface) for input
2451  * devices in the system and attaches it to all input devices that
2452  * are compatible with the handler.
2453  */
2454 int input_register_handler(struct input_handler *handler)
2455 {
2456 	struct input_dev *dev;
2457 	int error;
2458 
2459 	error = mutex_lock_interruptible(&input_mutex);
2460 	if (error)
2461 		return error;
2462 
2463 	INIT_LIST_HEAD(&handler->h_list);
2464 
2465 	list_add_tail(&handler->node, &input_handler_list);
2466 
2467 	list_for_each_entry(dev, &input_dev_list, node)
2468 		input_attach_handler(dev, handler);
2469 
2470 	input_wakeup_procfs_readers();
2471 
2472 	mutex_unlock(&input_mutex);
2473 	return 0;
2474 }
2475 EXPORT_SYMBOL(input_register_handler);
2476 
2477 /**
2478  * input_unregister_handler - unregisters an input handler
2479  * @handler: handler to be unregistered
2480  *
2481  * This function disconnects a handler from its input devices and
2482  * removes it from lists of known handlers.
2483  */
2484 void input_unregister_handler(struct input_handler *handler)
2485 {
2486 	struct input_handle *handle, *next;
2487 
2488 	mutex_lock(&input_mutex);
2489 
2490 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2491 		handler->disconnect(handle);
2492 	WARN_ON(!list_empty(&handler->h_list));
2493 
2494 	list_del_init(&handler->node);
2495 
2496 	input_wakeup_procfs_readers();
2497 
2498 	mutex_unlock(&input_mutex);
2499 }
2500 EXPORT_SYMBOL(input_unregister_handler);
2501 
2502 /**
2503  * input_handler_for_each_handle - handle iterator
2504  * @handler: input handler to iterate
2505  * @data: data for the callback
2506  * @fn: function to be called for each handle
2507  *
2508  * Iterate over @bus's list of devices, and call @fn for each, passing
2509  * it @data and stop when @fn returns a non-zero value. The function is
2510  * using RCU to traverse the list and therefore may be using in atomic
2511  * contexts. The @fn callback is invoked from RCU critical section and
2512  * thus must not sleep.
2513  */
2514 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2515 				  int (*fn)(struct input_handle *, void *))
2516 {
2517 	struct input_handle *handle;
2518 	int retval = 0;
2519 
2520 	rcu_read_lock();
2521 
2522 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2523 		retval = fn(handle, data);
2524 		if (retval)
2525 			break;
2526 	}
2527 
2528 	rcu_read_unlock();
2529 
2530 	return retval;
2531 }
2532 EXPORT_SYMBOL(input_handler_for_each_handle);
2533 
2534 /**
2535  * input_register_handle - register a new input handle
2536  * @handle: handle to register
2537  *
2538  * This function puts a new input handle onto device's
2539  * and handler's lists so that events can flow through
2540  * it once it is opened using input_open_device().
2541  *
2542  * This function is supposed to be called from handler's
2543  * connect() method.
2544  */
2545 int input_register_handle(struct input_handle *handle)
2546 {
2547 	struct input_handler *handler = handle->handler;
2548 	struct input_dev *dev = handle->dev;
2549 	int error;
2550 
2551 	/*
2552 	 * We take dev->mutex here to prevent race with
2553 	 * input_release_device().
2554 	 */
2555 	error = mutex_lock_interruptible(&dev->mutex);
2556 	if (error)
2557 		return error;
2558 
2559 	/*
2560 	 * Filters go to the head of the list, normal handlers
2561 	 * to the tail.
2562 	 */
2563 	if (handler->filter)
2564 		list_add_rcu(&handle->d_node, &dev->h_list);
2565 	else
2566 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2567 
2568 	mutex_unlock(&dev->mutex);
2569 
2570 	/*
2571 	 * Since we are supposed to be called from ->connect()
2572 	 * which is mutually exclusive with ->disconnect()
2573 	 * we can't be racing with input_unregister_handle()
2574 	 * and so separate lock is not needed here.
