xref: /openbmc/linux/drivers/input/input.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
28 
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
32 
33 #define INPUT_MAX_CHAR_DEVICES		1024
34 #define INPUT_FIRST_DYNAMIC_DEV		256
35 static DEFINE_IDA(input_ida);
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 static void input_start_autorepeat(struct input_dev *dev, int code)
73 {
74 	if (test_bit(EV_REP, dev->evbit) &&
75 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 	    dev->timer.function) {
77 		dev->repeat_key = code;
78 		mod_timer(&dev->timer,
79 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 	}
81 }
82 
83 static void input_stop_autorepeat(struct input_dev *dev)
84 {
85 	del_timer(&dev->timer);
86 }
87 
88 /*
89  * Pass event first through all filters and then, if event has not been
90  * filtered out, through all open handles. This function is called with
91  * dev->event_lock held and interrupts disabled.
92  */
93 static unsigned int input_to_handler(struct input_handle *handle,
94 			struct input_value *vals, unsigned int count)
95 {
96 	struct input_handler *handler = handle->handler;
97 	struct input_value *end = vals;
98 	struct input_value *v;
99 
100 	if (handler->filter) {
101 		for (v = vals; v != vals + count; v++) {
102 			if (handler->filter(handle, v->type, v->code, v->value))
103 				continue;
104 			if (end != v)
105 				*end = *v;
106 			end++;
107 		}
108 		count = end - vals;
109 	}
110 
111 	if (!count)
112 		return 0;
113 
114 	if (handler->events)
115 		handler->events(handle, vals, count);
116 	else if (handler->event)
117 		for (v = vals; v != vals + count; v++)
118 			handler->event(handle, v->type, v->code, v->value);
119 
120 	return count;
121 }
122 
123 /*
124  * Pass values first through all filters and then, if event has not been
125  * filtered out, through all open handles. This function is called with
126  * dev->event_lock held and interrupts disabled.
127  */
128 static void input_pass_values(struct input_dev *dev,
129 			      struct input_value *vals, unsigned int count)
130 {
131 	struct input_handle *handle;
132 	struct input_value *v;
133 
134 	if (!count)
135 		return;
136 
137 	rcu_read_lock();
138 
139 	handle = rcu_dereference(dev->grab);
140 	if (handle) {
141 		count = input_to_handler(handle, vals, count);
142 	} else {
143 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 			if (handle->open) {
145 				count = input_to_handler(handle, vals, count);
146 				if (!count)
147 					break;
148 			}
149 	}
150 
151 	rcu_read_unlock();
152 
153 	/* trigger auto repeat for key events */
154 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 		for (v = vals; v != vals + count; v++) {
156 			if (v->type == EV_KEY && v->value != 2) {
157 				if (v->value)
158 					input_start_autorepeat(dev, v->code);
159 				else
160 					input_stop_autorepeat(dev);
161 			}
162 		}
163 	}
164 }
165 
166 static void input_pass_event(struct input_dev *dev,
167 			     unsigned int type, unsigned int code, int value)
168 {
169 	struct input_value vals[] = { { type, code, value } };
170 
171 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
172 }
173 
174 /*
175  * Generate software autorepeat event. Note that we take
176  * dev->event_lock here to avoid racing with input_event
177  * which may cause keys get "stuck".
178  */
179 static void input_repeat_key(struct timer_list *t)
180 {
181 	struct input_dev *dev = from_timer(dev, t, timer);
182 	unsigned long flags;
183 
184 	spin_lock_irqsave(&dev->event_lock, flags);
185 
186 	if (test_bit(dev->repeat_key, dev->key) &&
187 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 		struct input_value vals[] =  {
189 			{ EV_KEY, dev->repeat_key, 2 },
190 			input_value_sync
191 		};
192 
193 		input_set_timestamp(dev, ktime_get());
194 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
195 
196 		if (dev->rep[REP_PERIOD])
197 			mod_timer(&dev->timer, jiffies +
198 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
199 	}
200 
201 	spin_unlock_irqrestore(&dev->event_lock, flags);
202 }
203 
204 #define INPUT_IGNORE_EVENT	0
205 #define INPUT_PASS_TO_HANDLERS	1
206 #define INPUT_PASS_TO_DEVICE	2
207 #define INPUT_SLOT		4
208 #define INPUT_FLUSH		8
209 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
210 
211 static int input_handle_abs_event(struct input_dev *dev,
212 				  unsigned int code, int *pval)
213 {
214 	struct input_mt *mt = dev->mt;
215 	bool is_mt_event;
216 	int *pold;
217 
218 	if (code == ABS_MT_SLOT) {
219 		/*
220 		 * "Stage" the event; we'll flush it later, when we
221 		 * get actual touch data.
222 		 */
223 		if (mt && *pval >= 0 && *pval < mt->num_slots)
224 			mt->slot = *pval;
225 
226 		return INPUT_IGNORE_EVENT;
227 	}
228 
229 	is_mt_event = input_is_mt_value(code);
230 
231 	if (!is_mt_event) {
232 		pold = &dev->absinfo[code].value;
233 	} else if (mt) {
234 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
235 	} else {
236 		/*
237 		 * Bypass filtering for multi-touch events when
238 		 * not employing slots.
239 		 */
240 		pold = NULL;
241 	}
242 
243 	if (pold) {
244 		*pval = input_defuzz_abs_event(*pval, *pold,
245 						dev->absinfo[code].fuzz);
246 		if (*pold == *pval)
247 			return INPUT_IGNORE_EVENT;
248 
249 		*pold = *pval;
250 	}
251 
252 	/* Flush pending "slot" event */
253 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
254 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
255 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
256 	}
257 
258 	return INPUT_PASS_TO_HANDLERS;
259 }
260 
261 static int input_get_disposition(struct input_dev *dev,
262 			  unsigned int type, unsigned int code, int *pval)
263 {
264 	int disposition = INPUT_IGNORE_EVENT;
265 	int value = *pval;
266 
267 	switch (type) {
268 
269 	case EV_SYN:
270 		switch (code) {
271 		case SYN_CONFIG:
272 			disposition = INPUT_PASS_TO_ALL;
273 			break;
274 
275 		case SYN_REPORT:
276 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
277 			break;
278 		case SYN_MT_REPORT:
279 			disposition = INPUT_PASS_TO_HANDLERS;
280 			break;
281 		}
282 		break;
283 
284 	case EV_KEY:
285 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
286 
287 			/* auto-repeat bypasses state updates */
288 			if (value == 2) {
289 				disposition = INPUT_PASS_TO_HANDLERS;
290 				break;
291 			}
292 
293 			if (!!test_bit(code, dev->key) != !!value) {
294 
295 				__change_bit(code, dev->key);
296 				disposition = INPUT_PASS_TO_HANDLERS;
297 			}
298 		}
299 		break;
300 
301 	case EV_SW:
302 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
303 		    !!test_bit(code, dev->sw) != !!value) {
304 
305 			__change_bit(code, dev->sw);
306 			disposition = INPUT_PASS_TO_HANDLERS;
307 		}
308 		break;
309 
310 	case EV_ABS:
311 		if (is_event_supported(code, dev->absbit, ABS_MAX))
312 			disposition = input_handle_abs_event(dev, code, &value);
313 
314 		break;
315 
316 	case EV_REL:
317 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
318 			disposition = INPUT_PASS_TO_HANDLERS;
319 
320 		break;
321 
322 	case EV_MSC:
323 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
324 			disposition = INPUT_PASS_TO_ALL;
325 
326 		break;
327 
328 	case EV_LED:
329 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
330 		    !!test_bit(code, dev->led) != !!value) {
331 
332 			__change_bit(code, dev->led);
333 			disposition = INPUT_PASS_TO_ALL;
334 		}
335 		break;
336 
337 	case EV_SND:
338 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
339 
340 			if (!!test_bit(code, dev->snd) != !!value)
341 				__change_bit(code, dev->snd);
342 			disposition = INPUT_PASS_TO_ALL;
343 		}
344 		break;
345 
346 	case EV_REP:
347 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
348 			dev->rep[code] = value;
349 			disposition = INPUT_PASS_TO_ALL;
350 		}
351 		break;
352 
353 	case EV_FF:
354 		if (value >= 0)
355 			disposition = INPUT_PASS_TO_ALL;
356 		break;
357 
358 	case EV_PWR:
359 		disposition = INPUT_PASS_TO_ALL;
360 		break;
361 	}
362 
363 	*pval = value;
364 	return disposition;
365 }
366 
367 static void input_handle_event(struct input_dev *dev,
368 			       unsigned int type, unsigned int code, int value)
369 {
370 	int disposition = input_get_disposition(dev, type, code, &value);
371 
372 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
373 		add_input_randomness(type, code, value);
374 
375 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
376 		dev->event(dev, type, code, value);
377 
378 	if (!dev->vals)
379 		return;
380 
381 	if (disposition & INPUT_PASS_TO_HANDLERS) {
382 		struct input_value *v;
383 
384 		if (disposition & INPUT_SLOT) {
385 			v = &dev->vals[dev->num_vals++];
386 			v->type = EV_ABS;
387 			v->code = ABS_MT_SLOT;
388 			v->value = dev->mt->slot;
389 		}
390 
391 		v = &dev->vals[dev->num_vals++];
392 		v->type = type;
393 		v->code = code;
394 		v->value = value;
395 	}
396 
397 	if (disposition & INPUT_FLUSH) {
398 		if (dev->num_vals >= 2)
399 			input_pass_values(dev, dev->vals, dev->num_vals);
400 		dev->num_vals = 0;
401 		/*
402 		 * Reset the timestamp on flush so we won't end up
403 		 * with a stale one. Note we only need to reset the
404 		 * monolithic one as we use its presence when deciding
405 		 * whether to generate a synthetic timestamp.
