xref: /openbmc/linux/drivers/input/input.c (revision a06c488d)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	if (handler->filter) {
104 		for (v = vals; v != vals + count; v++) {
105 			if (handler->filter(handle, v->type, v->code, v->value))
106 				continue;
107 			if (end != v)
108 				*end = *v;
109 			end++;
110 		}
111 		count = end - vals;
112 	}
113 
114 	if (!count)
115 		return 0;
116 
117 	if (handler->events)
118 		handler->events(handle, vals, count);
119 	else if (handler->event)
120 		for (v = vals; v != vals + count; v++)
121 			handler->event(handle, v->type, v->code, v->value);
122 
123 	return count;
124 }
125 
126 /*
127  * Pass values first through all filters and then, if event has not been
128  * filtered out, through all open handles. This function is called with
129  * dev->event_lock held and interrupts disabled.
130  */
131 static void input_pass_values(struct input_dev *dev,
132 			      struct input_value *vals, unsigned int count)
133 {
134 	struct input_handle *handle;
135 	struct input_value *v;
136 
137 	if (!count)
138 		return;
139 
140 	rcu_read_lock();
141 
142 	handle = rcu_dereference(dev->grab);
143 	if (handle) {
144 		count = input_to_handler(handle, vals, count);
145 	} else {
146 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147 			if (handle->open) {
148 				count = input_to_handler(handle, vals, count);
149 				if (!count)
150 					break;
151 			}
152 	}
153 
154 	rcu_read_unlock();
155 
156 	add_input_randomness(vals->type, vals->code, vals->value);
157 
158 	/* trigger auto repeat for key events */
159 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
160 		for (v = vals; v != vals + count; v++) {
161 			if (v->type == EV_KEY && v->value != 2) {
162 				if (v->value)
163 					input_start_autorepeat(dev, v->code);
164 				else
165 					input_stop_autorepeat(dev);
166 			}
167 		}
168 	}
169 }
170 
171 static void input_pass_event(struct input_dev *dev,
172 			     unsigned int type, unsigned int code, int value)
173 {
174 	struct input_value vals[] = { { type, code, value } };
175 
176 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
177 }
178 
179 /*
180  * Generate software autorepeat event. Note that we take
181  * dev->event_lock here to avoid racing with input_event
182  * which may cause keys get "stuck".
183  */
184 static void input_repeat_key(unsigned long data)
185 {
186 	struct input_dev *dev = (void *) data;
187 	unsigned long flags;
188 
189 	spin_lock_irqsave(&dev->event_lock, flags);
190 
191 	if (test_bit(dev->repeat_key, dev->key) &&
192 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
193 		struct input_value vals[] =  {
194 			{ EV_KEY, dev->repeat_key, 2 },
195 			input_value_sync
196 		};
197 
198 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
199 
200 		if (dev->rep[REP_PERIOD])
201 			mod_timer(&dev->timer, jiffies +
202 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
203 	}
204 
205 	spin_unlock_irqrestore(&dev->event_lock, flags);
206 }
207 
208 #define INPUT_IGNORE_EVENT	0
209 #define INPUT_PASS_TO_HANDLERS	1
210 #define INPUT_PASS_TO_DEVICE	2
211 #define INPUT_SLOT		4
212 #define INPUT_FLUSH		8
213 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
214 
215 static int input_handle_abs_event(struct input_dev *dev,
216 				  unsigned int code, int *pval)
217 {
218 	struct input_mt *mt = dev->mt;
219 	bool is_mt_event;
220 	int *pold;
221 
222 	if (code == ABS_MT_SLOT) {
223 		/*
224 		 * "Stage" the event; we'll flush it later, when we
225 		 * get actual touch data.
226 		 */
227 		if (mt && *pval >= 0 && *pval < mt->num_slots)
228 			mt->slot = *pval;
229 
230 		return INPUT_IGNORE_EVENT;
231 	}
232 
233 	is_mt_event = input_is_mt_value(code);
234 
235 	if (!is_mt_event) {
236 		pold = &dev->absinfo[code].value;
237 	} else if (mt) {
238 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
239 	} else {
240 		/*
241 		 * Bypass filtering for multi-touch events when
242 		 * not employing slots.
