xref: /openbmc/linux/drivers/input/input.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 	if (test_bit(EV_REP, dev->evbit) &&
75 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 	    dev->timer.function) {
77 		dev->repeat_key = code;
78 		mod_timer(&dev->timer,
79 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 	}
81 }
82 
83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 	del_timer(&dev->timer);
86 }
87 
88 /*
89  * Pass event first through all filters and then, if event has not been
90  * filtered out, through all open handles. This function is called with
91  * dev->event_lock held and interrupts disabled.
92  */
93 static unsigned int input_to_handler(struct input_handle *handle,
94 			struct input_value *vals, unsigned int count)
95 {
96 	struct input_handler *handler = handle->handler;
97 	struct input_value *end = vals;
98 	struct input_value *v;
99 
100 	if (handler->filter) {
101 		for (v = vals; v != vals + count; v++) {
102 			if (handler->filter(handle, v->type, v->code, v->value))
103 				continue;
104 			if (end != v)
105 				*end = *v;
106 			end++;
107 		}
108 		count = end - vals;
109 	}
110 
111 	if (!count)
112 		return 0;
113 
114 	if (handler->events)
115 		handler->events(handle, vals, count);
116 	else if (handler->event)
117 		for (v = vals; v != vals + count; v++)
118 			handler->event(handle, v->type, v->code, v->value);
119 
120 	return count;
121 }
122 
123 /*
124  * Pass values first through all filters and then, if event has not been
125  * filtered out, through all open handles. This function is called with
126  * dev->event_lock held and interrupts disabled.
127  */
128 static void input_pass_values(struct input_dev *dev,
129 			      struct input_value *vals, unsigned int count)
130 {
131 	struct input_handle *handle;
132 	struct input_value *v;
133 
134 	if (!count)
135 		return;
136 
137 	rcu_read_lock();
138 
139 	handle = rcu_dereference(dev->grab);
140 	if (handle) {
141 		count = input_to_handler(handle, vals, count);
142 	} else {
143 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 			if (handle->open) {
145 				count = input_to_handler(handle, vals, count);
146 				if (!count)
147 					break;
148 			}
149 	}
150 
151 	rcu_read_unlock();
152 
153 	/* trigger auto repeat for key events */
154 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 		for (v = vals; v != vals + count; v++) {
156 			if (v->type == EV_KEY && v->value != 2) {
157 				if (v->value)
158 					input_start_autorepeat(dev, v->code);
159 				else
160 					input_stop_autorepeat(dev);
161 			}
162 		}
163 	}
164 }
165 
166 static void input_pass_event(struct input_dev *dev,
167 			     unsigned int type, unsigned int code, int value)
168 {
169 	struct input_value vals[] = { { type, code, value } };
170 
171 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173 
174 /*
175  * Generate software autorepeat event. Note that we take
176  * dev->event_lock here to avoid racing with input_event
177  * which may cause keys get "stuck".
178  */
179 static void input_repeat_key(struct timer_list *t)
180 {
181 	struct input_dev *dev = from_timer(dev, t, timer);
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&dev->event_lock, flags);
185 
186 	if (test_bit(dev->repeat_key, dev->key) &&
187 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 		struct input_value vals[] =  {
189 			{ EV_KEY, dev->repeat_key, 2 },
190 			input_value_sync
191 		};
192 
193 		input_set_timestamp(dev, ktime_get());
194 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
195 
196 		if (dev->rep[REP_PERIOD])
197 			mod_timer(&dev->timer, jiffies +
198 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 	}
200 
201 	spin_unlock_irqrestore(&dev->event_lock, flags);
202 }
203 
204 #define INPUT_IGNORE_EVENT	0
205 #define INPUT_PASS_TO_HANDLERS	1
206 #define INPUT_PASS_TO_DEVICE	2
207 #define INPUT_SLOT		4
208 #define INPUT_FLUSH		8
209 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210 
211 static int input_handle_abs_event(struct input_dev *dev,
212 				  unsigned int code, int *pval)
213 {
214 	struct input_mt *mt = dev->mt;
215 	bool is_mt_event;
216 	int *pold;
217 
218 	if (code == ABS_MT_SLOT) {
219 		/*
220 		 * "Stage" the event; we'll flush it later, when we
221 		 * get actual touch data.
222 		 */
223 		if (mt && *pval >= 0 && *pval < mt->num_slots)
224 			mt->slot = *pval;
225 
226 		return INPUT_IGNORE_EVENT;
227 	}
228 
229 	is_mt_event = input_is_mt_value(code);
230 
231 	if (!is_mt_event) {
232 		pold = &dev->absinfo[code].value;
233 	} else if (mt) {
234 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
235 	} else {
236 		/*
237 		 * Bypass filtering for multi-touch events when
238 		 * not employing slots.
239 		 */
240 		pold = NULL;
241 	}
242 
243 	if (pold) {
244 		*pval = input_defuzz_abs_event(*pval, *pold,
245 						dev->absinfo[code].fuzz);
246 		if (*pold == *pval)
247 			return INPUT_IGNORE_EVENT;
248 
249 		*pold = *pval;
250 	}
251 
252 	/* Flush pending "slot" event */
253 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
254 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
255 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 	}
257 
258 	return INPUT_PASS_TO_HANDLERS;
259 }
260 
261 static int input_get_disposition(struct input_dev *dev,
262 			  unsigned int type, unsigned int code, int *pval)
263 {
264 	int disposition = INPUT_IGNORE_EVENT;
265 	int value = *pval;
266 
267 	switch (type) {
268 
269 	case EV_SYN:
270 		switch (code) {
271 		case SYN_CONFIG:
272 			disposition = INPUT_PASS_TO_ALL;
273 			break;
274 
275 		case SYN_REPORT:
276 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
277 			break;
278 		case SYN_MT_REPORT:
279 			disposition = INPUT_PASS_TO_HANDLERS;
280 			break;
281 		}
282 		break;
283 
284 	case EV_KEY:
285 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
286 
287 			/* auto-repeat bypasses state updates */
288 			if (value == 2) {
289 				disposition = INPUT_PASS_TO_HANDLERS;
290 				break;
291 			}
292 
293 			if (!!test_bit(code, dev->key) != !!value) {
294 
295 				__change_bit(code, dev->key);
296 				disposition = INPUT_PASS_TO_HANDLERS;
297 			}
298 		}
299 		break;
300 
301 	case EV_SW:
302 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
303 		    !!test_bit(code, dev->sw) != !!value) {
304 
305 			__change_bit(code, dev->sw);
306 			disposition = INPUT_PASS_TO_HANDLERS;
307 		}
308 		break;
309 
310 	case EV_ABS:
311 		if (is_event_supported(code, dev->absbit, ABS_MAX))
312 			disposition = input_handle_abs_event(dev, code, &value);
313 
314 		break;
315 
316 	case EV_REL:
317 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
318 			disposition = INPUT_PASS_TO_HANDLERS;
319 
320 		break;
321 
322 	case EV_MSC:
323 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
324 			disposition = INPUT_PASS_TO_ALL;
325 
326 		break;
327 
328 	case EV_LED:
329 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
330 		    !!test_bit(code, dev->led) != !!value) {
331 
332 			__change_bit(code, dev->led);
333 			disposition = INPUT_PASS_TO_ALL;
334 		}
335 		break;
336 
337 	case EV_SND:
338 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
339 
340 			if (!!test_bit(code, dev->snd) != !!value)
341 				__change_bit(code, dev->snd);
342 			disposition = INPUT_PASS_TO_ALL;
343 		}
344 		break;
345 
346 	case EV_REP:
347 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
348 			dev->rep[code] = value;
349 			disposition = INPUT_PASS_TO_ALL;
350 		}
351 		break;
352 
353 	case EV_FF:
354 		if (value >= 0)
355 			disposition = INPUT_PASS_TO_ALL;
356 		break;
357 
358 	case EV_PWR:
359 		disposition = INPUT_PASS_TO_ALL;
360 		break;
361 	}
362 
363 	*pval = value;
364 	return disposition;
365 }
366 
367 static void input_handle_event(struct input_dev *dev,
368 			       unsigned int type, unsigned int code, int value)
369 {
370 	int disposition;
371 
372 	/* filter-out events from inhibited devices */
373 	if (dev->inhibited)
374 		return;
375 
376 	disposition = input_get_disposition(dev, type, code, &value);
377 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
378 		add_input_randomness(type, code, value);
379 
380 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
381 		dev->event(dev, type, code, value);
382 
383 	if (!dev->vals)
384 		return;
385 
386 	if (disposition & INPUT_PASS_TO_HANDLERS) {
387 		struct input_value *v;
388 
389 		if (disposition & INPUT_SLOT) {
390 			v = &dev->vals[dev->num_vals++];
391 			v->type = EV_ABS;
392 			v->code = ABS_MT_SLOT;
393 			v->value = dev->mt->slot;
394 		}
395 
396 		v = &dev->vals[dev->num_vals++];
397 		v->type = type;
398 		v->code = code;
399 		v->value = value;
400 	}
401 
402 	if (disposition & INPUT_FLUSH) {
403 		if (dev->num_vals >= 2)
404 			input_pass_values(dev, dev->vals, dev->num_vals);
405 		dev->num_vals = 0;
406 		/*
407 		 * Reset the timestamp on flush so we won't end up
408 		 * with a stale one. Note we only need to reset the
409 		 * monolithic one as we use its presence when deciding
410 		 * whether to generate a synthetic timestamp.