406 		 */
407 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
408 	} else if (dev->num_vals >= dev->max_vals - 2) {
409 		dev->vals[dev->num_vals++] = input_value_sync;
410 		input_pass_values(dev, dev->vals, dev->num_vals);
411 		dev->num_vals = 0;
412 	}
413 
414 }
415 
416 /**
417  * input_event() - report new input event
418  * @dev: device that generated the event
419  * @type: type of the event
420  * @code: event code
421  * @value: value of the event
422  *
423  * This function should be used by drivers implementing various input
424  * devices to report input events. See also input_inject_event().
425  *
426  * NOTE: input_event() may be safely used right after input device was
427  * allocated with input_allocate_device(), even before it is registered
428  * with input_register_device(), but the event will not reach any of the
429  * input handlers. Such early invocation of input_event() may be used
430  * to 'seed' initial state of a switch or initial position of absolute
431  * axis, etc.
432  */
433 void input_event(struct input_dev *dev,
434 		 unsigned int type, unsigned int code, int value)
435 {
436 	unsigned long flags;
437 
438 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
439 
440 		spin_lock_irqsave(&dev->event_lock, flags);
441 		input_handle_event(dev, type, code, value);
442 		spin_unlock_irqrestore(&dev->event_lock, flags);
443 	}
444 }
445 EXPORT_SYMBOL(input_event);
446 
447 /**
448  * input_inject_event() - send input event from input handler
449  * @handle: input handle to send event through
450  * @type: type of the event
451  * @code: event code
452  * @value: value of the event
453  *
454  * Similar to input_event() but will ignore event if device is
455  * "grabbed" and handle injecting event is not the one that owns
456  * the device.
457  */
458 void input_inject_event(struct input_handle *handle,
459 			unsigned int type, unsigned int code, int value)
460 {
461 	struct input_dev *dev = handle->dev;
462 	struct input_handle *grab;
463 	unsigned long flags;
464 
465 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
466 		spin_lock_irqsave(&dev->event_lock, flags);
467 
468 		rcu_read_lock();
469 		grab = rcu_dereference(dev->grab);
470 		if (!grab || grab == handle)
471 			input_handle_event(dev, type, code, value);
472 		rcu_read_unlock();
473 
474 		spin_unlock_irqrestore(&dev->event_lock, flags);
475 	}
476 }
477 EXPORT_SYMBOL(input_inject_event);
478 
479 /**
480  * input_alloc_absinfo - allocates array of input_absinfo structs
481  * @dev: the input device emitting absolute events
482  *
483  * If the absinfo struct the caller asked for is already allocated, this
484  * functions will not do anything.
485  */
486 void input_alloc_absinfo(struct input_dev *dev)
487 {
488 	if (dev->absinfo)
489 		return;
490 
491 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
492 	if (!dev->absinfo) {
493 		dev_err(dev->dev.parent ?: &dev->dev,
494 			"%s: unable to allocate memory\n", __func__);
495 		/*
496 		 * We will handle this allocation failure in
497 		 * input_register_device() when we refuse to register input
498 		 * device with ABS bits but without absinfo.
499 		 */
500 	}
501 }
502 EXPORT_SYMBOL(input_alloc_absinfo);
503 
504 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
505 			  int min, int max, int fuzz, int flat)
506 {
507 	struct input_absinfo *absinfo;
508 
509 	input_alloc_absinfo(dev);
510 	if (!dev->absinfo)
511 		return;
512 
513 	absinfo = &dev->absinfo[axis];
514 	absinfo->minimum = min;
515 	absinfo->maximum = max;
516 	absinfo->fuzz = fuzz;
517 	absinfo->flat = flat;
518 
519 	__set_bit(EV_ABS, dev->evbit);
520 	__set_bit(axis, dev->absbit);
521 }
522 EXPORT_SYMBOL(input_set_abs_params);
523 
524 
525 /**
526  * input_grab_device - grabs device for exclusive use
527  * @handle: input handle that wants to own the device
528  *
529  * When a device is grabbed by an input handle all events generated by
530  * the device are delivered only to this handle. Also events injected
531  * by other input handles are ignored while device is grabbed.
532  */
533 int input_grab_device(struct input_handle *handle)
534 {
535 	struct input_dev *dev = handle->dev;
536 	int retval;
537 
538 	retval = mutex_lock_interruptible(&dev->mutex);
539 	if (retval)
540 		return retval;
541 
542 	if (dev->grab) {
543 		retval = -EBUSY;
544 		goto out;
545 	}
546 
547 	rcu_assign_pointer(dev->grab, handle);
548 
549  out:
550 	mutex_unlock(&dev->mutex);
551 	return retval;
552 }
553 EXPORT_SYMBOL(input_grab_device);
554 
555 static void __input_release_device(struct input_handle *handle)
556 {
557 	struct input_dev *dev = handle->dev;
558 	struct input_handle *grabber;
559 
560 	grabber = rcu_dereference_protected(dev->grab,
561 					    lockdep_is_held(&dev->mutex));
562 	if (grabber == handle) {
563 		rcu_assign_pointer(dev->grab, NULL);
564 		/* Make sure input_pass_event() notices that grab is gone */
565 		synchronize_rcu();
566 
567 		list_for_each_entry(handle, &dev->h_list, d_node)
568 			if (handle->open && handle->handler->start)
569 				handle->handler->start(handle);
570 	}
571 }
572 
573 /**
574  * input_release_device - release previously grabbed device
575  * @handle: input handle that owns the device
576  *
577  * Releases previously grabbed device so that other input handles can
578  * start receiving input events. Upon release all handlers attached
579  * to the device have their start() method called so they have a change
580  * to synchronize device state with the rest of the system.
581  */
582 void input_release_device(struct input_handle *handle)
583 {
584 	struct input_dev *dev = handle->dev;
585 
586 	mutex_lock(&dev->mutex);
587 	__input_release_device(handle);
588 	mutex_unlock(&dev->mutex);
589 }
590 EXPORT_SYMBOL(input_release_device);
591 
592 /**
593  * input_open_device - open input device
594  * @handle: handle through which device is being accessed
595  *
596  * This function should be called by input handlers when they
597  * want to start receive events from given input device.
598  */
599 int input_open_device(struct input_handle *handle)
600 {
601 	struct input_dev *dev = handle->dev;
602 	int retval;
603 
604 	retval = mutex_lock_interruptible(&dev->mutex);
605 	if (retval)
606 		return retval;
607 
608 	if (dev->going_away) {
609 		retval = -ENODEV;
610 		goto out;
611 	}
612 
613 	handle->open++;
614 
615 	if (dev->users++) {
616 		/*
617 		 * Device is already opened, so we can exit immediately and
618 		 * report success.
619 		 */
620 		goto out;
621 	}
622 
623 	if (dev->open) {
624 		retval = dev->open(dev);
625 		if (retval) {
626 			dev->users--;
627 			handle->open--;
628 			/*
629 			 * Make sure we are not delivering any more events
630 			 * through this handle
631 			 */
632 			synchronize_rcu();
633 			goto out;
634 		}
635 	}
636 
637 	if (dev->poller)
638 		input_dev_poller_start(dev->poller);
639 
640  out:
641 	mutex_unlock(&dev->mutex);
642 	return retval;
643 }
644 EXPORT_SYMBOL(input_open_device);
645 
646 int input_flush_device(struct input_handle *handle, struct file *file)
647 {
648 	struct input_dev *dev = handle->dev;
649 	int retval;
650 
651 	retval = mutex_lock_interruptible(&dev->mutex);
652 	if (retval)
653 		return retval;
654 
655 	if (dev->flush)
656 		retval = dev->flush(dev, file);
657 
658 	mutex_unlock(&dev->mutex);
659 	return retval;
660 }
661 EXPORT_SYMBOL(input_flush_device);
662 
663 /**
664  * input_close_device - close input device
665  * @handle: handle through which device is being accessed
666  *
667  * This function should be called by input handlers when they
668  * want to stop receive events from given input device.
669  */
670 void input_close_device(struct input_handle *handle)
671 {
672 	struct input_dev *dev = handle->dev;
673 
674 	mutex_lock(&dev->mutex);
675 
676 	__input_release_device(handle);
677 
678 	if (!--dev->users) {
679 		if (dev->poller)
680 			input_dev_poller_stop(dev->poller);
681 
682 		if (dev->close)
683 			dev->close(dev);
684 	}
685 
686 	if (!--handle->open) {
687 		/*
688 		 * synchronize_rcu() makes sure that input_pass_event()
689 		 * completed and that no more input events are delivered
690 		 * through this handle
691 		 */
692 		synchronize_rcu();
693 	}
694 
695 	mutex_unlock(&dev->mutex);
696 }
697 EXPORT_SYMBOL(input_close_device);
698 
699 /*
700  * Simulate keyup events for all keys that are marked as pressed.
701  * The function must be called with dev->event_lock held.