243 		 */
244 		pold = NULL;
245 	}
246 
247 	if (pold) {
248 		*pval = input_defuzz_abs_event(*pval, *pold,
249 						dev->absinfo[code].fuzz);
250 		if (*pold == *pval)
251 			return INPUT_IGNORE_EVENT;
252 
253 		*pold = *pval;
254 	}
255 
256 	/* Flush pending "slot" event */
257 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
258 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
259 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
260 	}
261 
262 	return INPUT_PASS_TO_HANDLERS;
263 }
264 
265 static int input_get_disposition(struct input_dev *dev,
266 			  unsigned int type, unsigned int code, int *pval)
267 {
268 	int disposition = INPUT_IGNORE_EVENT;
269 	int value = *pval;
270 
271 	switch (type) {
272 
273 	case EV_SYN:
274 		switch (code) {
275 		case SYN_CONFIG:
276 			disposition = INPUT_PASS_TO_ALL;
277 			break;
278 
279 		case SYN_REPORT:
280 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
281 			break;
282 		case SYN_MT_REPORT:
283 			disposition = INPUT_PASS_TO_HANDLERS;
284 			break;
285 		}
286 		break;
287 
288 	case EV_KEY:
289 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
290 
291 			/* auto-repeat bypasses state updates */
292 			if (value == 2) {
293 				disposition = INPUT_PASS_TO_HANDLERS;
294 				break;
295 			}
296 
297 			if (!!test_bit(code, dev->key) != !!value) {
298 
299 				__change_bit(code, dev->key);
300 				disposition = INPUT_PASS_TO_HANDLERS;
301 			}
302 		}
303 		break;
304 
305 	case EV_SW:
306 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
307 		    !!test_bit(code, dev->sw) != !!value) {
308 
309 			__change_bit(code, dev->sw);
310 			disposition = INPUT_PASS_TO_HANDLERS;
311 		}
312 		break;
313 
314 	case EV_ABS:
315 		if (is_event_supported(code, dev->absbit, ABS_MAX))
316 			disposition = input_handle_abs_event(dev, code, &value);
317 
318 		break;
319 
320 	case EV_REL:
321 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
322 			disposition = INPUT_PASS_TO_HANDLERS;
323 
324 		break;
325 
326 	case EV_MSC:
327 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
328 			disposition = INPUT_PASS_TO_ALL;
329 
330 		break;
331 
332 	case EV_LED:
333 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
334 		    !!test_bit(code, dev->led) != !!value) {
335 
336 			__change_bit(code, dev->led);
337 			disposition = INPUT_PASS_TO_ALL;
338 		}
339 		break;
340 
341 	case EV_SND:
342 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
343 
344 			if (!!test_bit(code, dev->snd) != !!value)
345 				__change_bit(code, dev->snd);
346 			disposition = INPUT_PASS_TO_ALL;
347 		}
348 		break;
349 
350 	case EV_REP:
351 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
352 			dev->rep[code] = value;
353 			disposition = INPUT_PASS_TO_ALL;
354 		}
355 		break;
356 
357 	case EV_FF:
358 		if (value >= 0)
359 			disposition = INPUT_PASS_TO_ALL;
360 		break;
361 
362 	case EV_PWR:
363 		disposition = INPUT_PASS_TO_ALL;
364 		break;
365 	}
366 
367 	*pval = value;
368 	return disposition;
369 }
370 
371 static void input_handle_event(struct input_dev *dev,
372 			       unsigned int type, unsigned int code, int value)
373 {
374 	int disposition;
375 
376 	disposition = input_get_disposition(dev, type, code, &value);
377 
378 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
379 		dev->event(dev, type, code, value);
380 
381 	if (!dev->vals)
382 		return;
383 
384 	if (disposition & INPUT_PASS_TO_HANDLERS) {
385 		struct input_value *v;
386 
387 		if (disposition & INPUT_SLOT) {
388 			v = &dev->vals[dev->num_vals++];
389 			v->type = EV_ABS;
390 			v->code = ABS_MT_SLOT;
391 			v->value = dev->mt->slot;
392 		}
393 
394 		v = &dev->vals[dev->num_vals++];
395 		v->type = type;
396 		v->code = code;
397 		v->value = value;
398 	}
399 
400 	if (disposition & INPUT_FLUSH) {
401 		if (dev->num_vals >= 2)
402 			input_pass_values(dev, dev->vals, dev->num_vals);
403 		dev->num_vals = 0;
404 	} else if (dev->num_vals >= dev->max_vals - 2) {
405 		dev->vals[dev->num_vals++] = input_value_sync;
406 		input_pass_values(dev, dev->vals, dev->num_vals);
407 		dev->num_vals = 0;
408 	}
409 
410 }
411 
412 /**
413  * input_event() - report new input event
414  * @dev: device that generated the event
415  * @type: type of the event
416  * @code: event code
417  * @value: value of the event
418  *
419  * This function should be used by drivers implementing various input
420  * devices to report input events. See also input_inject_event().