411 		 */
412 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
413 	} else if (dev->num_vals >= dev->max_vals - 2) {
414 		dev->vals[dev->num_vals++] = input_value_sync;
415 		input_pass_values(dev, dev->vals, dev->num_vals);
416 		dev->num_vals = 0;
417 	}
418 
419 }
420 
421 /**
422  * input_event() - report new input event
423  * @dev: device that generated the event
424  * @type: type of the event
425  * @code: event code
426  * @value: value of the event
427  *
428  * This function should be used by drivers implementing various input
429  * devices to report input events. See also input_inject_event().
430  *
431  * NOTE: input_event() may be safely used right after input device was
432  * allocated with input_allocate_device(), even before it is registered
433  * with input_register_device(), but the event will not reach any of the
434  * input handlers. Such early invocation of input_event() may be used
435  * to 'seed' initial state of a switch or initial position of absolute
436  * axis, etc.
437  */
438 void input_event(struct input_dev *dev,
439 		 unsigned int type, unsigned int code, int value)
440 {
441 	unsigned long flags;
442 
443 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
444 
445 		spin_lock_irqsave(&dev->event_lock, flags);
446 		input_handle_event(dev, type, code, value);
447 		spin_unlock_irqrestore(&dev->event_lock, flags);
448 	}
449 }
450 EXPORT_SYMBOL(input_event);
451 
452 /**
453  * input_inject_event() - send input event from input handler
454  * @handle: input handle to send event through
455  * @type: type of the event
456  * @code: event code
457  * @value: value of the event
458  *
459  * Similar to input_event() but will ignore event if device is
460  * "grabbed" and handle injecting event is not the one that owns
461  * the device.
462  */
463 void input_inject_event(struct input_handle *handle,
464 			unsigned int type, unsigned int code, int value)
465 {
466 	struct input_dev *dev = handle->dev;
467 	struct input_handle *grab;
468 	unsigned long flags;
469 
470 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
471 		spin_lock_irqsave(&dev->event_lock, flags);
472 
473 		rcu_read_lock();
474 		grab = rcu_dereference(dev->grab);
475 		if (!grab || grab == handle)
476 			input_handle_event(dev, type, code, value);
477 		rcu_read_unlock();
478 
479 		spin_unlock_irqrestore(&dev->event_lock, flags);
480 	}
481 }
482 EXPORT_SYMBOL(input_inject_event);
483 
484 /**
485  * input_alloc_absinfo - allocates array of input_absinfo structs
486  * @dev: the input device emitting absolute events
487  *
488  * If the absinfo struct the caller asked for is already allocated, this
489  * functions will not do anything.
490  */
491 void input_alloc_absinfo(struct input_dev *dev)
492 {
493 	if (dev->absinfo)
494 		return;
495 
496 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
497 	if (!dev->absinfo) {
498 		dev_err(dev->dev.parent ?: &dev->dev,
499 			"%s: unable to allocate memory\n", __func__);
500 		/*
501 		 * We will handle this allocation failure in
502 		 * input_register_device() when we refuse to register input
503 		 * device with ABS bits but without absinfo.
504 		 */
505 	}
506 }
507 EXPORT_SYMBOL(input_alloc_absinfo);
508 
509 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
510 			  int min, int max, int fuzz, int flat)
511 {
512 	struct input_absinfo *absinfo;
513 
514 	input_alloc_absinfo(dev);
515 	if (!dev->absinfo)
516 		return;
517 
518 	absinfo = &dev->absinfo[axis];
519 	absinfo->minimum = min;
520 	absinfo->maximum = max;
521 	absinfo->fuzz = fuzz;
522 	absinfo->flat = flat;
523 
524 	__set_bit(EV_ABS, dev->evbit);
525 	__set_bit(axis, dev->absbit);
526 }
527 EXPORT_SYMBOL(input_set_abs_params);
528 
529 
530 /**
531  * input_grab_device - grabs device for exclusive use
532  * @handle: input handle that wants to own the device
533  *
534  * When a device is grabbed by an input handle all events generated by
535  * the device are delivered only to this handle. Also events injected
536  * by other input handles are ignored while device is grabbed.
537  */
538 int input_grab_device(struct input_handle *handle)
539 {
540 	struct input_dev *dev = handle->dev;
541 	int retval;
542 
543 	retval = mutex_lock_interruptible(&dev->mutex);
544 	if (retval)
545 		return retval;
546 
547 	if (dev->grab) {
548 		retval = -EBUSY;
549 		goto out;
550 	}
551 
552 	rcu_assign_pointer(dev->grab, handle);
553 
554  out:
555 	mutex_unlock(&dev->mutex);
556 	return retval;
557 }
558 EXPORT_SYMBOL(input_grab_device);
559 
560 static void __input_release_device(struct input_handle *handle)
561 {
562 	struct input_dev *dev = handle->dev;
563 	struct input_handle *grabber;
564 
565 	grabber = rcu_dereference_protected(dev->grab,
566 					    lockdep_is_held(&dev->mutex));
567 	if (grabber == handle) {
568 		rcu_assign_pointer(dev->grab, NULL);
569 		/* Make sure input_pass_event() notices that grab is gone */
570 		synchronize_rcu();
571 
572 		list_for_each_entry(handle, &dev->h_list, d_node)
573 			if (handle->open && handle->handler->start)
574 				handle->handler->start(handle);
575 	}
576 }
577 
578 /**
579  * input_release_device - release previously grabbed device
580  * @handle: input handle that owns the device
581  *
582  * Releases previously grabbed device so that other input handles can
583  * start receiving input events. Upon release all handlers attached
584  * to the device have their start() method called so they have a change
585  * to synchronize device state with the rest of the system.
586  */
587 void input_release_device(struct input_handle *handle)
588 {
589 	struct input_dev *dev = handle->dev;
590 
591 	mutex_lock(&dev->mutex);
592 	__input_release_device(handle);
593 	mutex_unlock(&dev->mutex);
594 }
595 EXPORT_SYMBOL(input_release_device);
596 
597 /**
598  * input_open_device - open input device
599  * @handle: handle through which device is being accessed
600  *
601  * This function should be called by input handlers when they
602  * want to start receive events from given input device.
603  */
604 int input_open_device(struct input_handle *handle)
605 {
606 	struct input_dev *dev = handle->dev;
607 	int retval;
608 
609 	retval = mutex_lock_interruptible(&dev->mutex);
610 	if (retval)
611 		return retval;
612 
613 	if (dev->going_away) {
614 		retval = -ENODEV;
615 		goto out;
616 	}
617 
618 	handle->open++;
619 
620 	if (dev->users++ || dev->inhibited) {
621 		/*
622 		 * Device is already opened and/or inhibited,
623 		 * so we can exit immediately and report success.
624 		 */
625 		goto out;
626 	}
627 
628 	if (dev->open) {
629 		retval = dev->open(dev);
630 		if (retval) {
631 			dev->users--;
632 			handle->open--;
633 			/*
634 			 * Make sure we are not delivering any more events
635 			 * through this handle
636 			 */
637 			synchronize_rcu();
638 			goto out;
639 		}
640 	}
641 
642 	if (dev->poller)
643 		input_dev_poller_start(dev->poller);
644 
645  out:
646 	mutex_unlock(&dev->mutex);
647 	return retval;
648 }
649 EXPORT_SYMBOL(input_open_device);
650 
651 int input_flush_device(struct input_handle *handle, struct file *file)
652 {
653 	struct input_dev *dev = handle->dev;
654 	int retval;
655 
656 	retval = mutex_lock_interruptible(&dev->mutex);
657 	if (retval)
658 		return retval;
659 
660 	if (dev->flush)
661 		retval = dev->flush(dev, file);
662 
663 	mutex_unlock(&dev->mutex);
664 	return retval;
665 }
666 EXPORT_SYMBOL(input_flush_device);
667 
668 /**
669  * input_close_device - close input device
670  * @handle: handle through which device is being accessed
671  *
672  * This function should be called by input handlers when they
673  * want to stop receive events from given input device.
674  */
675 void input_close_device(struct input_handle *handle)
676 {
677 	struct input_dev *dev = handle->dev;
678 
679 	mutex_lock(&dev->mutex);
680 
681 	__input_release_device(handle);
682 
683 	if (!dev->inhibited && !--dev->users) {
684 		if (dev->poller)
685 			input_dev_poller_stop(dev->poller);
686 		if (dev->close)
687 			dev->close(dev);
688 	}
689 
690 	if (!--handle->open) {
691 		/*
692 		 * synchronize_rcu() makes sure that input_pass_event()
693 		 * completed and that no more input events are delivered
694 		 * through this handle
695 		 */
696 		synchronize_rcu();
697 	}
698 
699 	mutex_unlock(&dev->mutex);
700 }
701 EXPORT_SYMBOL(input_close_device);
702 
703 /*
704  * Simulate keyup events for all keys that are marked as pressed.
705  * The function must be called with dev->event_lock held.
706  */
707 static void input_dev_release_keys(struct input_dev *dev)
708 {
709 	bool need_sync = false;
710 	int code;
711 
712 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
713 		for_each_set_bit(code, dev->key, KEY_CNT) {
714 			input_pass_event(dev, EV_KEY, code, 0);
715 			need_sync = true;
716 		}
717 
718 		if (need_sync)
719 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
720 
721 		memset(dev->key, 0, sizeof(dev->key));
722 	}
723 }
724 
725 /*
726  * Prepare device for unregistering
727  */
728 static void input_disconnect_device(struct input_dev *dev)
729 {
730 	struct input_handle *handle;
731 
732 	/*
733 	 * Mark device as going away. Note that we take dev->mutex here
734 	 * not to protect access to dev->going_away but rather to ensure
735 	 * that there are no threads in the middle of input_open_device()
736 	 */
737 	mutex_lock(&dev->mutex);
738 	dev->going_away = true;
739 	mutex_unlock(&dev->mutex);
740 
741 	spin_lock_irq(&dev->event_lock);
742 
743 	/*
744 	 * Simulate keyup events for all pressed keys so that handlers
745 	 * are not left with "stuck" keys. The driver may continue
746 	 * generate events even after we done here but they will not
747 	 * reach any handlers.