702  */
703 static void input_dev_release_keys(struct input_dev *dev)
704 {
705 	bool need_sync = false;
706 	int code;
707 
708 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
709 		for_each_set_bit(code, dev->key, KEY_CNT) {
710 			input_pass_event(dev, EV_KEY, code, 0);
711 			need_sync = true;
712 		}
713 
714 		if (need_sync)
715 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
716 
717 		memset(dev->key, 0, sizeof(dev->key));
718 	}
719 }
720 
721 /*
722  * Prepare device for unregistering
723  */
724 static void input_disconnect_device(struct input_dev *dev)
725 {
726 	struct input_handle *handle;
727 
728 	/*
729 	 * Mark device as going away. Note that we take dev->mutex here
730 	 * not to protect access to dev->going_away but rather to ensure
731 	 * that there are no threads in the middle of input_open_device()
732 	 */
733 	mutex_lock(&dev->mutex);
734 	dev->going_away = true;
735 	mutex_unlock(&dev->mutex);
736 
737 	spin_lock_irq(&dev->event_lock);
738 
739 	/*
740 	 * Simulate keyup events for all pressed keys so that handlers
741 	 * are not left with "stuck" keys. The driver may continue
742 	 * generate events even after we done here but they will not
743 	 * reach any handlers.
744 	 */
745 	input_dev_release_keys(dev);
746 
747 	list_for_each_entry(handle, &dev->h_list, d_node)
748 		handle->open = 0;
749 
750 	spin_unlock_irq(&dev->event_lock);
751 }
752 
753 /**
754  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
755  * @ke: keymap entry containing scancode to be converted.
756  * @scancode: pointer to the location where converted scancode should
757  *	be stored.
758  *
759  * This function is used to convert scancode stored in &struct keymap_entry
760  * into scalar form understood by legacy keymap handling methods. These
761  * methods expect scancodes to be represented as 'unsigned int'.
762  */
763 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
764 			     unsigned int *scancode)
765 {
766 	switch (ke->len) {
767 	case 1:
768 		*scancode = *((u8 *)ke->scancode);
769 		break;
770 
771 	case 2:
772 		*scancode = *((u16 *)ke->scancode);
773 		break;
774 
775 	case 4:
776 		*scancode = *((u32 *)ke->scancode);
777 		break;
778 
779 	default:
780 		return -EINVAL;
781 	}
782 
783 	return 0;
784 }
785 EXPORT_SYMBOL(input_scancode_to_scalar);
786 
787 /*
788  * Those routines handle the default case where no [gs]etkeycode() is
789  * defined. In this case, an array indexed by the scancode is used.
790  */
791 
792 static unsigned int input_fetch_keycode(struct input_dev *dev,
793 					unsigned int index)
794 {
795 	switch (dev->keycodesize) {
796 	case 1:
797 		return ((u8 *)dev->keycode)[index];
798 
799 	case 2:
800 		return ((u16 *)dev->keycode)[index];
801 
802 	default:
803 		return ((u32 *)dev->keycode)[index];
804 	}
805 }
806 
807 static int input_default_getkeycode(struct input_dev *dev,
808 				    struct input_keymap_entry *ke)
809 {
810 	unsigned int index;
811 	int error;
812 
813 	if (!dev->keycodesize)
814 		return -EINVAL;
815 
816 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
817 		index = ke->index;
818 	else {
819 		error = input_scancode_to_scalar(ke, &index);
820 		if (error)
821 			return error;
822 	}
823 
824 	if (index >= dev->keycodemax)
825 		return -EINVAL;
826 
827 	ke->keycode = input_fetch_keycode(dev, index);
828 	ke->index = index;
829 	ke->len = sizeof(index);
830 	memcpy(ke->scancode, &index, sizeof(index));
831 
832 	return 0;
833 }
834 
835 static int input_default_setkeycode(struct input_dev *dev,
836 				    const struct input_keymap_entry *ke,
837 				    unsigned int *old_keycode)
838 {
839 	unsigned int index;
840 	int error;
841 	int i;
842 
843 	if (!dev->keycodesize)
844 		return -EINVAL;
845 
846 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
847 		index = ke->index;
848 	} else {
849 		error = input_scancode_to_scalar(ke, &index);
850 		if (error)
851 			return error;
852 	}
853 
854 	if (index >= dev->keycodemax)
855 		return -EINVAL;
856 
857 	if (dev->keycodesize < sizeof(ke->keycode) &&
858 			(ke->keycode >> (dev->keycodesize * 8)))
859 		return -EINVAL;
860 
861 	switch (dev->keycodesize) {
862 		case 1: {
863 			u8 *k = (u8 *)dev->keycode;
864 			*old_keycode = k[index];
865 			k[index] = ke->keycode;
866 			break;
867 		}
868 		case 2: {
869 			u16 *k = (u16 *)dev->keycode;
870 			*old_keycode = k[index];
871 			k[index] = ke->keycode;
872 			break;
873 		}
874 		default: {
875 			u32 *k = (u32 *)dev->keycode;
876 			*old_keycode = k[index];
877 			k[index] = ke->keycode;
878 			break;
879 		}
880 	}
881 
882 	if (*old_keycode <= KEY_MAX) {
883 		__clear_bit(*old_keycode, dev->keybit);
884 		for (i = 0; i < dev->keycodemax; i++) {
885 			if (input_fetch_keycode(dev, i) == *old_keycode) {
886 				__set_bit(*old_keycode, dev->keybit);
887 				/* Setting the bit twice is useless, so break */
888 				break;
889 			}
890 		}
891 	}
892 
893 	__set_bit(ke->keycode, dev->keybit);
894 	return 0;
895 }
896 
897 /**
898  * input_get_keycode - retrieve keycode currently mapped to a given scancode
899  * @dev: input device which keymap is being queried
900  * @ke: keymap entry
901  *
902  * This function should be called by anyone interested in retrieving current
903  * keymap. Presently evdev handlers use it.
904  */
905 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
906 {
907 	unsigned long flags;
908 	int retval;
909 
910 	spin_lock_irqsave(&dev->event_lock, flags);
911 	retval = dev->getkeycode(dev, ke);
912 	spin_unlock_irqrestore(&dev->event_lock, flags);
913 
914 	return retval;
915 }
916 EXPORT_SYMBOL(input_get_keycode);
917 
918 /**
919  * input_set_keycode - attribute a keycode to a given scancode
920  * @dev: input device which keymap is being updated
921  * @ke: new keymap entry
922  *
923  * This function should be called by anyone needing to update current
924  * keymap. Presently keyboard and evdev handlers use it.
925  */
926 int input_set_keycode(struct input_dev *dev,
927 		      const struct input_keymap_entry *ke)
928 {
929 	unsigned long flags;
930 	unsigned int old_keycode;
931 	int retval;
932 
933 	if (ke->keycode > KEY_MAX)
934 		return -EINVAL;
935 
936 	spin_lock_irqsave(&dev->event_lock, flags);
937 
938 	retval = dev->setkeycode(dev, ke, &old_keycode);
939 	if (retval)
940 		goto out;
941 
942 	/* Make sure KEY_RESERVED did not get enabled. */
943 	__clear_bit(KEY_RESERVED, dev->keybit);
944 
945 	/*
946 	 * Simulate keyup event if keycode is not present
947 	 * in the keymap anymore
948 	 */
949 	if (old_keycode > KEY_MAX) {
950 		dev_warn(dev->dev.parent ?: &dev->dev,
951 			 "%s: got too big old keycode %#x\n",
952 			 __func__, old_keycode);
953 	} else if (test_bit(EV_KEY, dev->evbit) &&
954 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
955 		   __test_and_clear_bit(old_keycode, dev->key)) {
956 		struct input_value vals[] =  {
957 			{ EV_KEY, old_keycode, 0 },
958 			input_value_sync
959 		};
960 
961 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
962 	}
963 
964  out:
965 	spin_unlock_irqrestore(&dev->event_lock, flags);
966 
967 	return retval;
968 }
969 EXPORT_SYMBOL(input_set_keycode);
970 
971 bool input_match_device_id(const struct input_dev *dev,
972 			   const struct input_device_id *id)
973 {
974 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
975 		if (id->bustype != dev->id.bustype)
976 			return false;
977 
978 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
979 		if (id->vendor != dev->id.vendor)
980 			return false;
981 
982 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
983 		if (id->product != dev->id.product)
984 			return false;
985 
986 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
987 		if (id->version != dev->id.version)
988 			return false;
989 
990 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
991 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
992 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
993 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
994 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
995 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
996 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
997 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
998 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
999 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1000 		return false;
1001 	}
1002 
1003 	return true;
1004 }
1005 EXPORT_SYMBOL(input_match_device_id);
1006 
1007 static const struct input_device_id *input_match_device(struct input_handler *handler,
1008 							struct input_dev *dev)
1009 {
1010 	const struct input_device_id *id;
1011 
1012 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1013 		if (input_match_device_id(dev, id) &&
1014 		    (!handler->match || handler->match(handler, dev))) {
1015 			return id;
1016 		}
1017 	}
1018 
1019 	return NULL;
1020 }
1021 
1022 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1023 {
1024 	const struct input_device_id *id;
1025 	int error;
1026 
1027 	id = input_match_device(handler, dev);
1028 	if (!id)
1029 		return -ENODEV;
1030 
1031 	error = handler->connect(handler, dev, id);
1032 	if (error && error != -ENODEV)
1033 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1034 		       handler->name, kobject_name(&dev->dev.kobj), error);
1035 
1036 	return error;
1037 }
1038 
1039 #ifdef CONFIG_COMPAT
1040 
1041 static int input_bits_to_string(char *buf, int buf_size,
1042 				unsigned long bits, bool skip_empty)
1043 {
1044 	int len = 0;
1045 
1046 	if (in_compat_syscall()) {
1047 		u32 dword = bits >> 32;
1048 		if (dword || !skip_empty)
1049 			len += snprintf(buf, buf_size, "%x ", dword);
1050 
1051 		dword = bits & 0xffffffffUL;
1052 		if (dword || !skip_empty || len)
1053 			len += snprintf(buf + len, max(buf_size - len, 0),
1054 					"%x", dword);
1055 	} else {
1056 		if (bits || !skip_empty)
1057 			len += snprintf(buf, buf_size, "%lx", bits);
1058 	}
1059 
1060 	return len;
1061 }
1062 
1063 #else /* !CONFIG_COMPAT */
1064 
1065 static int input_bits_to_string(char *buf, int buf_size,
1066 				unsigned long bits, bool skip_empty)
1067 {
1068 	return bits || !skip_empty ?