421  *
422  * NOTE: input_event() may be safely used right after input device was
423  * allocated with input_allocate_device(), even before it is registered
424  * with input_register_device(), but the event will not reach any of the
425  * input handlers. Such early invocation of input_event() may be used
426  * to 'seed' initial state of a switch or initial position of absolute
427  * axis, etc.
428  */
429 void input_event(struct input_dev *dev,
430 		 unsigned int type, unsigned int code, int value)
431 {
432 	unsigned long flags;
433 
434 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
435 
436 		spin_lock_irqsave(&dev->event_lock, flags);
437 		input_handle_event(dev, type, code, value);
438 		spin_unlock_irqrestore(&dev->event_lock, flags);
439 	}
440 }
441 EXPORT_SYMBOL(input_event);
442 
443 /**
444  * input_inject_event() - send input event from input handler
445  * @handle: input handle to send event through
446  * @type: type of the event
447  * @code: event code
448  * @value: value of the event
449  *
450  * Similar to input_event() but will ignore event if device is
451  * "grabbed" and handle injecting event is not the one that owns
452  * the device.
453  */
454 void input_inject_event(struct input_handle *handle,
455 			unsigned int type, unsigned int code, int value)
456 {
457 	struct input_dev *dev = handle->dev;
458 	struct input_handle *grab;
459 	unsigned long flags;
460 
461 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
462 		spin_lock_irqsave(&dev->event_lock, flags);
463 
464 		rcu_read_lock();
465 		grab = rcu_dereference(dev->grab);
466 		if (!grab || grab == handle)
467 			input_handle_event(dev, type, code, value);
468 		rcu_read_unlock();
469 
470 		spin_unlock_irqrestore(&dev->event_lock, flags);
471 	}
472 }
473 EXPORT_SYMBOL(input_inject_event);
474 
475 /**
476  * input_alloc_absinfo - allocates array of input_absinfo structs
477  * @dev: the input device emitting absolute events
478  *
479  * If the absinfo struct the caller asked for is already allocated, this
480  * functions will not do anything.
481  */
482 void input_alloc_absinfo(struct input_dev *dev)
483 {
484 	if (!dev->absinfo)
485 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
486 					GFP_KERNEL);
487 
488 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
489 }
490 EXPORT_SYMBOL(input_alloc_absinfo);
491 
492 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
493 			  int min, int max, int fuzz, int flat)
494 {
495 	struct input_absinfo *absinfo;
496 
497 	input_alloc_absinfo(dev);
498 	if (!dev->absinfo)
499 		return;
500 
501 	absinfo = &dev->absinfo[axis];
502 	absinfo->minimum = min;
503 	absinfo->maximum = max;
504 	absinfo->fuzz = fuzz;
505 	absinfo->flat = flat;
506 
507 	__set_bit(EV_ABS, dev->evbit);
508 	__set_bit(axis, dev->absbit);
509 }
510 EXPORT_SYMBOL(input_set_abs_params);
511 
512 
513 /**
514  * input_grab_device - grabs device for exclusive use
515  * @handle: input handle that wants to own the device
516  *
517  * When a device is grabbed by an input handle all events generated by
518  * the device are delivered only to this handle. Also events injected
519  * by other input handles are ignored while device is grabbed.
520  */
521 int input_grab_device(struct input_handle *handle)
522 {
523 	struct input_dev *dev = handle->dev;
524 	int retval;
525 
526 	retval = mutex_lock_interruptible(&dev->mutex);
527 	if (retval)
528 		return retval;
529 
530 	if (dev->grab) {
531 		retval = -EBUSY;
532 		goto out;
533 	}
534 
535 	rcu_assign_pointer(dev->grab, handle);
536 
537  out:
538 	mutex_unlock(&dev->mutex);
539 	return retval;
540 }
541 EXPORT_SYMBOL(input_grab_device);
542 
543 static void __input_release_device(struct input_handle *handle)
544 {
545 	struct input_dev *dev = handle->dev;
546 	struct input_handle *grabber;
547 
548 	grabber = rcu_dereference_protected(dev->grab,
549 					    lockdep_is_held(&dev->mutex));
550 	if (grabber == handle) {
551 		rcu_assign_pointer(dev->grab, NULL);
552 		/* Make sure input_pass_event() notices that grab is gone */
553 		synchronize_rcu();
554 
555 		list_for_each_entry(handle, &dev->h_list, d_node)
556 			if (handle->open && handle->handler->start)
557 				handle->handler->start(handle);
558 	}
559 }
560 
561 /**
562  * input_release_device - release previously grabbed device
563  * @handle: input handle that owns the device
564  *
565  * Releases previously grabbed device so that other input handles can
566  * start receiving input events. Upon release all handlers attached
567  * to the device have their start() method called so they have a change
568  * to synchronize device state with the rest of the system.