748 	 */
749 	input_dev_release_keys(dev);
750 
751 	list_for_each_entry(handle, &dev->h_list, d_node)
752 		handle->open = 0;
753 
754 	spin_unlock_irq(&dev->event_lock);
755 }
756 
757 /**
758  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
759  * @ke: keymap entry containing scancode to be converted.
760  * @scancode: pointer to the location where converted scancode should
761  *	be stored.
762  *
763  * This function is used to convert scancode stored in &struct keymap_entry
764  * into scalar form understood by legacy keymap handling methods. These
765  * methods expect scancodes to be represented as 'unsigned int'.
766  */
767 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
768 			     unsigned int *scancode)
769 {
770 	switch (ke->len) {
771 	case 1:
772 		*scancode = *((u8 *)ke->scancode);
773 		break;
774 
775 	case 2:
776 		*scancode = *((u16 *)ke->scancode);
777 		break;
778 
779 	case 4:
780 		*scancode = *((u32 *)ke->scancode);
781 		break;
782 
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	return 0;
788 }
789 EXPORT_SYMBOL(input_scancode_to_scalar);
790 
791 /*
792  * Those routines handle the default case where no [gs]etkeycode() is
793  * defined. In this case, an array indexed by the scancode is used.
794  */
795 
796 static unsigned int input_fetch_keycode(struct input_dev *dev,
797 					unsigned int index)
798 {
799 	switch (dev->keycodesize) {
800 	case 1:
801 		return ((u8 *)dev->keycode)[index];
802 
803 	case 2:
804 		return ((u16 *)dev->keycode)[index];
805 
806 	default:
807 		return ((u32 *)dev->keycode)[index];
808 	}
809 }
810 
811 static int input_default_getkeycode(struct input_dev *dev,
812 				    struct input_keymap_entry *ke)
813 {
814 	unsigned int index;
815 	int error;
816 
817 	if (!dev->keycodesize)
818 		return -EINVAL;
819 
820 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
821 		index = ke->index;
822 	else {
823 		error = input_scancode_to_scalar(ke, &index);
824 		if (error)
825 			return error;
826 	}
827 
828 	if (index >= dev->keycodemax)
829 		return -EINVAL;
830 
831 	ke->keycode = input_fetch_keycode(dev, index);
832 	ke->index = index;
833 	ke->len = sizeof(index);
834 	memcpy(ke->scancode, &index, sizeof(index));
835 
836 	return 0;
837 }
838 
839 static int input_default_setkeycode(struct input_dev *dev,
840 				    const struct input_keymap_entry *ke,
841 				    unsigned int *old_keycode)
842 {
843 	unsigned int index;
844 	int error;
845 	int i;
846 
847 	if (!dev->keycodesize)
848 		return -EINVAL;
849 
850 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
851 		index = ke->index;
852 	} else {
853 		error = input_scancode_to_scalar(ke, &index);
854 		if (error)
855 			return error;
856 	}
857 
858 	if (index >= dev->keycodemax)
859 		return -EINVAL;
860 
861 	if (dev->keycodesize < sizeof(ke->keycode) &&
862 			(ke->keycode >> (dev->keycodesize * 8)))
863 		return -EINVAL;
864 
865 	switch (dev->keycodesize) {
866 		case 1: {
867 			u8 *k = (u8 *)dev->keycode;
868 			*old_keycode = k[index];
869 			k[index] = ke->keycode;
870 			break;
871 		}
872 		case 2: {
873 			u16 *k = (u16 *)dev->keycode;
874 			*old_keycode = k[index];
875 			k[index] = ke->keycode;
876 			break;
877 		}
878 		default: {
879 			u32 *k = (u32 *)dev->keycode;
880 			*old_keycode = k[index];
881 			k[index] = ke->keycode;
882 			break;
883 		}
884 	}
885 
886 	if (*old_keycode <= KEY_MAX) {
887 		__clear_bit(*old_keycode, dev->keybit);
888 		for (i = 0; i < dev->keycodemax; i++) {
889 			if (input_fetch_keycode(dev, i) == *old_keycode) {
890 				__set_bit(*old_keycode, dev->keybit);
891 				/* Setting the bit twice is useless, so break */
892 				break;
893 			}
894 		}
895 	}
896 
897 	__set_bit(ke->keycode, dev->keybit);
898 	return 0;
899 }
900 
901 /**
902  * input_get_keycode - retrieve keycode currently mapped to a given scancode
903  * @dev: input device which keymap is being queried
904  * @ke: keymap entry
905  *
906  * This function should be called by anyone interested in retrieving current
907  * keymap. Presently evdev handlers use it.
908  */
909 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
910 {
911 	unsigned long flags;
912 	int retval;
913 
914 	spin_lock_irqsave(&dev->event_lock, flags);
915 	retval = dev->getkeycode(dev, ke);
916 	spin_unlock_irqrestore(&dev->event_lock, flags);
917 
918 	return retval;
919 }
920 EXPORT_SYMBOL(input_get_keycode);
921 
922 /**
923  * input_set_keycode - attribute a keycode to a given scancode
924  * @dev: input device which keymap is being updated
925  * @ke: new keymap entry
926  *
927  * This function should be called by anyone needing to update current
928  * keymap. Presently keyboard and evdev handlers use it.
929  */
930 int input_set_keycode(struct input_dev *dev,
931 		      const struct input_keymap_entry *ke)
932 {
933 	unsigned long flags;
934 	unsigned int old_keycode;
935 	int retval;
936 
937 	if (ke->keycode > KEY_MAX)
938 		return -EINVAL;
939 
940 	spin_lock_irqsave(&dev->event_lock, flags);
941 
942 	retval = dev->setkeycode(dev, ke, &old_keycode);
943 	if (retval)
944 		goto out;
945 
946 	/* Make sure KEY_RESERVED did not get enabled. */
947 	__clear_bit(KEY_RESERVED, dev->keybit);
948 
949 	/*
950 	 * Simulate keyup event if keycode is not present
951 	 * in the keymap anymore
952 	 */
953 	if (old_keycode > KEY_MAX) {
954 		dev_warn(dev->dev.parent ?: &dev->dev,
955 			 "%s: got too big old keycode %#x\n",
956 			 __func__, old_keycode);
957 	} else if (test_bit(EV_KEY, dev->evbit) &&
958 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
959 		   __test_and_clear_bit(old_keycode, dev->key)) {
960 		struct input_value vals[] =  {
961 			{ EV_KEY, old_keycode, 0 },
962 			input_value_sync
963 		};
964 
965 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
966 	}
967 
968  out:
969 	spin_unlock_irqrestore(&dev->event_lock, flags);
970 
971 	return retval;
972 }
973 EXPORT_SYMBOL(input_set_keycode);
974 
975 bool input_match_device_id(const struct input_dev *dev,
976 			   const struct input_device_id *id)
977 {
978 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
979 		if (id->bustype != dev->id.bustype)
980 			return false;
981 
982 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
983 		if (id->vendor != dev->id.vendor)
984 			return false;
985 
986 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
987 		if (id->product != dev->id.product)
988 			return false;
989 
990 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
991 		if (id->version != dev->id.version)
992 			return false;
993 
994 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
995 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
996 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
997 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
998 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
999 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1000 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1001 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1002 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1003 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1004 		return false;
1005 	}
1006 
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(input_match_device_id);
1010 
1011 static const struct input_device_id *input_match_device(struct input_handler *handler,
1012 							struct input_dev *dev)
1013 {
1014 	const struct input_device_id *id;
1015 
1016 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1017 		if (input_match_device_id(dev, id) &&
1018 		    (!handler->match || handler->match(handler, dev))) {
1019 			return id;
1020 		}
1021 	}
1022 
1023 	return NULL;
1024 }
1025 
1026 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1027 {
1028 	const struct input_device_id *id;
1029 	int error;
1030 
1031 	id = input_match_device(handler, dev);
1032 	if (!id)
1033 		return -ENODEV;
1034 
1035 	error = handler->connect(handler, dev, id);
1036 	if (error && error != -ENODEV)
1037 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1038 		       handler->name, kobject_name(&dev->dev.kobj), error);
1039 
1040 	return error;
1041 }
1042 
1043 #ifdef CONFIG_COMPAT
1044 
1045 static int input_bits_to_string(char *buf, int buf_size,
1046 				unsigned long bits, bool skip_empty)
1047 {
1048 	int len = 0;
1049 
1050 	if (in_compat_syscall()) {
1051 		u32 dword = bits >> 32;
1052 		if (dword || !skip_empty)
1053 			len += snprintf(buf, buf_size, "%x ", dword);
1054 
1055 		dword = bits & 0xffffffffUL;
1056 		if (dword || !skip_empty || len)
1057 			len += snprintf(buf + len, max(buf_size - len, 0),
1058 					"%x", dword);
1059 	} else {
1060 		if (bits || !skip_empty)
1061 			len += snprintf(buf, buf_size, "%lx", bits);
1062 	}
1063 
1064 	return len;
1065 }
1066 
1067 #else /* !CONFIG_COMPAT */
1068 
1069 static int input_bits_to_string(char *buf, int buf_size,
1070 				unsigned long bits, bool skip_empty)
1071 {
1072 	return bits || !skip_empty ?