2575 	 */
2576 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2577 
2578 	if (handler->start)
2579 		handler->start(handle);
2580 
2581 	return 0;
2582 }
2583 EXPORT_SYMBOL(input_register_handle);
2584 
2585 /**
2586  * input_unregister_handle - unregister an input handle
2587  * @handle: handle to unregister
2588  *
2589  * This function removes input handle from device's
2590  * and handler's lists.
2591  *
2592  * This function is supposed to be called from handler's
2593  * disconnect() method.
2594  */
2595 void input_unregister_handle(struct input_handle *handle)
2596 {
2597 	struct input_dev *dev = handle->dev;
2598 
2599 	list_del_rcu(&handle->h_node);
2600 
2601 	/*
2602 	 * Take dev->mutex to prevent race with input_release_device().
2603 	 */
2604 	mutex_lock(&dev->mutex);
2605 	list_del_rcu(&handle->d_node);
2606 	mutex_unlock(&dev->mutex);
2607 
2608 	synchronize_rcu();
2609 }
2610 EXPORT_SYMBOL(input_unregister_handle);
2611 
2612 /**
2613  * input_get_new_minor - allocates a new input minor number
2614  * @legacy_base: beginning or the legacy range to be searched
2615  * @legacy_num: size of legacy range
2616  * @allow_dynamic: whether we can also take ID from the dynamic range
2617  *
2618  * This function allocates a new device minor for from input major namespace.
2619  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2620  * parameters and whether ID can be allocated from dynamic range if there are
2621  * no free IDs in legacy range.
2622  */
2623 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2624 			bool allow_dynamic)
2625 {
2626 	/*
2627 	 * This function should be called from input handler's ->connect()
2628 	 * methods, which are serialized with input_mutex, so no additional
2629 	 * locking is needed here.
2630 	 */
2631 	if (legacy_base >= 0) {
2632 		int minor = ida_simple_get(&input_ida,
2633 					   legacy_base,
2634 					   legacy_base + legacy_num,
2635 					   GFP_KERNEL);
2636 		if (minor >= 0 || !allow_dynamic)
2637 			return minor;
2638 	}
2639 
2640 	return ida_simple_get(&input_ida,
2641 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2642 			      GFP_KERNEL);
2643 }
2644 EXPORT_SYMBOL(input_get_new_minor);
2645 
2646 /**
2647  * input_free_minor - release previously allocated minor
2648  * @minor: minor to be released
2649  *
2650  * This function releases previously allocated input minor so that it can be
2651  * reused later.
2652  */
2653 void input_free_minor(unsigned int minor)
2654 {
2655 	ida_simple_remove(&input_ida, minor);
2656 }
2657 EXPORT_SYMBOL(input_free_minor);
2658 
2659 static int __init input_init(void)
2660 {
2661 	int err;
2662 
2663 	err = class_register(&input_class);
2664 	if (err) {
2665 		pr_err("unable to register input_dev class\n");
2666 		return err;
2667 	}
2668 
2669 	err = input_proc_init();
2670 	if (err)
2671 		goto fail1;
2672 
2673 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2674 				     INPUT_MAX_CHAR_DEVICES, "input");
2675 	if (err) {
2676 		pr_err("unable to register char major %d", INPUT_MAJOR);
2677 		goto fail2;
2678 	}
2679 
2680 	return 0;
2681 
2682  fail2:	input_proc_exit();
2683  fail1:	class_unregister(&input_class);
2684 	return err;
2685 }
2686 
2687 static void __exit input_exit(void)
2688 {
2689 	input_proc_exit();
2690 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2691 				 INPUT_MAX_CHAR_DEVICES);
2692 	class_unregister(&input_class);
2693 }
2694 
2695 subsys_initcall(input_init);
2696 module_exit(input_exit);
2697