569  */
570 void input_release_device(struct input_handle *handle)
571 {
572 	struct input_dev *dev = handle->dev;
573 
574 	mutex_lock(&dev->mutex);
575 	__input_release_device(handle);
576 	mutex_unlock(&dev->mutex);
577 }
578 EXPORT_SYMBOL(input_release_device);
579 
580 /**
581  * input_open_device - open input device
582  * @handle: handle through which device is being accessed
583  *
584  * This function should be called by input handlers when they
585  * want to start receive events from given input device.
586  */
587 int input_open_device(struct input_handle *handle)
588 {
589 	struct input_dev *dev = handle->dev;
590 	int retval;
591 
592 	retval = mutex_lock_interruptible(&dev->mutex);
593 	if (retval)
594 		return retval;
595 
596 	if (dev->going_away) {
597 		retval = -ENODEV;
598 		goto out;
599 	}
600 
601 	handle->open++;
602 
603 	if (!dev->users++ && dev->open)
604 		retval = dev->open(dev);
605 
606 	if (retval) {
607 		dev->users--;
608 		if (!--handle->open) {
609 			/*
610 			 * Make sure we are not delivering any more events
611 			 * through this handle
612 			 */
613 			synchronize_rcu();
614 		}
615 	}
616 
617  out:
618 	mutex_unlock(&dev->mutex);
619 	return retval;
620 }
621 EXPORT_SYMBOL(input_open_device);
622 
623 int input_flush_device(struct input_handle *handle, struct file *file)
624 {
625 	struct input_dev *dev = handle->dev;
626 	int retval;
627 
628 	retval = mutex_lock_interruptible(&dev->mutex);
629 	if (retval)
630 		return retval;
631 
632 	if (dev->flush)
633 		retval = dev->flush(dev, file);
634 
635 	mutex_unlock(&dev->mutex);
636 	return retval;
637 }
638 EXPORT_SYMBOL(input_flush_device);
639 
640 /**
641  * input_close_device - close input device
642  * @handle: handle through which device is being accessed
643  *
644  * This function should be called by input handlers when they
645  * want to stop receive events from given input device.
646  */
647 void input_close_device(struct input_handle *handle)
648 {
649 	struct input_dev *dev = handle->dev;
650 
651 	mutex_lock(&dev->mutex);
652 
653 	__input_release_device(handle);
654 
655 	if (!--dev->users && dev->close)
656 		dev->close(dev);
657 
658 	if (!--handle->open) {
659 		/*
660 		 * synchronize_rcu() makes sure that input_pass_event()
661 		 * completed and that no more input events are delivered
662 		 * through this handle
663 		 */
664 		synchronize_rcu();
665 	}
666 
667 	mutex_unlock(&dev->mutex);
668 }
669 EXPORT_SYMBOL(input_close_device);
670 
671 /*
672  * Simulate keyup events for all keys that are marked as pressed.
673  * The function must be called with dev->event_lock held.
674  */
675 static void input_dev_release_keys(struct input_dev *dev)
676 {
677 	bool need_sync = false;
678 	int code;
679 
680 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
681 		for_each_set_bit(code, dev->key, KEY_CNT) {
682 			input_pass_event(dev, EV_KEY, code, 0);
683 			need_sync = true;
684 		}
685 
686 		if (need_sync)
687 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
688 
689 		memset(dev->key, 0, sizeof(dev->key));
690 	}
691 }
692 
693 /*
694  * Prepare device for unregistering
695  */
696 static void input_disconnect_device(struct input_dev *dev)
697 {
698 	struct input_handle *handle;
699 
700 	/*
701 	 * Mark device as going away. Note that we take dev->mutex here
702 	 * not to protect access to dev->going_away but rather to ensure
703 	 * that there are no threads in the middle of input_open_device()
704 	 */
705 	mutex_lock(&dev->mutex);
706 	dev->going_away = true;
707 	mutex_unlock(&dev->mutex);
708 
709 	spin_lock_irq(&dev->event_lock);
710 
711 	/*
712 	 * Simulate keyup events for all pressed keys so that handlers
713 	 * are not left with "stuck" keys. The driver may continue
714 	 * generate events even after we done here but they will not
715 	 * reach any handlers.