1073 		snprintf(buf, buf_size, "%lx", bits) : 0;
1074 }
1075 
1076 #endif
1077 
1078 #ifdef CONFIG_PROC_FS
1079 
1080 static struct proc_dir_entry *proc_bus_input_dir;
1081 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1082 static int input_devices_state;
1083 
1084 static inline void input_wakeup_procfs_readers(void)
1085 {
1086 	input_devices_state++;
1087 	wake_up(&input_devices_poll_wait);
1088 }
1089 
1090 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1091 {
1092 	poll_wait(file, &input_devices_poll_wait, wait);
1093 	if (file->f_version != input_devices_state) {
1094 		file->f_version = input_devices_state;
1095 		return EPOLLIN | EPOLLRDNORM;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 union input_seq_state {
1102 	struct {
1103 		unsigned short pos;
1104 		bool mutex_acquired;
1105 	};
1106 	void *p;
1107 };
1108 
1109 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1110 {
1111 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1112 	int error;
1113 
1114 	/* We need to fit into seq->private pointer */
1115 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1116 
1117 	error = mutex_lock_interruptible(&input_mutex);
1118 	if (error) {
1119 		state->mutex_acquired = false;
1120 		return ERR_PTR(error);
1121 	}
1122 
1123 	state->mutex_acquired = true;
1124 
1125 	return seq_list_start(&input_dev_list, *pos);
1126 }
1127 
1128 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1129 {
1130 	return seq_list_next(v, &input_dev_list, pos);
1131 }
1132 
1133 static void input_seq_stop(struct seq_file *seq, void *v)
1134 {
1135 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1136 
1137 	if (state->mutex_acquired)
1138 		mutex_unlock(&input_mutex);
1139 }
1140 
1141 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1142 				   unsigned long *bitmap, int max)
1143 {
1144 	int i;
1145 	bool skip_empty = true;
1146 	char buf[18];
1147 
1148 	seq_printf(seq, "B: %s=", name);
1149 
1150 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1151 		if (input_bits_to_string(buf, sizeof(buf),
1152 					 bitmap[i], skip_empty)) {
1153 			skip_empty = false;
1154 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * If no output was produced print a single 0.
1160 	 */
1161 	if (skip_empty)
1162 		seq_putc(seq, '0');
1163 
1164 	seq_putc(seq, '\n');
1165 }
1166 
1167 static int input_devices_seq_show(struct seq_file *seq, void *v)
1168 {
1169 	struct input_dev *dev = container_of(v, struct input_dev, node);
1170 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1171 	struct input_handle *handle;
1172 
1173 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1174 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1175 
1176 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1177 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1178 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1179 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1180 	seq_puts(seq, "H: Handlers=");
1181 
1182 	list_for_each_entry(handle, &dev->h_list, d_node)
1183 		seq_printf(seq, "%s ", handle->name);
1184 	seq_putc(seq, '\n');
1185 
1186 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1187 
1188 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1189 	if (test_bit(EV_KEY, dev->evbit))
1190 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1191 	if (test_bit(EV_REL, dev->evbit))
1192 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1193 	if (test_bit(EV_ABS, dev->evbit))
1194 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1195 	if (test_bit(EV_MSC, dev->evbit))
1196 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1197 	if (test_bit(EV_LED, dev->evbit))
1198 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1199 	if (test_bit(EV_SND, dev->evbit))
1200 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1201 	if (test_bit(EV_FF, dev->evbit))
1202 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1203 	if (test_bit(EV_SW, dev->evbit))
1204 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1205 
1206 	seq_putc(seq, '\n');
1207 
1208 	kfree(path);
1209 	return 0;
1210 }
1211 
1212 static const struct seq_operations input_devices_seq_ops = {
1213 	.start	= input_devices_seq_start,
1214 	.next	= input_devices_seq_next,
1215 	.stop	= input_seq_stop,
1216 	.show	= input_devices_seq_show,
1217 };
1218 
1219 static int input_proc_devices_open(struct inode *inode, struct file *file)
1220 {
1221 	return seq_open(file, &input_devices_seq_ops);
1222 }
1223 
1224 static const struct proc_ops input_devices_proc_ops = {
1225 	.proc_open	= input_proc_devices_open,
1226 	.proc_poll	= input_proc_devices_poll,
1227 	.proc_read	= seq_read,
1228 	.proc_lseek	= seq_lseek,
1229 	.proc_release	= seq_release,
1230 };
1231 
1232 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1233 {
1234 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1235 	int error;
1236 
1237 	/* We need to fit into seq->private pointer */
1238 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1239 
1240 	error = mutex_lock_interruptible(&input_mutex);
1241 	if (error) {
1242 		state->mutex_acquired = false;
1243 		return ERR_PTR(error);
1244 	}
1245 
1246 	state->mutex_acquired = true;
1247 	state->pos = *pos;
1248 
1249 	return seq_list_start(&input_handler_list, *pos);
1250 }
1251 
1252 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1253 {
1254 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1255 
1256 	state->pos = *pos + 1;
1257 	return seq_list_next(v, &input_handler_list, pos);
1258 }
1259 
1260 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1261 {
1262 	struct input_handler *handler = container_of(v, struct input_handler, node);
1263 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1264 
1265 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1266 	if (handler->filter)
1267 		seq_puts(seq, " (filter)");
1268 	if (handler->legacy_minors)
1269 		seq_printf(seq, " Minor=%d", handler->minor);
1270 	seq_putc(seq, '\n');
1271 
1272 	return 0;
1273 }
1274 
1275 static const struct seq_operations input_handlers_seq_ops = {
1276 	.start	= input_handlers_seq_start,
1277 	.next	= input_handlers_seq_next,
1278 	.stop	= input_seq_stop,
1279 	.show	= input_handlers_seq_show,
1280 };
1281 
1282 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1283 {
1284 	return seq_open(file, &input_handlers_seq_ops);
1285 }
1286 
1287 static const struct proc_ops input_handlers_proc_ops = {
1288 	.proc_open	= input_proc_handlers_open,
1289 	.proc_read	= seq_read,
1290 	.proc_lseek	= seq_lseek,
1291 	.proc_release	= seq_release,
1292 };
1293 
1294 static int __init input_proc_init(void)
1295 {
1296 	struct proc_dir_entry *entry;
1297 
1298 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1299 	if (!proc_bus_input_dir)
1300 		return -ENOMEM;
1301 
1302 	entry = proc_create("devices", 0, proc_bus_input_dir,
1303 			    &input_devices_proc_ops);
1304 	if (!entry)
1305 		goto fail1;
1306 
1307 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1308 			    &input_handlers_proc_ops);
1309 	if (!entry)
1310 		goto fail2;
1311 
1312 	return 0;
1313 
1314  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1315  fail1: remove_proc_entry("bus/input", NULL);
1316 	return -ENOMEM;
1317 }
1318 
1319 static void input_proc_exit(void)
1320 {
1321 	remove_proc_entry("devices", proc_bus_input_dir);
1322 	remove_proc_entry("handlers", proc_bus_input_dir);
1323 	remove_proc_entry("bus/input", NULL);
1324 }
1325 
1326 #else /* !CONFIG_PROC_FS */
1327 static inline void input_wakeup_procfs_readers(void) { }
1328 static inline int input_proc_init(void) { return 0; }
1329 static inline void input_proc_exit(void) { }
1330 #endif
1331 
1332 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1333 static ssize_t input_dev_show_##name(struct device *dev,		\
1334 				     struct device_attribute *attr,	\
1335 				     char *buf)				\
1336 {									\
1337 	struct input_dev *input_dev = to_input_dev(dev);		\
1338 									\
1339 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1340 			 input_dev->name ? input_dev->name : "");	\
1341 }									\
1342 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1343 
1344 INPUT_DEV_STRING_ATTR_SHOW(name);
1345 INPUT_DEV_STRING_ATTR_SHOW(phys);
1346 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1347 
1348 static int input_print_modalias_bits(char *buf, int size,
1349 				     char name, unsigned long *bm,
1350 				     unsigned int min_bit, unsigned int max_bit)
1351 {
1352 	int len = 0, i;
1353 
1354 	len += snprintf(buf, max(size, 0), "%c", name);
1355 	for (i = min_bit; i < max_bit; i++)
1356 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1357 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1358 	return len;
1359 }
1360 
1361 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1362 				int add_cr)
1363 {
1364 	int len;
1365 
1366 	len = snprintf(buf, max(size, 0),
1367 		       "input:b%04Xv%04Xp%04Xe%04X-",
1368 		       id->id.bustype, id->id.vendor,
1369 		       id->id.product, id->id.version);
1370 
1371 	len += input_print_modalias_bits(buf + len, size - len,
1372 				'e', id->evbit, 0, EV_MAX);
1373 	len += input_print_modalias_bits(buf + len, size - len,
1374 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1375 	len += input_print_modalias_bits(buf + len, size - len,
1376 				'r', id->relbit, 0, REL_MAX);
1377 	len += input_print_modalias_bits(buf + len, size - len,
1378 				'a', id->absbit, 0, ABS_MAX);
1379 	len += input_print_modalias_bits(buf + len, size - len,
1380 				'm', id->mscbit, 0, MSC_MAX);
1381 	len += input_print_modalias_bits(buf + len, size - len,
1382 				'l', id->ledbit, 0, LED_MAX);
1383 	len += input_print_modalias_bits(buf + len, size - len,
1384 				's', id->sndbit, 0, SND_MAX);
1385 	len += input_print_modalias_bits(buf + len, size - len,
1386 				'f', id->ffbit, 0, FF_MAX);
1387 	len += input_print_modalias_bits(buf + len, size - len,
1388 				'w', id->swbit, 0, SW_MAX);
1389 
1390 	if (add_cr)
1391 		len += snprintf(buf + len, max(size - len, 0), "\n");
1392 
1393 	return len;
1394 }