1069 		snprintf(buf, buf_size, "%lx", bits) : 0;
1070 }
1071 
1072 #endif
1073 
1074 #ifdef CONFIG_PROC_FS
1075 
1076 static struct proc_dir_entry *proc_bus_input_dir;
1077 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1078 static int input_devices_state;
1079 
1080 static inline void input_wakeup_procfs_readers(void)
1081 {
1082 	input_devices_state++;
1083 	wake_up(&input_devices_poll_wait);
1084 }
1085 
1086 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1087 {
1088 	poll_wait(file, &input_devices_poll_wait, wait);
1089 	if (file->f_version != input_devices_state) {
1090 		file->f_version = input_devices_state;
1091 		return EPOLLIN | EPOLLRDNORM;
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 union input_seq_state {
1098 	struct {
1099 		unsigned short pos;
1100 		bool mutex_acquired;
1101 	};
1102 	void *p;
1103 };
1104 
1105 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1106 {
1107 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1108 	int error;
1109 
1110 	/* We need to fit into seq->private pointer */
1111 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1112 
1113 	error = mutex_lock_interruptible(&input_mutex);
1114 	if (error) {
1115 		state->mutex_acquired = false;
1116 		return ERR_PTR(error);
1117 	}
1118 
1119 	state->mutex_acquired = true;
1120 
1121 	return seq_list_start(&input_dev_list, *pos);
1122 }
1123 
1124 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125 {
1126 	return seq_list_next(v, &input_dev_list, pos);
1127 }
1128 
1129 static void input_seq_stop(struct seq_file *seq, void *v)
1130 {
1131 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1132 
1133 	if (state->mutex_acquired)
1134 		mutex_unlock(&input_mutex);
1135 }
1136 
1137 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1138 				   unsigned long *bitmap, int max)
1139 {
1140 	int i;
1141 	bool skip_empty = true;
1142 	char buf[18];
1143 
1144 	seq_printf(seq, "B: %s=", name);
1145 
1146 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1147 		if (input_bits_to_string(buf, sizeof(buf),
1148 					 bitmap[i], skip_empty)) {
1149 			skip_empty = false;
1150 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1151 		}
1152 	}
1153 
1154 	/*
1155 	 * If no output was produced print a single 0.
1156 	 */
1157 	if (skip_empty)
1158 		seq_putc(seq, '0');
1159 
1160 	seq_putc(seq, '\n');
1161 }
1162 
1163 static int input_devices_seq_show(struct seq_file *seq, void *v)
1164 {
1165 	struct input_dev *dev = container_of(v, struct input_dev, node);
1166 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1167 	struct input_handle *handle;
1168 
1169 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171 
1172 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1173 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1174 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1175 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1176 	seq_puts(seq, "H: Handlers=");
1177 
1178 	list_for_each_entry(handle, &dev->h_list, d_node)
1179 		seq_printf(seq, "%s ", handle->name);
1180 	seq_putc(seq, '\n');
1181 
1182 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183 
1184 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1185 	if (test_bit(EV_KEY, dev->evbit))
1186 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1187 	if (test_bit(EV_REL, dev->evbit))
1188 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1189 	if (test_bit(EV_ABS, dev->evbit))
1190 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1191 	if (test_bit(EV_MSC, dev->evbit))
1192 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1193 	if (test_bit(EV_LED, dev->evbit))
1194 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1195 	if (test_bit(EV_SND, dev->evbit))
1196 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1197 	if (test_bit(EV_FF, dev->evbit))
1198 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1199 	if (test_bit(EV_SW, dev->evbit))
1200 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201 
1202 	seq_putc(seq, '\n');
1203 
1204 	kfree(path);
1205 	return 0;
1206 }
1207 
1208 static const struct seq_operations input_devices_seq_ops = {
1209 	.start	= input_devices_seq_start,
1210 	.next	= input_devices_seq_next,
1211 	.stop	= input_seq_stop,
1212 	.show	= input_devices_seq_show,
1213 };
1214 
1215 static int input_proc_devices_open(struct inode *inode, struct file *file)
1216 {
1217 	return seq_open(file, &input_devices_seq_ops);
1218 }
1219 
1220 static const struct proc_ops input_devices_proc_ops = {
1221 	.proc_open	= input_proc_devices_open,
1222 	.proc_poll	= input_proc_devices_poll,
1223 	.proc_read	= seq_read,
1224 	.proc_lseek	= seq_lseek,
1225 	.proc_release	= seq_release,
1226 };
1227 
1228 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229 {
1230 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1231 	int error;
1232 
1233 	/* We need to fit into seq->private pointer */
1234 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1235 
1236 	error = mutex_lock_interruptible(&input_mutex);
1237 	if (error) {
1238 		state->mutex_acquired = false;
1239 		return ERR_PTR(error);
1240 	}
1241 
1242 	state->mutex_acquired = true;
1243 	state->pos = *pos;
1244 
1245 	return seq_list_start(&input_handler_list, *pos);
1246 }
1247 
1248 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1249 {
1250 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1251 
1252 	state->pos = *pos + 1;
1253 	return seq_list_next(v, &input_handler_list, pos);
1254 }
1255 
1256 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1257 {
1258 	struct input_handler *handler = container_of(v, struct input_handler, node);
1259 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1260 
1261 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1262 	if (handler->filter)
1263 		seq_puts(seq, " (filter)");
1264 	if (handler->legacy_minors)
1265 		seq_printf(seq, " Minor=%d", handler->minor);
1266 	seq_putc(seq, '\n');
1267 
1268 	return 0;
1269 }
1270 
1271 static const struct seq_operations input_handlers_seq_ops = {
1272 	.start	= input_handlers_seq_start,
1273 	.next	= input_handlers_seq_next,
1274 	.stop	= input_seq_stop,
1275 	.show	= input_handlers_seq_show,
1276 };
1277 
1278 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1279 {
1280 	return seq_open(file, &input_handlers_seq_ops);
1281 }
1282 
1283 static const struct proc_ops input_handlers_proc_ops = {
1284 	.proc_open	= input_proc_handlers_open,
1285 	.proc_read	= seq_read,
1286 	.proc_lseek	= seq_lseek,
1287 	.proc_release	= seq_release,
1288 };
1289 
1290 static int __init input_proc_init(void)
1291 {
1292 	struct proc_dir_entry *entry;
1293 
1294 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1295 	if (!proc_bus_input_dir)
1296 		return -ENOMEM;
1297 
1298 	entry = proc_create("devices", 0, proc_bus_input_dir,
1299 			    &input_devices_proc_ops);
1300 	if (!entry)
1301 		goto fail1;
1302 
1303 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1304 			    &input_handlers_proc_ops);
1305 	if (!entry)
1306 		goto fail2;
1307 
1308 	return 0;
1309 
1310  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1311  fail1: remove_proc_entry("bus/input", NULL);
1312 	return -ENOMEM;
1313 }
1314 
1315 static void input_proc_exit(void)
1316 {
1317 	remove_proc_entry("devices", proc_bus_input_dir);
1318 	remove_proc_entry("handlers", proc_bus_input_dir);
1319 	remove_proc_entry("bus/input", NULL);
1320 }
1321 
1322 #else /* !CONFIG_PROC_FS */
1323 static inline void input_wakeup_procfs_readers(void) { }
1324 static inline int input_proc_init(void) { return 0; }
1325 static inline void input_proc_exit(void) { }
1326 #endif
1327 
1328 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1329 static ssize_t input_dev_show_##name(struct device *dev,		\
1330 				     struct device_attribute *attr,	\
1331 				     char *buf)				\
1332 {									\
1333 	struct input_dev *input_dev = to_input_dev(dev);		\
1334 									\
1335 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1336 			 input_dev->name ? input_dev->name : "");	\
1337 }									\
1338 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1339 
1340 INPUT_DEV_STRING_ATTR_SHOW(name);
1341 INPUT_DEV_STRING_ATTR_SHOW(phys);
1342 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1343 
1344 static int input_print_modalias_bits(char *buf, int size,
1345 				     char name, unsigned long *bm,
1346 				     unsigned int min_bit, unsigned int max_bit)
1347 {
1348 	int len = 0, i;
1349 
1350 	len += snprintf(buf, max(size, 0), "%c", name);
1351 	for (i = min_bit; i < max_bit; i++)
1352 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1353 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1354 	return len;
1355 }
1356 
1357 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1358 				int add_cr)
1359 {
1360 	int len;
1361 
1362 	len = snprintf(buf, max(size, 0),
1363 		       "input:b%04Xv%04Xp%04Xe%04X-",
1364 		       id->id.bustype, id->id.vendor,
1365 		       id->id.product, id->id.version);
1366 
1367 	len += input_print_modalias_bits(buf + len, size - len,
1368 				'e', id->evbit, 0, EV_MAX);
1369 	len += input_print_modalias_bits(buf + len, size - len,
1370 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1371 	len += input_print_modalias_bits(buf + len, size - len,
1372 				'r', id->relbit, 0, REL_MAX);
1373 	len += input_print_modalias_bits(buf + len, size - len,
1374 				'a', id->absbit, 0, ABS_MAX);
1375 	len += input_print_modalias_bits(buf + len, size - len,
1376 				'm', id->mscbit, 0, MSC_MAX);
1377 	len += input_print_modalias_bits(buf + len, size - len,