716 	 */
717 	input_dev_release_keys(dev);
718 
719 	list_for_each_entry(handle, &dev->h_list, d_node)
720 		handle->open = 0;
721 
722 	spin_unlock_irq(&dev->event_lock);
723 }
724 
725 /**
726  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
727  * @ke: keymap entry containing scancode to be converted.
728  * @scancode: pointer to the location where converted scancode should
729  *	be stored.
730  *
731  * This function is used to convert scancode stored in &struct keymap_entry
732  * into scalar form understood by legacy keymap handling methods. These
733  * methods expect scancodes to be represented as 'unsigned int'.
734  */
735 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
736 			     unsigned int *scancode)
737 {
738 	switch (ke->len) {
739 	case 1:
740 		*scancode = *((u8 *)ke->scancode);
741 		break;
742 
743 	case 2:
744 		*scancode = *((u16 *)ke->scancode);
745 		break;
746 
747 	case 4:
748 		*scancode = *((u32 *)ke->scancode);
749 		break;
750 
751 	default:
752 		return -EINVAL;
753 	}
754 
755 	return 0;
756 }
757 EXPORT_SYMBOL(input_scancode_to_scalar);
758 
759 /*
760  * Those routines handle the default case where no [gs]etkeycode() is
761  * defined. In this case, an array indexed by the scancode is used.
762  */
763 
764 static unsigned int input_fetch_keycode(struct input_dev *dev,
765 					unsigned int index)
766 {
767 	switch (dev->keycodesize) {
768 	case 1:
769 		return ((u8 *)dev->keycode)[index];
770 
771 	case 2:
772 		return ((u16 *)dev->keycode)[index];
773 
774 	default:
775 		return ((u32 *)dev->keycode)[index];
776 	}
777 }
778 
779 static int input_default_getkeycode(struct input_dev *dev,
780 				    struct input_keymap_entry *ke)
781 {
782 	unsigned int index;
783 	int error;
784 
785 	if (!dev->keycodesize)
786 		return -EINVAL;
787 
788 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
789 		index = ke->index;
790 	else {
791 		error = input_scancode_to_scalar(ke, &index);
792 		if (error)
793 			return error;
794 	}
795 
796 	if (index >= dev->keycodemax)
797 		return -EINVAL;
798 
799 	ke->keycode = input_fetch_keycode(dev, index);
800 	ke->index = index;
801 	ke->len = sizeof(index);
802 	memcpy(ke->scancode, &index, sizeof(index));
803 
804 	return 0;
805 }
806 
807 static int input_default_setkeycode(struct input_dev *dev,
808 				    const struct input_keymap_entry *ke,
809 				    unsigned int *old_keycode)
810 {
811 	unsigned int index;
812 	int error;
813 	int i;
814 
815 	if (!dev->keycodesize)
816 		return -EINVAL;
817 
818 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
819 		index = ke->index;
820 	} else {
821 		error = input_scancode_to_scalar(ke, &index);
822 		if (error)
823 			return error;
824 	}
825 
826 	if (index >= dev->keycodemax)
827 		return -EINVAL;
828 
829 	if (dev->keycodesize < sizeof(ke->keycode) &&
830 			(ke->keycode >> (dev->keycodesize * 8)))
831 		return -EINVAL;
832 
833 	switch (dev->keycodesize) {
834 		case 1: {
835 			u8 *k = (u8 *)dev->keycode;
836 			*old_keycode = k[index];
837 			k[index] = ke->keycode;
838 			break;
839 		}
840 		case 2: {
841 			u16 *k = (u16 *)dev->keycode;
842 			*old_keycode = k[index];
843 			k[index] = ke->keycode;
844 			break;
845 		}
846 		default: {
847 			u32 *k = (u32 *)dev->keycode;
848 			*old_keycode = k[index];
849 			k[index] = ke->keycode;
850 			break;
851 		}
852 	}
853 
854 	__clear_bit(*old_keycode, dev->keybit);
855 	__set_bit(ke->keycode, dev->keybit);
856 
857 	for (i = 0; i < dev->keycodemax; i++) {
858 		if (input_fetch_keycode(dev, i) == *old_keycode) {
859 			__set_bit(*old_keycode, dev->keybit);
860 			break; /* Setting the bit twice is useless, so break */
861 		}
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  * input_get_keycode - retrieve keycode currently mapped to a given scancode
869  * @dev: input device which keymap is being queried
870  * @ke: keymap entry
871  *
872  * This function should be called by anyone interested in retrieving current
873  * keymap. Presently evdev handlers use it.