1395 
1396 static ssize_t input_dev_show_modalias(struct device *dev,
1397 				       struct device_attribute *attr,
1398 				       char *buf)
1399 {
1400 	struct input_dev *id = to_input_dev(dev);
1401 	ssize_t len;
1402 
1403 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1404 
1405 	return min_t(int, len, PAGE_SIZE);
1406 }
1407 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1408 
1409 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1410 			      int max, int add_cr);
1411 
1412 static ssize_t input_dev_show_properties(struct device *dev,
1413 					 struct device_attribute *attr,
1414 					 char *buf)
1415 {
1416 	struct input_dev *input_dev = to_input_dev(dev);
1417 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1418 				     INPUT_PROP_MAX, true);
1419 	return min_t(int, len, PAGE_SIZE);
1420 }
1421 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1422 
1423 static int input_inhibit_device(struct input_dev *dev);
1424 static int input_uninhibit_device(struct input_dev *dev);
1425 
1426 static ssize_t inhibited_show(struct device *dev,
1427 			      struct device_attribute *attr,
1428 			      char *buf)
1429 {
1430 	struct input_dev *input_dev = to_input_dev(dev);
1431 
1432 	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1433 }
1434 
1435 static ssize_t inhibited_store(struct device *dev,
1436 			       struct device_attribute *attr, const char *buf,
1437 			       size_t len)
1438 {
1439 	struct input_dev *input_dev = to_input_dev(dev);
1440 	ssize_t rv;
1441 	bool inhibited;
1442 
1443 	if (strtobool(buf, &inhibited))
1444 		return -EINVAL;
1445 
1446 	if (inhibited)
1447 		rv = input_inhibit_device(input_dev);
1448 	else
1449 		rv = input_uninhibit_device(input_dev);
1450 
1451 	if (rv != 0)
1452 		return rv;
1453 
1454 	return len;
1455 }
1456 
1457 static DEVICE_ATTR_RW(inhibited);
1458 
1459 static struct attribute *input_dev_attrs[] = {
1460 	&dev_attr_name.attr,
1461 	&dev_attr_phys.attr,
1462 	&dev_attr_uniq.attr,
1463 	&dev_attr_modalias.attr,
1464 	&dev_attr_properties.attr,
1465 	&dev_attr_inhibited.attr,
1466 	NULL
1467 };
1468 
1469 static const struct attribute_group input_dev_attr_group = {
1470 	.attrs	= input_dev_attrs,
1471 };
1472 
1473 #define INPUT_DEV_ID_ATTR(name)						\
1474 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1475 					struct device_attribute *attr,	\
1476 					char *buf)			\
1477 {									\
1478 	struct input_dev *input_dev = to_input_dev(dev);		\
1479 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1480 }									\
1481 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1482 
1483 INPUT_DEV_ID_ATTR(bustype);
1484 INPUT_DEV_ID_ATTR(vendor);
1485 INPUT_DEV_ID_ATTR(product);
1486 INPUT_DEV_ID_ATTR(version);
1487 
1488 static struct attribute *input_dev_id_attrs[] = {
1489 	&dev_attr_bustype.attr,
1490 	&dev_attr_vendor.attr,
1491 	&dev_attr_product.attr,
1492 	&dev_attr_version.attr,
1493 	NULL
1494 };
1495 
1496 static const struct attribute_group input_dev_id_attr_group = {
1497 	.name	= "id",
1498 	.attrs	= input_dev_id_attrs,
1499 };
1500 
1501 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1502 			      int max, int add_cr)
1503 {
1504 	int i;
1505 	int len = 0;
1506 	bool skip_empty = true;
1507 
1508 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1509 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1510 					    bitmap[i], skip_empty);
1511 		if (len) {
1512 			skip_empty = false;
1513 			if (i > 0)
1514 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * If no output was produced print a single 0.
1520 	 */
1521 	if (len == 0)
1522 		len = snprintf(buf, buf_size, "%d", 0);
1523 
1524 	if (add_cr)
1525 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1526 
1527 	return len;
1528 }
1529 
1530 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1531 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1532 				       struct device_attribute *attr,	\
1533 				       char *buf)			\
1534 {									\
1535 	struct input_dev *input_dev = to_input_dev(dev);		\
1536 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1537 				     input_dev->bm##bit, ev##_MAX,	\
1538 				     true);				\
1539 	return min_t(int, len, PAGE_SIZE);				\
1540 }									\
1541 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1542 
1543 INPUT_DEV_CAP_ATTR(EV, ev);
1544 INPUT_DEV_CAP_ATTR(KEY, key);
1545 INPUT_DEV_CAP_ATTR(REL, rel);
1546 INPUT_DEV_CAP_ATTR(ABS, abs);
1547 INPUT_DEV_CAP_ATTR(MSC, msc);
1548 INPUT_DEV_CAP_ATTR(LED, led);
1549 INPUT_DEV_CAP_ATTR(SND, snd);
1550 INPUT_DEV_CAP_ATTR(FF, ff);
1551 INPUT_DEV_CAP_ATTR(SW, sw);
1552 
1553 static struct attribute *input_dev_caps_attrs[] = {
1554 	&dev_attr_ev.attr,
1555 	&dev_attr_key.attr,
1556 	&dev_attr_rel.attr,
1557 	&dev_attr_abs.attr,
1558 	&dev_attr_msc.attr,
1559 	&dev_attr_led.attr,
1560 	&dev_attr_snd.attr,
1561 	&dev_attr_ff.attr,
1562 	&dev_attr_sw.attr,
1563 	NULL
1564 };
1565 
1566 static const struct attribute_group input_dev_caps_attr_group = {
1567 	.name	= "capabilities",
1568 	.attrs	= input_dev_caps_attrs,
1569 };
1570 
1571 static const struct attribute_group *input_dev_attr_groups[] = {
1572 	&input_dev_attr_group,
1573 	&input_dev_id_attr_group,
1574 	&input_dev_caps_attr_group,
1575 	&input_poller_attribute_group,
1576 	NULL
1577 };
1578 
1579 static void input_dev_release(struct device *device)
1580 {
1581 	struct input_dev *dev = to_input_dev(device);
1582 
1583 	input_ff_destroy(dev);
1584 	input_mt_destroy_slots(dev);
1585 	kfree(dev->poller);
1586 	kfree(dev->absinfo);
1587 	kfree(dev->vals);
1588 	kfree(dev);
1589 
1590 	module_put(THIS_MODULE);
1591 }
1592 
1593 /*
1594  * Input uevent interface - loading event handlers based on
1595  * device bitfields.
1596  */
1597 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1598 				   const char *name, unsigned long *bitmap, int max)
1599 {
1600 	int len;
1601 
1602 	if (add_uevent_var(env, "%s", name))
1603 		return -ENOMEM;
1604 
1605 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1606 				 sizeof(env->buf) - env->buflen,
1607 				 bitmap, max, false);
1608 	if (len >= (sizeof(env->buf) - env->buflen))
1609 		return -ENOMEM;
1610 
1611 	env->buflen += len;
1612 	return 0;
1613 }
1614 
1615 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1616 					 struct input_dev *dev)
1617 {
1618 	int len;
1619 
1620 	if (add_uevent_var(env, "MODALIAS="))
1621 		return -ENOMEM;
1622 
1623 	len = input_print_modalias(&env->buf[env->buflen - 1],
1624 				   sizeof(env->buf) - env->buflen,
1625 				   dev, 0);
1626 	if (len >= (sizeof(env->buf) - env->buflen))
1627 		return -ENOMEM;
1628 
1629 	env->buflen += len;
1630 	return 0;
1631 }
1632 
1633 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1634 	do {								\
1635 		int err = add_uevent_var(env, fmt, val);		\
1636 		if (err)						\
1637 			return err;					\
1638 	} while (0)
1639 
1640 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1641 	do {								\
1642 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1643 		if (err)						\
1644 			return err;					\
1645 	} while (0)
1646 
1647 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1648 	do {								\
1649 		int err = input_add_uevent_modalias_var(env, dev);	\
1650 		if (err)						\
1651 			return err;					\
1652 	} while (0)
1653 
1654 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1655 {
1656 	struct input_dev *dev = to_input_dev(device);
1657 
1658 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1659 				dev->id.bustype, dev->id.vendor,
1660 				dev->id.product, dev->id.version);
1661 	if (dev->name)
1662 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1663 	if (dev->phys)
1664 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1665 	if (dev->uniq)
1666 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1667 
1668 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1669 
1670 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1671 	if (test_bit(EV_KEY, dev->evbit))
1672 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1673 	if (test_bit(EV_REL, dev->evbit))
1674 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1675 	if (test_bit(EV_ABS, dev->evbit))
1676 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1677 	if (test_bit(EV_MSC, dev->evbit))
1678 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1679 	if (test_bit(EV_LED, dev->evbit))
1680 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1681 	if (test_bit(EV_SND, dev->evbit))
1682 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1683 	if (test_bit(EV_FF, dev->evbit))
1684 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1685 	if (test_bit(EV_SW, dev->evbit))
1686 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1687 
1688 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1689 
1690 	return 0;
1691 }
1692 
1693 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1694 	do {								\
1695 		int i;							\
1696 		bool active;						\
1697 									\
1698 		if (!test_bit(EV_##type, dev->evbit))			\
1699 			break;						\
1700 									\
1701 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1702 			active = test_bit(i, dev->bits);		\
1703 			if (!active && !on)				\
1704 				continue;				\
1705 									\
1706 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1707 		}							\
1708 	} while (0)
1709 
1710 static void input_dev_toggle(struct input_dev *dev, bool activate)
1711 {
1712 	if (!dev->event)
1713 		return;
1714 
1715 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1716 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1717 
1718 	if (activate && test_bit(EV_REP, dev->evbit)) {
1719 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1720 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1721 	}
1722 }
1723 
1724 /**
1725  * input_reset_device() - reset/restore the state of input device
1726  * @dev: input device whose state needs to be reset
1727  *
1728  * This function tries to reset the state of an opened input device and
1729  * bring internal state and state if the hardware in sync with each other.