1378 				'l', id->ledbit, 0, LED_MAX);
1379 	len += input_print_modalias_bits(buf + len, size - len,
1380 				's', id->sndbit, 0, SND_MAX);
1381 	len += input_print_modalias_bits(buf + len, size - len,
1382 				'f', id->ffbit, 0, FF_MAX);
1383 	len += input_print_modalias_bits(buf + len, size - len,
1384 				'w', id->swbit, 0, SW_MAX);
1385 
1386 	if (add_cr)
1387 		len += snprintf(buf + len, max(size - len, 0), "\n");
1388 
1389 	return len;
1390 }
1391 
1392 static ssize_t input_dev_show_modalias(struct device *dev,
1393 				       struct device_attribute *attr,
1394 				       char *buf)
1395 {
1396 	struct input_dev *id = to_input_dev(dev);
1397 	ssize_t len;
1398 
1399 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1400 
1401 	return min_t(int, len, PAGE_SIZE);
1402 }
1403 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1404 
1405 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1406 			      int max, int add_cr);
1407 
1408 static ssize_t input_dev_show_properties(struct device *dev,
1409 					 struct device_attribute *attr,
1410 					 char *buf)
1411 {
1412 	struct input_dev *input_dev = to_input_dev(dev);
1413 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1414 				     INPUT_PROP_MAX, true);
1415 	return min_t(int, len, PAGE_SIZE);
1416 }
1417 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1418 
1419 static struct attribute *input_dev_attrs[] = {
1420 	&dev_attr_name.attr,
1421 	&dev_attr_phys.attr,
1422 	&dev_attr_uniq.attr,
1423 	&dev_attr_modalias.attr,
1424 	&dev_attr_properties.attr,
1425 	NULL
1426 };
1427 
1428 static const struct attribute_group input_dev_attr_group = {
1429 	.attrs	= input_dev_attrs,
1430 };
1431 
1432 #define INPUT_DEV_ID_ATTR(name)						\
1433 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1434 					struct device_attribute *attr,	\
1435 					char *buf)			\
1436 {									\
1437 	struct input_dev *input_dev = to_input_dev(dev);		\
1438 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1439 }									\
1440 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1441 
1442 INPUT_DEV_ID_ATTR(bustype);
1443 INPUT_DEV_ID_ATTR(vendor);
1444 INPUT_DEV_ID_ATTR(product);
1445 INPUT_DEV_ID_ATTR(version);
1446 
1447 static struct attribute *input_dev_id_attrs[] = {
1448 	&dev_attr_bustype.attr,
1449 	&dev_attr_vendor.attr,
1450 	&dev_attr_product.attr,
1451 	&dev_attr_version.attr,
1452 	NULL
1453 };
1454 
1455 static const struct attribute_group input_dev_id_attr_group = {
1456 	.name	= "id",
1457 	.attrs	= input_dev_id_attrs,
1458 };
1459 
1460 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1461 			      int max, int add_cr)
1462 {
1463 	int i;
1464 	int len = 0;
1465 	bool skip_empty = true;
1466 
1467 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1468 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1469 					    bitmap[i], skip_empty);
1470 		if (len) {
1471 			skip_empty = false;
1472 			if (i > 0)
1473 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1474 		}
1475 	}
1476 
1477 	/*
1478 	 * If no output was produced print a single 0.
1479 	 */
1480 	if (len == 0)
1481 		len = snprintf(buf, buf_size, "%d", 0);
1482 
1483 	if (add_cr)
1484 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1485 
1486 	return len;
1487 }
1488 
1489 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1490 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1491 				       struct device_attribute *attr,	\
1492 				       char *buf)			\
1493 {									\
1494 	struct input_dev *input_dev = to_input_dev(dev);		\
1495 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1496 				     input_dev->bm##bit, ev##_MAX,	\
1497 				     true);				\
1498 	return min_t(int, len, PAGE_SIZE);				\
1499 }									\
1500 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1501 
1502 INPUT_DEV_CAP_ATTR(EV, ev);
1503 INPUT_DEV_CAP_ATTR(KEY, key);
1504 INPUT_DEV_CAP_ATTR(REL, rel);
1505 INPUT_DEV_CAP_ATTR(ABS, abs);
1506 INPUT_DEV_CAP_ATTR(MSC, msc);
1507 INPUT_DEV_CAP_ATTR(LED, led);
1508 INPUT_DEV_CAP_ATTR(SND, snd);
1509 INPUT_DEV_CAP_ATTR(FF, ff);
1510 INPUT_DEV_CAP_ATTR(SW, sw);
1511 
1512 static struct attribute *input_dev_caps_attrs[] = {
1513 	&dev_attr_ev.attr,
1514 	&dev_attr_key.attr,
1515 	&dev_attr_rel.attr,
1516 	&dev_attr_abs.attr,
1517 	&dev_attr_msc.attr,
1518 	&dev_attr_led.attr,
1519 	&dev_attr_snd.attr,
1520 	&dev_attr_ff.attr,
1521 	&dev_attr_sw.attr,
1522 	NULL
1523 };
1524 
1525 static const struct attribute_group input_dev_caps_attr_group = {
1526 	.name	= "capabilities",
1527 	.attrs	= input_dev_caps_attrs,
1528 };
1529 
1530 static const struct attribute_group *input_dev_attr_groups[] = {
1531 	&input_dev_attr_group,
1532 	&input_dev_id_attr_group,
1533 	&input_dev_caps_attr_group,
1534 	&input_poller_attribute_group,
1535 	NULL
1536 };
1537 
1538 static void input_dev_release(struct device *device)
1539 {
1540 	struct input_dev *dev = to_input_dev(device);
1541 
1542 	input_ff_destroy(dev);
1543 	input_mt_destroy_slots(dev);
1544 	kfree(dev->poller);
1545 	kfree(dev->absinfo);
1546 	kfree(dev->vals);
1547 	kfree(dev);
1548 
1549 	module_put(THIS_MODULE);
1550 }
1551 
1552 /*
1553  * Input uevent interface - loading event handlers based on
1554  * device bitfields.
1555  */
1556 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1557 				   const char *name, unsigned long *bitmap, int max)
1558 {
1559 	int len;
1560 
1561 	if (add_uevent_var(env, "%s", name))
1562 		return -ENOMEM;
1563 
1564 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1565 				 sizeof(env->buf) - env->buflen,
1566 				 bitmap, max, false);
1567 	if (len >= (sizeof(env->buf) - env->buflen))
1568 		return -ENOMEM;
1569 
1570 	env->buflen += len;
1571 	return 0;
1572 }
1573 
1574 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1575 					 struct input_dev *dev)
1576 {
1577 	int len;
1578 
1579 	if (add_uevent_var(env, "MODALIAS="))
1580 		return -ENOMEM;
1581 
1582 	len = input_print_modalias(&env->buf[env->buflen - 1],
1583 				   sizeof(env->buf) - env->buflen,
1584 				   dev, 0);
1585 	if (len >= (sizeof(env->buf) - env->buflen))
1586 		return -ENOMEM;
1587 
1588 	env->buflen += len;
1589 	return 0;
1590 }
1591 
1592 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1593 	do {								\
1594 		int err = add_uevent_var(env, fmt, val);		\
1595 		if (err)						\
1596 			return err;					\
1597 	} while (0)
1598 
1599 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1600 	do {								\
1601 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1602 		if (err)						\
1603 			return err;					\
1604 	} while (0)
1605 
1606 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1607 	do {								\
1608 		int err = input_add_uevent_modalias_var(env, dev);	\
1609 		if (err)						\
1610 			return err;					\
1611 	} while (0)
1612 
1613 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1614 {
1615 	struct input_dev *dev = to_input_dev(device);
1616 
1617 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1618 				dev->id.bustype, dev->id.vendor,
1619 				dev->id.product, dev->id.version);
1620 	if (dev->name)
1621 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1622 	if (dev->phys)
1623 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1624 	if (dev->uniq)
1625 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1626 
1627 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1628 
1629 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1630 	if (test_bit(EV_KEY, dev->evbit))
1631 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1632 	if (test_bit(EV_REL, dev->evbit))
1633 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1634 	if (test_bit(EV_ABS, dev->evbit))
1635 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1636 	if (test_bit(EV_MSC, dev->evbit))
1637 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1638 	if (test_bit(EV_LED, dev->evbit))
1639 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1640 	if (test_bit(EV_SND, dev->evbit))
1641 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1642 	if (test_bit(EV_FF, dev->evbit))
1643 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1644 	if (test_bit(EV_SW, dev->evbit))
1645 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1646 
1647 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1648 
1649 	return 0;
1650 }
1651 
1652 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1653 	do {								\
1654 		int i;							\
1655 		bool active;						\
1656 									\
1657 		if (!test_bit(EV_##type, dev->evbit))			\
1658 			break;						\
1659 									\
1660 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1661 			active = test_bit(i, dev->bits);		\
1662 			if (!active && !on)				\
1663 				continue;				\
1664 									\
1665 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1666 		}							\
1667 	} while (0)
1668 
1669 static void input_dev_toggle(struct input_dev *dev, bool activate)
1670 {
1671 	if (!dev->event)
1672 		return;
1673 
1674 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1675 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1676 
1677 	if (activate && test_bit(EV_REP, dev->evbit)) {
1678 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1679 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1680 	}
1681 }
1682 
1683 /**
1684  * input_reset_device() - reset/restore the state of input device
1685  * @dev: input device whose state needs to be reset
1686  *
1687  * This function tries to reset the state of an opened input device and
1688  * bring internal state and state if the hardware in sync with each other.