874  */
875 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
876 {
877 	unsigned long flags;
878 	int retval;
879 
880 	spin_lock_irqsave(&dev->event_lock, flags);
881 	retval = dev->getkeycode(dev, ke);
882 	spin_unlock_irqrestore(&dev->event_lock, flags);
883 
884 	return retval;
885 }
886 EXPORT_SYMBOL(input_get_keycode);
887 
888 /**
889  * input_set_keycode - attribute a keycode to a given scancode
890  * @dev: input device which keymap is being updated
891  * @ke: new keymap entry
892  *
893  * This function should be called by anyone needing to update current
894  * keymap. Presently keyboard and evdev handlers use it.
895  */
896 int input_set_keycode(struct input_dev *dev,
897 		      const struct input_keymap_entry *ke)
898 {
899 	unsigned long flags;
900 	unsigned int old_keycode;
901 	int retval;
902 
903 	if (ke->keycode > KEY_MAX)
904 		return -EINVAL;
905 
906 	spin_lock_irqsave(&dev->event_lock, flags);
907 
908 	retval = dev->setkeycode(dev, ke, &old_keycode);
909 	if (retval)
910 		goto out;
911 
912 	/* Make sure KEY_RESERVED did not get enabled. */
913 	__clear_bit(KEY_RESERVED, dev->keybit);
914 
915 	/*
916 	 * Simulate keyup event if keycode is not present
917 	 * in the keymap anymore
918 	 */
919 	if (test_bit(EV_KEY, dev->evbit) &&
920 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
921 	    __test_and_clear_bit(old_keycode, dev->key)) {
922 		struct input_value vals[] =  {
923 			{ EV_KEY, old_keycode, 0 },
924 			input_value_sync
925 		};
926 
927 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
928 	}
929 
930  out:
931 	spin_unlock_irqrestore(&dev->event_lock, flags);
932 
933 	return retval;
934 }
935 EXPORT_SYMBOL(input_set_keycode);
936 
937 static const struct input_device_id *input_match_device(struct input_handler *handler,
938 							struct input_dev *dev)
939 {
940 	const struct input_device_id *id;
941 
942 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
943 
944 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
945 			if (id->bustype != dev->id.bustype)
946 				continue;
947 
948 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
949 			if (id->vendor != dev->id.vendor)
950 				continue;
951 
952 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
953 			if (id->product != dev->id.product)
954 				continue;
955 
956 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
957 			if (id->version != dev->id.version)
958 				continue;
959 
960 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
961 			continue;
962 
963 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
964 			continue;
965 
966 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
967 			continue;
968 
969 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
970 			continue;
971 
972 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
973 			continue;
974 
975 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
976 			continue;
977 
978 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
979 			continue;
980 
981 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
982 			continue;
983 
984 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
985 			continue;
986 
987 		if (!handler->match || handler->match(handler, dev))
988 			return id;
989 	}
990 
991 	return NULL;
992 }
993 
994 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
995 {
996 	const struct input_device_id *id;
997 	int error;
998 
999 	id = input_match_device(handler, dev);
1000 	if (!id)
1001 		return -ENODEV;
1002 
1003 	error = handler->connect(handler, dev, id);
1004 	if (error && error != -ENODEV)
1005 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1006 		       handler->name, kobject_name(&dev->dev.kobj), error);
1007 
1008 	return error;
1009 }
1010 
1011 #ifdef CONFIG_COMPAT
1012 
1013 static int input_bits_to_string(char *buf, int buf_size,
1014 				unsigned long bits, bool skip_empty)
1015 {
1016 	int len = 0;
1017 
1018 	if (INPUT_COMPAT_TEST) {
1019 		u32 dword = bits >> 32;
1020 		if (dword || !skip_empty)
1021 			len += snprintf(buf, buf_size, "%x ", dword);
1022 
1023 		dword = bits & 0xffffffffUL;
1024 		if (dword || !skip_empty || len)
1025 			len += snprintf(buf + len, max(buf_size - len, 0),
1026 					"%x", dword);
1027 	} else {
1028 		if (bits || !skip_empty)
1029 			len += snprintf(buf, buf_size, "%lx", bits);
1030 	}
1031 
1032 	return len;
1033 }
1034 
1035 #else /* !CONFIG_COMPAT */
1036 
1037 static int input_bits_to_string(char *buf, int buf_size,
1038 				unsigned long bits, bool skip_empty)
1039 {
1040 	return bits || !skip_empty ?