1730  * We mark all keys as released, restore LED state, repeat rate, etc.
1731  */
1732 void input_reset_device(struct input_dev *dev)
1733 {
1734 	unsigned long flags;
1735 
1736 	mutex_lock(&dev->mutex);
1737 	spin_lock_irqsave(&dev->event_lock, flags);
1738 
1739 	input_dev_toggle(dev, true);
1740 	input_dev_release_keys(dev);
1741 
1742 	spin_unlock_irqrestore(&dev->event_lock, flags);
1743 	mutex_unlock(&dev->mutex);
1744 }
1745 EXPORT_SYMBOL(input_reset_device);
1746 
1747 static int input_inhibit_device(struct input_dev *dev)
1748 {
1749 	int ret = 0;
1750 
1751 	mutex_lock(&dev->mutex);
1752 
1753 	if (dev->inhibited)
1754 		goto out;
1755 
1756 	if (dev->users) {
1757 		if (dev->close)
1758 			dev->close(dev);
1759 		if (dev->poller)
1760 			input_dev_poller_stop(dev->poller);
1761 	}
1762 
1763 	spin_lock_irq(&dev->event_lock);
1764 	input_dev_release_keys(dev);
1765 	input_dev_toggle(dev, false);
1766 	spin_unlock_irq(&dev->event_lock);
1767 
1768 	dev->inhibited = true;
1769 
1770 out:
1771 	mutex_unlock(&dev->mutex);
1772 	return ret;
1773 }
1774 
1775 static int input_uninhibit_device(struct input_dev *dev)
1776 {
1777 	int ret = 0;
1778 
1779 	mutex_lock(&dev->mutex);
1780 
1781 	if (!dev->inhibited)
1782 		goto out;
1783 
1784 	if (dev->users) {
1785 		if (dev->open) {
1786 			ret = dev->open(dev);
1787 			if (ret)
1788 				goto out;
1789 		}
1790 		if (dev->poller)
1791 			input_dev_poller_start(dev->poller);
1792 	}
1793 
1794 	dev->inhibited = false;
1795 	spin_lock_irq(&dev->event_lock);
1796 	input_dev_toggle(dev, true);
1797 	spin_unlock_irq(&dev->event_lock);
1798 
1799 out:
1800 	mutex_unlock(&dev->mutex);
1801 	return ret;
1802 }
1803 
1804 #ifdef CONFIG_PM_SLEEP
1805 static int input_dev_suspend(struct device *dev)
1806 {
1807 	struct input_dev *input_dev = to_input_dev(dev);
1808 
1809 	spin_lock_irq(&input_dev->event_lock);
1810 
1811 	/*
1812 	 * Keys that are pressed now are unlikely to be
1813 	 * still pressed when we resume.
1814 	 */
1815 	input_dev_release_keys(input_dev);
1816 
1817 	/* Turn off LEDs and sounds, if any are active. */
1818 	input_dev_toggle(input_dev, false);
1819 
1820 	spin_unlock_irq(&input_dev->event_lock);
1821 
1822 	return 0;
1823 }
1824 
1825 static int input_dev_resume(struct device *dev)
1826 {
1827 	struct input_dev *input_dev = to_input_dev(dev);
1828 
1829 	spin_lock_irq(&input_dev->event_lock);
1830 
1831 	/* Restore state of LEDs and sounds, if any were active. */
1832 	input_dev_toggle(input_dev, true);
1833 
1834 	spin_unlock_irq(&input_dev->event_lock);
1835 
1836 	return 0;
1837 }
1838 
1839 static int input_dev_freeze(struct device *dev)
1840 {
1841 	struct input_dev *input_dev = to_input_dev(dev);
1842 
1843 	spin_lock_irq(&input_dev->event_lock);
1844 
1845 	/*
1846 	 * Keys that are pressed now are unlikely to be
1847 	 * still pressed when we resume.
1848 	 */
1849 	input_dev_release_keys(input_dev);
1850 
1851 	spin_unlock_irq(&input_dev->event_lock);
1852 
1853 	return 0;
1854 }
1855 
1856 static int input_dev_poweroff(struct device *dev)
1857 {
1858 	struct input_dev *input_dev = to_input_dev(dev);
1859 
1860 	spin_lock_irq(&input_dev->event_lock);
1861 
1862 	/* Turn off LEDs and sounds, if any are active. */
1863 	input_dev_toggle(input_dev, false);
1864 
1865 	spin_unlock_irq(&input_dev->event_lock);
1866 
1867 	return 0;
1868 }
1869 
1870 static const struct dev_pm_ops input_dev_pm_ops = {
1871 	.suspend	= input_dev_suspend,
1872 	.resume		= input_dev_resume,
1873 	.freeze		= input_dev_freeze,
1874 	.poweroff	= input_dev_poweroff,
1875 	.restore	= input_dev_resume,
1876 };
1877 #endif /* CONFIG_PM */
1878 
1879 static const struct device_type input_dev_type = {
1880 	.groups		= input_dev_attr_groups,
1881 	.release	= input_dev_release,
1882 	.uevent		= input_dev_uevent,
1883 #ifdef CONFIG_PM_SLEEP
1884 	.pm		= &input_dev_pm_ops,
1885 #endif
1886 };
1887 
1888 static char *input_devnode(struct device *dev, umode_t *mode)
1889 {
1890 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1891 }
1892 
1893 struct class input_class = {
1894 	.name		= "input",
1895 	.devnode	= input_devnode,
1896 };
1897 EXPORT_SYMBOL_GPL(input_class);
1898 
1899 /**
1900  * input_allocate_device - allocate memory for new input device
1901  *
1902  * Returns prepared struct input_dev or %NULL.
1903  *
1904  * NOTE: Use input_free_device() to free devices that have not been
1905  * registered; input_unregister_device() should be used for already
1906  * registered devices.
1907  */
1908 struct input_dev *input_allocate_device(void)
1909 {
1910 	static atomic_t input_no = ATOMIC_INIT(-1);
1911 	struct input_dev *dev;
1912 
1913 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1914 	if (dev) {
1915 		dev->dev.type = &input_dev_type;
1916 		dev->dev.class = &input_class;
1917 		device_initialize(&dev->dev);
1918 		mutex_init(&dev->mutex);
1919 		spin_lock_init(&dev->event_lock);
1920 		timer_setup(&dev->timer, NULL, 0);
1921 		INIT_LIST_HEAD(&dev->h_list);
1922 		INIT_LIST_HEAD(&dev->node);
1923 
1924 		dev_set_name(&dev->dev, "input%lu",
1925 			     (unsigned long)atomic_inc_return(&input_no));
1926 
1927 		__module_get(THIS_MODULE);
1928 	}
1929 
1930 	return dev;
1931 }
1932 EXPORT_SYMBOL(input_allocate_device);
1933 
1934 struct input_devres {
1935 	struct input_dev *input;
1936 };
1937 
1938 static int devm_input_device_match(struct device *dev, void *res, void *data)
1939 {
1940 	struct input_devres *devres = res;
1941 
1942 	return devres->input == data;
1943 }
1944 
1945 static void devm_input_device_release(struct device *dev, void *res)
1946 {
1947 	struct input_devres *devres = res;
1948 	struct input_dev *input = devres->input;
1949 
1950 	dev_dbg(dev, "%s: dropping reference to %s\n",
1951 		__func__, dev_name(&input->dev));
1952 	input_put_device(input);
1953 }
1954 
1955 /**
1956  * devm_input_allocate_device - allocate managed input device
1957  * @dev: device owning the input device being created
1958  *
1959  * Returns prepared struct input_dev or %NULL.
1960  *
1961  * Managed input devices do not need to be explicitly unregistered or
1962  * freed as it will be done automatically when owner device unbinds from
1963  * its driver (or binding fails). Once managed input device is allocated,
1964  * it is ready to be set up and registered in the same fashion as regular
1965  * input device. There are no special devm_input_device_[un]register()
1966  * variants, regular ones work with both managed and unmanaged devices,
1967  * should you need them. In most cases however, managed input device need
1968  * not be explicitly unregistered or freed.
1969  *
1970  * NOTE: the owner device is set up as parent of input device and users
1971  * should not override it.
1972  */
1973 struct input_dev *devm_input_allocate_device(struct device *dev)
1974 {
1975 	struct input_dev *input;
1976 	struct input_devres *devres;
1977 
1978 	devres = devres_alloc(devm_input_device_release,
1979 			      sizeof(*devres), GFP_KERNEL);
1980 	if (!devres)
1981 		return NULL;
1982 
1983 	input = input_allocate_device();
1984 	if (!input) {
1985 		devres_free(devres);
1986 		return NULL;
1987 	}
1988 
1989 	input->dev.parent = dev;
1990 	input->devres_managed = true;
1991 
1992 	devres->input = input;
1993 	devres_add(dev, devres);
1994 
1995 	return input;
1996 }
1997 EXPORT_SYMBOL(devm_input_allocate_device);
1998 
1999 /**
2000  * input_free_device - free memory occupied by input_dev structure
2001  * @dev: input device to free
2002  *
2003  * This function should only be used if input_register_device()
2004  * was not called yet or if it failed. Once device was registered
2005  * use input_unregister_device() and memory will be freed once last
2006  * reference to the device is dropped.
2007  *
2008  * Device should be allocated by input_allocate_device().
2009  *
2010  * NOTE: If there are references to the input device then memory
2011  * will not be freed until last reference is dropped.