1689  * We mark all keys as released, restore LED state, repeat rate, etc.
1690  */
1691 void input_reset_device(struct input_dev *dev)
1692 {
1693 	unsigned long flags;
1694 
1695 	mutex_lock(&dev->mutex);
1696 	spin_lock_irqsave(&dev->event_lock, flags);
1697 
1698 	input_dev_toggle(dev, true);
1699 	input_dev_release_keys(dev);
1700 
1701 	spin_unlock_irqrestore(&dev->event_lock, flags);
1702 	mutex_unlock(&dev->mutex);
1703 }
1704 EXPORT_SYMBOL(input_reset_device);
1705 
1706 #ifdef CONFIG_PM_SLEEP
1707 static int input_dev_suspend(struct device *dev)
1708 {
1709 	struct input_dev *input_dev = to_input_dev(dev);
1710 
1711 	spin_lock_irq(&input_dev->event_lock);
1712 
1713 	/*
1714 	 * Keys that are pressed now are unlikely to be
1715 	 * still pressed when we resume.
1716 	 */
1717 	input_dev_release_keys(input_dev);
1718 
1719 	/* Turn off LEDs and sounds, if any are active. */
1720 	input_dev_toggle(input_dev, false);
1721 
1722 	spin_unlock_irq(&input_dev->event_lock);
1723 
1724 	return 0;
1725 }
1726 
1727 static int input_dev_resume(struct device *dev)
1728 {
1729 	struct input_dev *input_dev = to_input_dev(dev);
1730 
1731 	spin_lock_irq(&input_dev->event_lock);
1732 
1733 	/* Restore state of LEDs and sounds, if any were active. */
1734 	input_dev_toggle(input_dev, true);
1735 
1736 	spin_unlock_irq(&input_dev->event_lock);
1737 
1738 	return 0;
1739 }
1740 
1741 static int input_dev_freeze(struct device *dev)
1742 {
1743 	struct input_dev *input_dev = to_input_dev(dev);
1744 
1745 	spin_lock_irq(&input_dev->event_lock);
1746 
1747 	/*
1748 	 * Keys that are pressed now are unlikely to be
1749 	 * still pressed when we resume.
1750 	 */
1751 	input_dev_release_keys(input_dev);
1752 
1753 	spin_unlock_irq(&input_dev->event_lock);
1754 
1755 	return 0;
1756 }
1757 
1758 static int input_dev_poweroff(struct device *dev)
1759 {
1760 	struct input_dev *input_dev = to_input_dev(dev);
1761 
1762 	spin_lock_irq(&input_dev->event_lock);
1763 
1764 	/* Turn off LEDs and sounds, if any are active. */
1765 	input_dev_toggle(input_dev, false);
1766 
1767 	spin_unlock_irq(&input_dev->event_lock);
1768 
1769 	return 0;
1770 }
1771 
1772 static const struct dev_pm_ops input_dev_pm_ops = {
1773 	.suspend	= input_dev_suspend,
1774 	.resume		= input_dev_resume,
1775 	.freeze		= input_dev_freeze,
1776 	.poweroff	= input_dev_poweroff,
1777 	.restore	= input_dev_resume,
1778 };
1779 #endif /* CONFIG_PM */
1780 
1781 static const struct device_type input_dev_type = {
1782 	.groups		= input_dev_attr_groups,
1783 	.release	= input_dev_release,
1784 	.uevent		= input_dev_uevent,
1785 #ifdef CONFIG_PM_SLEEP
1786 	.pm		= &input_dev_pm_ops,
1787 #endif
1788 };
1789 
1790 static char *input_devnode(struct device *dev, umode_t *mode)
1791 {
1792 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1793 }
1794 
1795 struct class input_class = {
1796 	.name		= "input",
1797 	.devnode	= input_devnode,
1798 };
1799 EXPORT_SYMBOL_GPL(input_class);
1800 
1801 /**
1802  * input_allocate_device - allocate memory for new input device
1803  *
1804  * Returns prepared struct input_dev or %NULL.
1805  *
1806  * NOTE: Use input_free_device() to free devices that have not been
1807  * registered; input_unregister_device() should be used for already
1808  * registered devices.
1809  */
1810 struct input_dev *input_allocate_device(void)
1811 {
1812 	static atomic_t input_no = ATOMIC_INIT(-1);
1813 	struct input_dev *dev;
1814 
1815 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1816 	if (dev) {
1817 		dev->dev.type = &input_dev_type;
1818 		dev->dev.class = &input_class;
1819 		device_initialize(&dev->dev);
1820 		mutex_init(&dev->mutex);
1821 		spin_lock_init(&dev->event_lock);
1822 		timer_setup(&dev->timer, NULL, 0);
1823 		INIT_LIST_HEAD(&dev->h_list);
1824 		INIT_LIST_HEAD(&dev->node);
1825 
1826 		dev_set_name(&dev->dev, "input%lu",
1827 			     (unsigned long)atomic_inc_return(&input_no));
1828 
1829 		__module_get(THIS_MODULE);
1830 	}
1831 
1832 	return dev;
1833 }
1834 EXPORT_SYMBOL(input_allocate_device);
1835 
1836 struct input_devres {
1837 	struct input_dev *input;
1838 };
1839 
1840 static int devm_input_device_match(struct device *dev, void *res, void *data)
1841 {
1842 	struct input_devres *devres = res;
1843 
1844 	return devres->input == data;
1845 }
1846 
1847 static void devm_input_device_release(struct device *dev, void *res)
1848 {
1849 	struct input_devres *devres = res;
1850 	struct input_dev *input = devres->input;
1851 
1852 	dev_dbg(dev, "%s: dropping reference to %s\n",
1853 		__func__, dev_name(&input->dev));
1854 	input_put_device(input);
1855 }
1856 
1857 /**
1858  * devm_input_allocate_device - allocate managed input device
1859  * @dev: device owning the input device being created
1860  *
1861  * Returns prepared struct input_dev or %NULL.
1862  *
1863  * Managed input devices do not need to be explicitly unregistered or
1864  * freed as it will be done automatically when owner device unbinds from
1865  * its driver (or binding fails). Once managed input device is allocated,
1866  * it is ready to be set up and registered in the same fashion as regular
1867  * input device. There are no special devm_input_device_[un]register()
1868  * variants, regular ones work with both managed and unmanaged devices,
1869  * should you need them. In most cases however, managed input device need
1870  * not be explicitly unregistered or freed.
1871  *
1872  * NOTE: the owner device is set up as parent of input device and users
1873  * should not override it.
1874  */
1875 struct input_dev *devm_input_allocate_device(struct device *dev)
1876 {
1877 	struct input_dev *input;
1878 	struct input_devres *devres;
1879 
1880 	devres = devres_alloc(devm_input_device_release,
1881 			      sizeof(*devres), GFP_KERNEL);
1882 	if (!devres)
1883 		return NULL;
1884 
1885 	input = input_allocate_device();
1886 	if (!input) {
1887 		devres_free(devres);
1888 		return NULL;
1889 	}
1890 
1891 	input->dev.parent = dev;
1892 	input->devres_managed = true;
1893 
1894 	devres->input = input;
1895 	devres_add(dev, devres);
1896 
1897 	return input;
1898 }
1899 EXPORT_SYMBOL(devm_input_allocate_device);
1900 
1901 /**
1902  * input_free_device - free memory occupied by input_dev structure
1903  * @dev: input device to free
1904  *
1905  * This function should only be used if input_register_device()
1906  * was not called yet or if it failed. Once device was registered
1907  * use input_unregister_device() and memory will be freed once last
1908  * reference to the device is dropped.
1909  *
1910  * Device should be allocated by input_allocate_device().
1911  *
1912  * NOTE: If there are references to the input device then memory
1913  * will not be freed until last reference is dropped.
1914  */
1915 void input_free_device(struct input_dev *dev)
1916 {
1917 	if (dev) {
1918 		if (dev->devres_managed)
1919 			WARN_ON(devres_destroy(dev->dev.parent,
1920 						devm_input_device_release,
1921 						devm_input_device_match,
1922 						dev));
1923 		input_put_device(dev);
1924 	}
1925 }
1926 EXPORT_SYMBOL(input_free_device);
1927 
1928 /**
1929  * input_set_timestamp - set timestamp for input events
1930  * @dev: input device to set timestamp for
1931  * @timestamp: the time at which the event has occurred
1932  *   in CLOCK_MONOTONIC
1933  *
1934  * This function is intended to provide to the input system a more
1935  * accurate time of when an event actually occurred. The driver should
1936  * call this function as soon as a timestamp is acquired ensuring
1937  * clock conversions in input_set_timestamp are done correctly.