1041 		snprintf(buf, buf_size, "%lx", bits) : 0;
1042 }
1043 
1044 #endif
1045 
1046 #ifdef CONFIG_PROC_FS
1047 
1048 static struct proc_dir_entry *proc_bus_input_dir;
1049 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1050 static int input_devices_state;
1051 
1052 static inline void input_wakeup_procfs_readers(void)
1053 {
1054 	input_devices_state++;
1055 	wake_up(&input_devices_poll_wait);
1056 }
1057 
1058 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1059 {
1060 	poll_wait(file, &input_devices_poll_wait, wait);
1061 	if (file->f_version != input_devices_state) {
1062 		file->f_version = input_devices_state;
1063 		return POLLIN | POLLRDNORM;
1064 	}
1065 
1066 	return 0;
1067 }
1068 
1069 union input_seq_state {
1070 	struct {
1071 		unsigned short pos;
1072 		bool mutex_acquired;
1073 	};
1074 	void *p;
1075 };
1076 
1077 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1078 {
1079 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1080 	int error;
1081 
1082 	/* We need to fit into seq->private pointer */
1083 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1084 
1085 	error = mutex_lock_interruptible(&input_mutex);
1086 	if (error) {
1087 		state->mutex_acquired = false;
1088 		return ERR_PTR(error);
1089 	}
1090 
1091 	state->mutex_acquired = true;
1092 
1093 	return seq_list_start(&input_dev_list, *pos);
1094 }
1095 
1096 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1097 {
1098 	return seq_list_next(v, &input_dev_list, pos);
1099 }
1100 
1101 static void input_seq_stop(struct seq_file *seq, void *v)
1102 {
1103 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1104 
1105 	if (state->mutex_acquired)
1106 		mutex_unlock(&input_mutex);
1107 }
1108 
1109 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1110 				   unsigned long *bitmap, int max)
1111 {
1112 	int i;
1113 	bool skip_empty = true;
1114 	char buf[18];
1115 
1116 	seq_printf(seq, "B: %s=", name);
1117 
1118 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1119 		if (input_bits_to_string(buf, sizeof(buf),
1120 					 bitmap[i], skip_empty)) {
1121 			skip_empty = false;
1122 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1123 		}
1124 	}
1125 
1126 	/*
1127 	 * If no output was produced print a single 0.
1128 	 */
1129 	if (skip_empty)
1130 		seq_puts(seq, "0");
1131 
1132 	seq_putc(seq, '\n');
1133 }
1134 
1135 static int input_devices_seq_show(struct seq_file *seq, void *v)
1136 {
1137 	struct input_dev *dev = container_of(v, struct input_dev, node);
1138 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1139 	struct input_handle *handle;
1140 
1141 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1142 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1143 
1144 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1145 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1146 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1147 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1148 	seq_printf(seq, "H: Handlers=");
1149 
1150 	list_for_each_entry(handle, &dev->h_list, d_node)
1151 		seq_printf(seq, "%s ", handle->name);
1152 	seq_putc(seq, '\n');
1153 
1154 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1155 
1156 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1157 	if (test_bit(EV_KEY, dev->evbit))
1158 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1159 	if (test_bit(EV_REL, dev->evbit))
1160 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1161 	if (test_bit(EV_ABS, dev->evbit))
1162 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1163 	if (test_bit(EV_MSC, dev->evbit))
1164 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1165 	if (test_bit(EV_LED, dev->evbit))
1166 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1167 	if (test_bit(EV_SND, dev->evbit))
1168 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1169 	if (test_bit(EV_FF, dev->evbit))
1170 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1171 	if (test_bit(EV_SW, dev->evbit))
1172 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1173 
1174 	seq_putc(seq, '\n');
1175 
1176 	kfree(path);
1177 	return 0;
1178 }
1179 
1180 static const struct seq_operations input_devices_seq_ops = {
1181 	.start	= input_devices_seq_start,
1182 	.next	= input_devices_seq_next,
1183 	.stop	= input_seq_stop,
1184 	.show	= input_devices_seq_show,
1185 };
1186 
1187 static int input_proc_devices_open(struct inode *inode, struct file *file)
1188 {
1189 	return seq_open(file, &input_devices_seq_ops);
1190 }
1191 
1192 static const struct file_operations input_devices_fileops = {