2012  */
2013 void input_free_device(struct input_dev *dev)
2014 {
2015 	if (dev) {
2016 		if (dev->devres_managed)
2017 			WARN_ON(devres_destroy(dev->dev.parent,
2018 						devm_input_device_release,
2019 						devm_input_device_match,
2020 						dev));
2021 		input_put_device(dev);
2022 	}
2023 }
2024 EXPORT_SYMBOL(input_free_device);
2025 
2026 /**
2027  * input_set_timestamp - set timestamp for input events
2028  * @dev: input device to set timestamp for
2029  * @timestamp: the time at which the event has occurred
2030  *   in CLOCK_MONOTONIC
2031  *
2032  * This function is intended to provide to the input system a more
2033  * accurate time of when an event actually occurred. The driver should
2034  * call this function as soon as a timestamp is acquired ensuring
2035  * clock conversions in input_set_timestamp are done correctly.
2036  *
2037  * The system entering suspend state between timestamp acquisition and
2038  * calling input_set_timestamp can result in inaccurate conversions.
2039  */
2040 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2041 {
2042 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2043 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2044 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2045 							   TK_OFFS_BOOT);
2046 }
2047 EXPORT_SYMBOL(input_set_timestamp);
2048 
2049 /**
2050  * input_get_timestamp - get timestamp for input events
2051  * @dev: input device to get timestamp from
2052  *
2053  * A valid timestamp is a timestamp of non-zero value.
2054  */
2055 ktime_t *input_get_timestamp(struct input_dev *dev)
2056 {
2057 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2058 
2059 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2060 		input_set_timestamp(dev, ktime_get());
2061 
2062 	return dev->timestamp;
2063 }
2064 EXPORT_SYMBOL(input_get_timestamp);
2065 
2066 /**
2067  * input_set_capability - mark device as capable of a certain event
2068  * @dev: device that is capable of emitting or accepting event
2069  * @type: type of the event (EV_KEY, EV_REL, etc...)
2070  * @code: event code
2071  *
2072  * In addition to setting up corresponding bit in appropriate capability
2073  * bitmap the function also adjusts dev->evbit.
2074  */
2075 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2076 {
2077 	switch (type) {
2078 	case EV_KEY:
2079 		__set_bit(code, dev->keybit);
2080 		break;
2081 
2082 	case EV_REL:
2083 		__set_bit(code, dev->relbit);
2084 		break;
2085 
2086 	case EV_ABS:
2087 		input_alloc_absinfo(dev);
2088 		if (!dev->absinfo)
2089 			return;
2090 
2091 		__set_bit(code, dev->absbit);
2092 		break;
2093 
2094 	case EV_MSC:
2095 		__set_bit(code, dev->mscbit);
2096 		break;
2097 
2098 	case EV_SW:
2099 		__set_bit(code, dev->swbit);
2100 		break;
2101 
2102 	case EV_LED:
2103 		__set_bit(code, dev->ledbit);
2104 		break;
2105 
2106 	case EV_SND:
2107 		__set_bit(code, dev->sndbit);
2108 		break;
2109 
2110 	case EV_FF:
2111 		__set_bit(code, dev->ffbit);
2112 		break;
2113 
2114 	case EV_PWR:
2115 		/* do nothing */
2116 		break;
2117 
2118 	default:
2119 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2120 		dump_stack();
2121 		return;
2122 	}
2123 
2124 	__set_bit(type, dev->evbit);
2125 }
2126 EXPORT_SYMBOL(input_set_capability);
2127 
2128 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2129 {
2130 	int mt_slots;
2131 	int i;
2132 	unsigned int events;
2133 
2134 	if (dev->mt) {
2135 		mt_slots = dev->mt->num_slots;
2136 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2137 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2138 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2139 		mt_slots = clamp(mt_slots, 2, 32);
2140 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2141 		mt_slots = 2;
2142 	} else {
2143 		mt_slots = 0;
2144 	}
2145 
2146 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2147 
2148 	if (test_bit(EV_ABS, dev->evbit))
2149 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2150 			events += input_is_mt_axis(i) ? mt_slots : 1;
2151 
2152 	if (test_bit(EV_REL, dev->evbit))
2153 		events += bitmap_weight(dev->relbit, REL_CNT);
2154 
2155 	/* Make room for KEY and MSC events */
2156 	events += 7;
2157 
2158 	return events;
2159 }
2160 
2161 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2162 	do {								\
2163 		if (!test_bit(EV_##type, dev->evbit))			\
2164 			memset(dev->bits##bit, 0,			\
2165 				sizeof(dev->bits##bit));		\
2166 	} while (0)
2167 
2168 static void input_cleanse_bitmasks(struct input_dev *dev)
2169 {
2170 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2171 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2172 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2173 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2174 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2175 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2176 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2177 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2178 }
2179 
2180 static void __input_unregister_device(struct input_dev *dev)
2181 {
2182 	struct input_handle *handle, *next;
2183 
2184 	input_disconnect_device(dev);
2185 
2186 	mutex_lock(&input_mutex);
2187 
2188 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2189 		handle->handler->disconnect(handle);
2190 	WARN_ON(!list_empty(&dev->h_list));
2191 
2192 	del_timer_sync(&dev->timer);
2193 	list_del_init(&dev->node);
2194 
2195 	input_wakeup_procfs_readers();
2196 
2197 	mutex_unlock(&input_mutex);
2198 
2199 	device_del(&dev->dev);
2200 }
2201 
2202 static void devm_input_device_unregister(struct device *dev, void *res)
2203 {
2204 	struct input_devres *devres = res;
2205 	struct input_dev *input = devres->input;
2206 
2207 	dev_dbg(dev, "%s: unregistering device %s\n",
2208 		__func__, dev_name(&input->dev));
2209 	__input_unregister_device(input);
2210 }
2211 
2212 /**
2213  * input_enable_softrepeat - enable software autorepeat
2214  * @dev: input device
2215  * @delay: repeat delay
2216  * @period: repeat period
2217  *
2218  * Enable software autorepeat on the input device.
2219  */
2220 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2221 {
2222 	dev->timer.function = input_repeat_key;
2223 	dev->rep[REP_DELAY] = delay;
2224 	dev->rep[REP_PERIOD] = period;
2225 }
2226 EXPORT_SYMBOL(input_enable_softrepeat);
2227 
2228 bool input_device_enabled(struct input_dev *dev)
2229 {
2230 	lockdep_assert_held(&dev->mutex);
2231 
2232 	return !dev->inhibited && dev->users > 0;
2233 }
2234 EXPORT_SYMBOL_GPL(input_device_enabled);
2235 
2236 /**
2237  * input_register_device - register device with input core
2238  * @dev: device to be registered
2239  *
2240  * This function registers device with input core. The device must be
2241  * allocated with input_allocate_device() and all it's capabilities
2242  * set up before registering.
2243  * If function fails the device must be freed with input_free_device().
2244  * Once device has been successfully registered it can be unregistered
2245  * with input_unregister_device(); input_free_device() should not be
2246  * called in this case.
2247  *
2248  * Note that this function is also used to register managed input devices
2249  * (ones allocated with devm_input_allocate_device()). Such managed input
2250  * devices need not be explicitly unregistered or freed, their tear down
2251  * is controlled by the devres infrastructure. It is also worth noting
2252  * that tear down of managed input devices is internally a 2-step process:
2253  * registered managed input device is first unregistered, but stays in
2254  * memory and can still handle input_event() calls (although events will
2255  * not be delivered anywhere). The freeing of managed input device will
2256  * happen later, when devres stack is unwound to the point where device
2257  * allocation was made.
2258  */
2259 int input_register_device(struct input_dev *dev)
2260 {
2261 	struct input_devres *devres = NULL;
2262 	struct input_handler *handler;
2263 	unsigned int packet_size;
2264 	const char *path;
2265 	int error;
2266 
2267 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2268 		dev_err(&dev->dev,
2269 			"Absolute device without dev->absinfo, refusing to register\n");
2270 		return -EINVAL;
2271 	}
2272 
2273 	if (dev->devres_managed) {
2274 		devres = devres_alloc(devm_input_device_unregister,
2275 				      sizeof(*devres), GFP_KERNEL);
2276 		if (!devres)
2277 			return -ENOMEM;
2278 
2279 		devres->input = dev;
2280 	}
2281 
2282 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2283 	__set_bit(EV_SYN, dev->evbit);
2284 
2285 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2286 	__clear_bit(KEY_RESERVED, dev->keybit);
2287 
2288 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2289 	input_cleanse_bitmasks(dev);
2290 
2291 	packet_size = input_estimate_events_per_packet(dev);
2292 	if (dev->hint_events_per_packet < packet_size)
2293 		dev->hint_events_per_packet = packet_size;
2294 
2295 	dev->max_vals = dev->hint_events_per_packet + 2;
2296 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2297 	if (!dev->vals) {
2298 		error = -ENOMEM;
2299 		goto err_devres_free;
2300 	}
2301 
2302 	/*
2303 	 * If delay and period are pre-set by the driver, then autorepeating
2304 	 * is handled by the driver itself and we don't do it in input.c.