1938  *
1939  * The system entering suspend state between timestamp acquisition and
1940  * calling input_set_timestamp can result in inaccurate conversions.
1941  */
1942 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1943 {
1944 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
1945 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1946 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1947 							   TK_OFFS_BOOT);
1948 }
1949 EXPORT_SYMBOL(input_set_timestamp);
1950 
1951 /**
1952  * input_get_timestamp - get timestamp for input events
1953  * @dev: input device to get timestamp from
1954  *
1955  * A valid timestamp is a timestamp of non-zero value.
1956  */
1957 ktime_t *input_get_timestamp(struct input_dev *dev)
1958 {
1959 	const ktime_t invalid_timestamp = ktime_set(0, 0);
1960 
1961 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1962 		input_set_timestamp(dev, ktime_get());
1963 
1964 	return dev->timestamp;
1965 }
1966 EXPORT_SYMBOL(input_get_timestamp);
1967 
1968 /**
1969  * input_set_capability - mark device as capable of a certain event
1970  * @dev: device that is capable of emitting or accepting event
1971  * @type: type of the event (EV_KEY, EV_REL, etc...)
1972  * @code: event code
1973  *
1974  * In addition to setting up corresponding bit in appropriate capability
1975  * bitmap the function also adjusts dev->evbit.
1976  */
1977 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1978 {
1979 	switch (type) {
1980 	case EV_KEY:
1981 		__set_bit(code, dev->keybit);
1982 		break;
1983 
1984 	case EV_REL:
1985 		__set_bit(code, dev->relbit);
1986 		break;
1987 
1988 	case EV_ABS:
1989 		input_alloc_absinfo(dev);
1990 		if (!dev->absinfo)
1991 			return;
1992 
1993 		__set_bit(code, dev->absbit);
1994 		break;
1995 
1996 	case EV_MSC:
1997 		__set_bit(code, dev->mscbit);
1998 		break;
1999 
2000 	case EV_SW:
2001 		__set_bit(code, dev->swbit);
2002 		break;
2003 
2004 	case EV_LED:
2005 		__set_bit(code, dev->ledbit);
2006 		break;
2007 
2008 	case EV_SND:
2009 		__set_bit(code, dev->sndbit);
2010 		break;
2011 
2012 	case EV_FF:
2013 		__set_bit(code, dev->ffbit);
2014 		break;
2015 
2016 	case EV_PWR:
2017 		/* do nothing */
2018 		break;
2019 
2020 	default:
2021 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2022 		dump_stack();
2023 		return;
2024 	}
2025 
2026 	__set_bit(type, dev->evbit);
2027 }
2028 EXPORT_SYMBOL(input_set_capability);
2029 
2030 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2031 {
2032 	int mt_slots;
2033 	int i;
2034 	unsigned int events;
2035 
2036 	if (dev->mt) {
2037 		mt_slots = dev->mt->num_slots;
2038 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2039 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2040 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2041 		mt_slots = clamp(mt_slots, 2, 32);
2042 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2043 		mt_slots = 2;
2044 	} else {
2045 		mt_slots = 0;
2046 	}
2047 
2048 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2049 
2050 	if (test_bit(EV_ABS, dev->evbit))
2051 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2052 			events += input_is_mt_axis(i) ? mt_slots : 1;
2053 
2054 	if (test_bit(EV_REL, dev->evbit))
2055 		events += bitmap_weight(dev->relbit, REL_CNT);
2056 
2057 	/* Make room for KEY and MSC events */
2058 	events += 7;
2059 
2060 	return events;
2061 }
2062 
2063 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2064 	do {								\
2065 		if (!test_bit(EV_##type, dev->evbit))			\
2066 			memset(dev->bits##bit, 0,			\
2067 				sizeof(dev->bits##bit));		\
2068 	} while (0)
2069 
2070 static void input_cleanse_bitmasks(struct input_dev *dev)
2071 {
2072 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2073 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2074 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2075 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2076 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2077 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2078 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2079 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2080 }
2081 
2082 static void __input_unregister_device(struct input_dev *dev)
2083 {
2084 	struct input_handle *handle, *next;
2085 
2086 	input_disconnect_device(dev);
2087 
2088 	mutex_lock(&input_mutex);
2089 
2090 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2091 		handle->handler->disconnect(handle);
2092 	WARN_ON(!list_empty(&dev->h_list));
2093 
2094 	del_timer_sync(&dev->timer);
2095 	list_del_init(&dev->node);
2096 
2097 	input_wakeup_procfs_readers();
2098 
2099 	mutex_unlock(&input_mutex);
2100 
2101 	device_del(&dev->dev);
2102 }
2103 
2104 static void devm_input_device_unregister(struct device *dev, void *res)
2105 {
2106 	struct input_devres *devres = res;
2107 	struct input_dev *input = devres->input;
2108 
2109 	dev_dbg(dev, "%s: unregistering device %s\n",
2110 		__func__, dev_name(&input->dev));
2111 	__input_unregister_device(input);
2112 }
2113 
2114 /**
2115  * input_enable_softrepeat - enable software autorepeat
2116  * @dev: input device
2117  * @delay: repeat delay
2118  * @period: repeat period
2119  *
2120  * Enable software autorepeat on the input device.
2121  */
2122 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2123 {
2124 	dev->timer.function = input_repeat_key;
2125 	dev->rep[REP_DELAY] = delay;
2126 	dev->rep[REP_PERIOD] = period;
2127 }
2128 EXPORT_SYMBOL(input_enable_softrepeat);
2129 
2130 /**
2131  * input_register_device - register device with input core
2132  * @dev: device to be registered
2133  *
2134  * This function registers device with input core. The device must be
2135  * allocated with input_allocate_device() and all it's capabilities
2136  * set up before registering.
2137  * If function fails the device must be freed with input_free_device().
2138  * Once device has been successfully registered it can be unregistered
2139  * with input_unregister_device(); input_free_device() should not be
2140  * called in this case.
2141  *
2142  * Note that this function is also used to register managed input devices
2143  * (ones allocated with devm_input_allocate_device()). Such managed input
2144  * devices need not be explicitly unregistered or freed, their tear down
2145  * is controlled by the devres infrastructure. It is also worth noting
2146  * that tear down of managed input devices is internally a 2-step process:
2147  * registered managed input device is first unregistered, but stays in
2148  * memory and can still handle input_event() calls (although events will
2149  * not be delivered anywhere). The freeing of managed input device will
2150  * happen later, when devres stack is unwound to the point where device
2151  * allocation was made.
2152  */
2153 int input_register_device(struct input_dev *dev)
2154 {
2155 	struct input_devres *devres = NULL;
2156 	struct input_handler *handler;
2157 	unsigned int packet_size;
2158 	const char *path;
2159 	int error;
2160 
2161 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2162 		dev_err(&dev->dev,
2163 			"Absolute device without dev->absinfo, refusing to register\n");
2164 		return -EINVAL;
2165 	}
2166 
2167 	if (dev->devres_managed) {
2168 		devres = devres_alloc(devm_input_device_unregister,
2169 				      sizeof(*devres), GFP_KERNEL);
2170 		if (!devres)
2171 			return -ENOMEM;
2172 
2173 		devres->input = dev;
2174 	}
2175 
2176 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2177 	__set_bit(EV_SYN, dev->evbit);
2178 
2179 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2180 	__clear_bit(KEY_RESERVED, dev->keybit);
2181 
2182 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2183 	input_cleanse_bitmasks(dev);
2184 
2185 	packet_size = input_estimate_events_per_packet(dev);
2186 	if (dev->hint_events_per_packet < packet_size)
2187 		dev->hint_events_per_packet = packet_size;
2188 
2189 	dev->max_vals = dev->hint_events_per_packet + 2;
2190 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2191 	if (!dev->vals) {
2192 		error = -ENOMEM;
2193 		goto err_devres_free;
2194 	}
2195 
2196 	/*
2197 	 * If delay and period are pre-set by the driver, then autorepeating
2198 	 * is handled by the driver itself and we don't do it in input.c.
2199 	 */
2200 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2201 		input_enable_softrepeat(dev, 250, 33);
2202 
2203 	if (!dev->getkeycode)
2204 		dev->getkeycode = input_default_getkeycode;
2205 
2206 	if (!dev->setkeycode)
2207 		dev->setkeycode = input_default_setkeycode;
2208 
2209 	if (dev->poller)
2210 		input_dev_poller_finalize(dev->poller);
2211 
2212 	error = device_add(&dev->dev);
2213 	if (error)
2214 		goto err_free_vals;
2215 
2216 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2217 	pr_info("%s as %s\n",
2218 		dev->name ? dev->name : "Unspecified device",
2219 		path ? path : "N/A");
2220 	kfree(path);
2221 
2222 	error = mutex_lock_interruptible(&input_mutex);
2223 	if (error)
2224 		goto err_device_del;
2225 
2226 	list_add_tail(&dev->node, &input_dev_list);
2227 
2228 	list_for_each_entry(handler, &input_handler_list, node)
2229 		input_attach_handler(dev, handler);
2230 
2231 	input_wakeup_procfs_readers();
2232 
2233 	mutex_unlock(&input_mutex);
2234 
2235 	if (dev->devres_managed) {
2236 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2237 			__func__, dev_name(&dev->dev));
2238 		devres_add(dev->dev.parent, devres);
2239 	}
2240 	return 0;
2241 
2242 err_device_del:
2243 	device_del(&dev->dev);
2244 err_free_vals:
2245 	kfree(dev->vals);
2246 	dev->vals = NULL;
2247 err_devres_free:
2248 	devres_free(devres);
2249 	return error;
2250 }
2251 EXPORT_SYMBOL(input_register_device);
2252 
2253 /**
2254  * input_unregister_device - unregister previously registered device
2255  * @dev: device to be unregistered
2256  *
2257  * This function unregisters an input device. Once device is unregistered
2258  * the caller should not try to access it as it may get freed at any moment.