2305 	 */
2306 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2307 		input_enable_softrepeat(dev, 250, 33);
2308 
2309 	if (!dev->getkeycode)
2310 		dev->getkeycode = input_default_getkeycode;
2311 
2312 	if (!dev->setkeycode)
2313 		dev->setkeycode = input_default_setkeycode;
2314 
2315 	if (dev->poller)
2316 		input_dev_poller_finalize(dev->poller);
2317 
2318 	error = device_add(&dev->dev);
2319 	if (error)
2320 		goto err_free_vals;
2321 
2322 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2323 	pr_info("%s as %s\n",
2324 		dev->name ? dev->name : "Unspecified device",
2325 		path ? path : "N/A");
2326 	kfree(path);
2327 
2328 	error = mutex_lock_interruptible(&input_mutex);
2329 	if (error)
2330 		goto err_device_del;
2331 
2332 	list_add_tail(&dev->node, &input_dev_list);
2333 
2334 	list_for_each_entry(handler, &input_handler_list, node)
2335 		input_attach_handler(dev, handler);
2336 
2337 	input_wakeup_procfs_readers();
2338 
2339 	mutex_unlock(&input_mutex);
2340 
2341 	if (dev->devres_managed) {
2342 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2343 			__func__, dev_name(&dev->dev));
2344 		devres_add(dev->dev.parent, devres);
2345 	}
2346 	return 0;
2347 
2348 err_device_del:
2349 	device_del(&dev->dev);
2350 err_free_vals:
2351 	kfree(dev->vals);
2352 	dev->vals = NULL;
2353 err_devres_free:
2354 	devres_free(devres);
2355 	return error;
2356 }
2357 EXPORT_SYMBOL(input_register_device);
2358 
2359 /**
2360  * input_unregister_device - unregister previously registered device
2361  * @dev: device to be unregistered
2362  *
2363  * This function unregisters an input device. Once device is unregistered
2364  * the caller should not try to access it as it may get freed at any moment.
2365  */
2366 void input_unregister_device(struct input_dev *dev)
2367 {
2368 	if (dev->devres_managed) {
2369 		WARN_ON(devres_destroy(dev->dev.parent,
2370 					devm_input_device_unregister,
2371 					devm_input_device_match,
2372 					dev));
2373 		__input_unregister_device(dev);
2374 		/*
2375 		 * We do not do input_put_device() here because it will be done
2376 		 * when 2nd devres fires up.
2377 		 */
2378 	} else {
2379 		__input_unregister_device(dev);
2380 		input_put_device(dev);
2381 	}
2382 }
2383 EXPORT_SYMBOL(input_unregister_device);
2384 
2385 /**
2386  * input_register_handler - register a new input handler
2387  * @handler: handler to be registered
2388  *
2389  * This function registers a new input handler (interface) for input
2390  * devices in the system and attaches it to all input devices that
2391  * are compatible with the handler.
2392  */
2393 int input_register_handler(struct input_handler *handler)
2394 {
2395 	struct input_dev *dev;
2396 	int error;
2397 
2398 	error = mutex_lock_interruptible(&input_mutex);
2399 	if (error)
2400 		return error;
2401 
2402 	INIT_LIST_HEAD(&handler->h_list);
2403 
2404 	list_add_tail(&handler->node, &input_handler_list);
2405 
2406 	list_for_each_entry(dev, &input_dev_list, node)
2407 		input_attach_handler(dev, handler);
2408 
2409 	input_wakeup_procfs_readers();
2410 
2411 	mutex_unlock(&input_mutex);
2412 	return 0;
2413 }
2414 EXPORT_SYMBOL(input_register_handler);
2415 
2416 /**
2417  * input_unregister_handler - unregisters an input handler
2418  * @handler: handler to be unregistered
2419  *
2420  * This function disconnects a handler from its input devices and
2421  * removes it from lists of known handlers.
2422  */
2423 void input_unregister_handler(struct input_handler *handler)
2424 {
2425 	struct input_handle *handle, *next;
2426 
2427 	mutex_lock(&input_mutex);
2428 
2429 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2430 		handler->disconnect(handle);
2431 	WARN_ON(!list_empty(&handler->h_list));
2432 
2433 	list_del_init(&handler->node);
2434 
2435 	input_wakeup_procfs_readers();
2436 
2437 	mutex_unlock(&input_mutex);
2438 }
2439 EXPORT_SYMBOL(input_unregister_handler);
2440 
2441 /**
2442  * input_handler_for_each_handle - handle iterator
2443  * @handler: input handler to iterate
2444  * @data: data for the callback
2445  * @fn: function to be called for each handle
2446  *
2447  * Iterate over @bus's list of devices, and call @fn for each, passing
2448  * it @data and stop when @fn returns a non-zero value. The function is
2449  * using RCU to traverse the list and therefore may be using in atomic
2450  * contexts. The @fn callback is invoked from RCU critical section and
2451  * thus must not sleep.
2452  */
2453 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2454 				  int (*fn)(struct input_handle *, void *))
2455 {
2456 	struct input_handle *handle;
2457 	int retval = 0;
2458 
2459 	rcu_read_lock();
2460 
2461 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2462 		retval = fn(handle, data);
2463 		if (retval)
2464 			break;
2465 	}
2466 
2467 	rcu_read_unlock();
2468 
2469 	return retval;
2470 }
2471 EXPORT_SYMBOL(input_handler_for_each_handle);
2472 
2473 /**
2474  * input_register_handle - register a new input handle
2475  * @handle: handle to register
2476  *
2477  * This function puts a new input handle onto device's
2478  * and handler's lists so that events can flow through
2479  * it once it is opened using input_open_device().
2480  *
2481  * This function is supposed to be called from handler's
2482  * connect() method.
2483  */
2484 int input_register_handle(struct input_handle *handle)
2485 {
2486 	struct input_handler *handler = handle->handler;
2487 	struct input_dev *dev = handle->dev;
2488 	int error;
2489 
2490 	/*
2491 	 * We take dev->mutex here to prevent race with
2492 	 * input_release_device().
2493 	 */
2494 	error = mutex_lock_interruptible(&dev->mutex);
2495 	if (error)
2496 		return error;
2497 
2498 	/*
2499 	 * Filters go to the head of the list, normal handlers
2500 	 * to the tail.
2501 	 */
2502 	if (handler->filter)
2503 		list_add_rcu(&handle->d_node, &dev->h_list);
2504 	else
2505 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2506 
2507 	mutex_unlock(&dev->mutex);
2508 
2509 	/*
2510 	 * Since we are supposed to be called from ->connect()
2511 	 * which is mutually exclusive with ->disconnect()
2512 	 * we can't be racing with input_unregister_handle()
2513 	 * and so separate lock is not needed here.
2514 	 */
2515 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2516 
2517 	if (handler->start)
2518 		handler->start(handle);
2519 
2520 	return 0;
2521 }
2522 EXPORT_SYMBOL(input_register_handle);
2523 
2524 /**
2525  * input_unregister_handle - unregister an input handle
2526  * @handle: handle to unregister
2527  *
2528  * This function removes input handle from device's
2529  * and handler's lists.
2530  *
2531  * This function is supposed to be called from handler's
2532  * disconnect() method.
2533  */
2534 void input_unregister_handle(struct input_handle *handle)
2535 {
2536 	struct input_dev *dev = handle->dev;
2537 
2538 	list_del_rcu(&handle->h_node);
2539 
2540 	/*
2541 	 * Take dev->mutex to prevent race with input_release_device().
2542 	 */
2543 	mutex_lock(&dev->mutex);
2544 	list_del_rcu(&handle->d_node);
2545 	mutex_unlock(&dev->mutex);
2546 
2547 	synchronize_rcu();
2548 }
2549 EXPORT_SYMBOL(input_unregister_handle);
2550 
2551 /**
2552  * input_get_new_minor - allocates a new input minor number
2553  * @legacy_base: beginning or the legacy range to be searched
2554  * @legacy_num: size of legacy range
2555  * @allow_dynamic: whether we can also take ID from the dynamic range
2556  *
2557  * This function allocates a new device minor for from input major namespace.
2558  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2559  * parameters and whether ID can be allocated from dynamic range if there are
2560  * no free IDs in legacy range.
2561  */
2562 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2563 			bool allow_dynamic)
2564 {
2565 	/*
2566 	 * This function should be called from input handler's ->connect()
2567 	 * methods, which are serialized with input_mutex, so no additional
2568 	 * locking is needed here.
2569 	 */
2570 	if (legacy_base >= 0) {
2571 		int minor = ida_simple_get(&input_ida,
2572 					   legacy_base,
2573 					   legacy_base + legacy_num,
2574 					   GFP_KERNEL);
2575 		if (minor >= 0 || !allow_dynamic)
2576 			return minor;
2577 	}
2578 
2579 	return ida_simple_get(&input_ida,
2580 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2581 			      GFP_KERNEL);
2582 }
2583 EXPORT_SYMBOL(input_get_new_minor);
2584 
2585 /**
2586  * input_free_minor - release previously allocated minor
2587  * @minor: minor to be released
2588  *
2589  * This function releases previously allocated input minor so that it can be
2590  * reused later.
2591  */
2592 void input_free_minor(unsigned int minor)
2593 {
2594 	ida_simple_remove(&input_ida, minor);
2595 }
2596 EXPORT_SYMBOL(input_free_minor);
2597 
2598 static int __init input_init(void)
2599 {
2600 	int err;
2601 
2602 	err = class_register(&input_class);
2603 	if (err) {
2604 		pr_err("unable to register input_dev class\n");
2605 		return err;
2606 	}
2607 
2608 	err = input_proc_init();
2609 	if (err)
2610 		goto fail1;
2611 
2612 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2613 				     INPUT_MAX_CHAR_DEVICES, "input");
2614 	if (err) {
2615 		pr_err("unable to register char major %d", INPUT_MAJOR);
2616 		goto fail2;
2617 	}
2618 
2619 	return 0;
2620 
2621  fail2:	input_proc_exit();
2622  fail1:	class_unregister(&input_class);
2623 	return err;
2624 }
2625 
2626 static void __exit input_exit(void)
2627 {
2628 	input_proc_exit();
2629 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2630 				 INPUT_MAX_CHAR_DEVICES);
2631 	class_unregister(&input_class);
2632 }
2633 
2634 subsys_initcall(input_init);
2635 module_exit(input_exit);
2636