2259  */
2260 void input_unregister_device(struct input_dev *dev)
2261 {
2262 	if (dev->devres_managed) {
2263 		WARN_ON(devres_destroy(dev->dev.parent,
2264 					devm_input_device_unregister,
2265 					devm_input_device_match,
2266 					dev));
2267 		__input_unregister_device(dev);
2268 		/*
2269 		 * We do not do input_put_device() here because it will be done
2270 		 * when 2nd devres fires up.
2271 		 */
2272 	} else {
2273 		__input_unregister_device(dev);
2274 		input_put_device(dev);
2275 	}
2276 }
2277 EXPORT_SYMBOL(input_unregister_device);
2278 
2279 /**
2280  * input_register_handler - register a new input handler
2281  * @handler: handler to be registered
2282  *
2283  * This function registers a new input handler (interface) for input
2284  * devices in the system and attaches it to all input devices that
2285  * are compatible with the handler.
2286  */
2287 int input_register_handler(struct input_handler *handler)
2288 {
2289 	struct input_dev *dev;
2290 	int error;
2291 
2292 	error = mutex_lock_interruptible(&input_mutex);
2293 	if (error)
2294 		return error;
2295 
2296 	INIT_LIST_HEAD(&handler->h_list);
2297 
2298 	list_add_tail(&handler->node, &input_handler_list);
2299 
2300 	list_for_each_entry(dev, &input_dev_list, node)
2301 		input_attach_handler(dev, handler);
2302 
2303 	input_wakeup_procfs_readers();
2304 
2305 	mutex_unlock(&input_mutex);
2306 	return 0;
2307 }
2308 EXPORT_SYMBOL(input_register_handler);
2309 
2310 /**
2311  * input_unregister_handler - unregisters an input handler
2312  * @handler: handler to be unregistered
2313  *
2314  * This function disconnects a handler from its input devices and
2315  * removes it from lists of known handlers.
2316  */
2317 void input_unregister_handler(struct input_handler *handler)
2318 {
2319 	struct input_handle *handle, *next;
2320 
2321 	mutex_lock(&input_mutex);
2322 
2323 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2324 		handler->disconnect(handle);
2325 	WARN_ON(!list_empty(&handler->h_list));
2326 
2327 	list_del_init(&handler->node);
2328 
2329 	input_wakeup_procfs_readers();
2330 
2331 	mutex_unlock(&input_mutex);
2332 }
2333 EXPORT_SYMBOL(input_unregister_handler);
2334 
2335 /**
2336  * input_handler_for_each_handle - handle iterator
2337  * @handler: input handler to iterate
2338  * @data: data for the callback
2339  * @fn: function to be called for each handle
2340  *
2341  * Iterate over @bus's list of devices, and call @fn for each, passing
2342  * it @data and stop when @fn returns a non-zero value. The function is
2343  * using RCU to traverse the list and therefore may be using in atomic
2344  * contexts. The @fn callback is invoked from RCU critical section and
2345  * thus must not sleep.
2346  */
2347 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2348 				  int (*fn)(struct input_handle *, void *))
2349 {
2350 	struct input_handle *handle;
2351 	int retval = 0;
2352 
2353 	rcu_read_lock();
2354 
2355 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2356 		retval = fn(handle, data);
2357 		if (retval)
2358 			break;
2359 	}
2360 
2361 	rcu_read_unlock();
2362 
2363 	return retval;
2364 }
2365 EXPORT_SYMBOL(input_handler_for_each_handle);
2366 
2367 /**
2368  * input_register_handle - register a new input handle
2369  * @handle: handle to register
2370  *
2371  * This function puts a new input handle onto device's
2372  * and handler's lists so that events can flow through
2373  * it once it is opened using input_open_device().
2374  *
2375  * This function is supposed to be called from handler's
2376  * connect() method.
2377  */
2378 int input_register_handle(struct input_handle *handle)
2379 {
2380 	struct input_handler *handler = handle->handler;
2381 	struct input_dev *dev = handle->dev;
2382 	int error;
2383 
2384 	/*
2385 	 * We take dev->mutex here to prevent race with
2386 	 * input_release_device().
2387 	 */
2388 	error = mutex_lock_interruptible(&dev->mutex);
2389 	if (error)
2390 		return error;
2391 
2392 	/*
2393 	 * Filters go to the head of the list, normal handlers
2394 	 * to the tail.
2395 	 */
2396 	if (handler->filter)
2397 		list_add_rcu(&handle->d_node, &dev->h_list);
2398 	else
2399 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2400 
2401 	mutex_unlock(&dev->mutex);
2402 
2403 	/*
2404 	 * Since we are supposed to be called from ->connect()
2405 	 * which is mutually exclusive with ->disconnect()
2406 	 * we can't be racing with input_unregister_handle()
2407 	 * and so separate lock is not needed here.
2408 	 */
2409 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2410 
2411 	if (handler->start)
2412 		handler->start(handle);
2413 
2414 	return 0;
2415 }
2416 EXPORT_SYMBOL(input_register_handle);
2417 
2418 /**
2419  * input_unregister_handle - unregister an input handle
2420  * @handle: handle to unregister
2421  *
2422  * This function removes input handle from device's
2423  * and handler's lists.
2424  *
2425  * This function is supposed to be called from handler's
2426  * disconnect() method.
2427  */
2428 void input_unregister_handle(struct input_handle *handle)
2429 {
2430 	struct input_dev *dev = handle->dev;
2431 
2432 	list_del_rcu(&handle->h_node);
2433 
2434 	/*
2435 	 * Take dev->mutex to prevent race with input_release_device().
2436 	 */
2437 	mutex_lock(&dev->mutex);
2438 	list_del_rcu(&handle->d_node);
2439 	mutex_unlock(&dev->mutex);
2440 
2441 	synchronize_rcu();
2442 }
2443 EXPORT_SYMBOL(input_unregister_handle);
2444 
2445 /**
2446  * input_get_new_minor - allocates a new input minor number
2447  * @legacy_base: beginning or the legacy range to be searched
2448  * @legacy_num: size of legacy range
2449  * @allow_dynamic: whether we can also take ID from the dynamic range
2450  *
2451  * This function allocates a new device minor for from input major namespace.
2452  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2453  * parameters and whether ID can be allocated from dynamic range if there are
2454  * no free IDs in legacy range.
2455  */
2456 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2457 			bool allow_dynamic)
2458 {
2459 	/*
2460 	 * This function should be called from input handler's ->connect()
2461 	 * methods, which are serialized with input_mutex, so no additional
2462 	 * locking is needed here.
2463 	 */
2464 	if (legacy_base >= 0) {
2465 		int minor = ida_simple_get(&input_ida,
2466 					   legacy_base,
2467 					   legacy_base + legacy_num,
2468 					   GFP_KERNEL);
2469 		if (minor >= 0 || !allow_dynamic)
2470 			return minor;
2471 	}
2472 
2473 	return ida_simple_get(&input_ida,
2474 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2475 			      GFP_KERNEL);
2476 }
2477 EXPORT_SYMBOL(input_get_new_minor);
2478 
2479 /**
2480  * input_free_minor - release previously allocated minor
2481  * @minor: minor to be released
2482  *
2483  * This function releases previously allocated input minor so that it can be
2484  * reused later.
2485  */
2486 void input_free_minor(unsigned int minor)
2487 {
2488 	ida_simple_remove(&input_ida, minor);
2489 }
2490 EXPORT_SYMBOL(input_free_minor);
2491 
2492 static int __init input_init(void)
2493 {
2494 	int err;
2495 
2496 	err = class_register(&input_class);
2497 	if (err) {
2498 		pr_err("unable to register input_dev class\n");
2499 		return err;
2500 	}
2501 
2502 	err = input_proc_init();
2503 	if (err)
2504 		goto fail1;
2505 
2506 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2507 				     INPUT_MAX_CHAR_DEVICES, "input");
2508 	if (err) {
2509 		pr_err("unable to register char major %d", INPUT_MAJOR);
2510 		goto fail2;
2511 	}
2512 
2513 	return 0;
2514 
2515  fail2:	input_proc_exit();
2516  fail1:	class_unregister(&input_class);
2517 	return err;
2518 }
2519 
2520 static void __exit input_exit(void)
2521 {
2522 	input_proc_exit();
2523 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2524 				 INPUT_MAX_CHAR_DEVICES);
2525 	class_unregister(&input_class);
2526 }
2527 
2528 subsys_initcall(input_init);
2529 module_exit(input_exit);
2530