1193 	.owner		= THIS_MODULE,
1194 	.open		= input_proc_devices_open,
1195 	.poll		= input_proc_devices_poll,
1196 	.read		= seq_read,
1197 	.llseek		= seq_lseek,
1198 	.release	= seq_release,
1199 };
1200 
1201 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1202 {
1203 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1204 	int error;
1205 
1206 	/* We need to fit into seq->private pointer */
1207 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1208 
1209 	error = mutex_lock_interruptible(&input_mutex);
1210 	if (error) {
1211 		state->mutex_acquired = false;
1212 		return ERR_PTR(error);
1213 	}
1214 
1215 	state->mutex_acquired = true;
1216 	state->pos = *pos;
1217 
1218 	return seq_list_start(&input_handler_list, *pos);
1219 }
1220 
1221 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1222 {
1223 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1224 
1225 	state->pos = *pos + 1;
1226 	return seq_list_next(v, &input_handler_list, pos);
1227 }
1228 
1229 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1230 {
1231 	struct input_handler *handler = container_of(v, struct input_handler, node);
1232 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1233 
1234 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1235 	if (handler->filter)
1236 		seq_puts(seq, " (filter)");
1237 	if (handler->legacy_minors)
1238 		seq_printf(seq, " Minor=%d", handler->minor);
1239 	seq_putc(seq, '\n');
1240 
1241 	return 0;
1242 }
1243 
1244 static const struct seq_operations input_handlers_seq_ops = {
1245 	.start	= input_handlers_seq_start,
1246 	.next	= input_handlers_seq_next,
1247 	.stop	= input_seq_stop,
1248 	.show	= input_handlers_seq_show,
1249 };
1250 
1251 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1252 {
1253 	return seq_open(file, &input_handlers_seq_ops);
1254 }
1255 
1256 static const struct file_operations input_handlers_fileops = {
1257 	.owner		= THIS_MODULE,
1258 	.open		= input_proc_handlers_open,
1259 	.read		= seq_read,
1260 	.llseek		= seq_lseek,
1261 	.release	= seq_release,
1262 };
1263 
1264 static int __init input_proc_init(void)
1265 {
1266 	struct proc_dir_entry *entry;
1267 
1268 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1269 	if (!proc_bus_input_dir)
1270 		return -ENOMEM;
1271 
1272 	entry = proc_create("devices", 0, proc_bus_input_dir,
1273 			    &input_devices_fileops);
1274 	if (!entry)
1275 		goto fail1;
1276 
1277 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1278 			    &input_handlers_fileops);
1279 	if (!entry)
1280 		goto fail2;
1281 
1282 	return 0;
1283 
1284  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1285  fail1: remove_proc_entry("bus/input", NULL);
1286 	return -ENOMEM;
1287 }
1288 
1289 static void input_proc_exit(void)
1290 {
1291 	remove_proc_entry("devices", proc_bus_input_dir);
1292 	remove_proc_entry("handlers", proc_bus_input_dir);
1293 	remove_proc_entry("bus/input", NULL);
1294 }
1295 
1296 #else /* !CONFIG_PROC_FS */
1297 static inline void input_wakeup_procfs_readers(void) { }
1298 static inline int input_proc_init(void) { return 0; }
1299 static inline void input_proc_exit(void) { }
1300 #endif
1301 
1302 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1303 static ssize_t input_dev_show_##name(struct device *dev,		\
1304 				     struct device_attribute *attr,	\
1305 				     char *buf)				\
1306 {									\
1307 	struct input_dev *input_dev = to_input_dev(dev);		\
1308 									\
1309 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1310 			 input_dev->name ? input_dev->name : "");	\
1311 }									\
1312 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1313 
1314 INPUT_DEV_STRING_ATTR_SHOW(name);
1315 INPUT_DEV_STRING_ATTR_SHOW(phys);
1316 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1317 
1318 static int input_print_modalias_bits(char *buf, int size,
1319 				     char name, unsigned long *bm,
1320 				     unsigned int min_bit, unsigned int max_bit)
1321 {
1322 	int len = 0, i;
1323 
1324 	len += snprintf(buf, max(size, 0), "%c", name);
1325 	for (i = min_bit; i < max_bit; i++)
1326 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1327 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1328 	return len;
1329 }
1330 
1331 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1332 				int add_cr)
1333 {
1334 	int len;
1335 
1336 	len = snprintf(buf, max(size, 0),
1337 		       "input:b%04Xv%04Xp%04Xe%04X-",
1338 		       id->id.bustype, id->id.vendor,
1339 		       id->id.product, id->id.version);
1340 
1341 	len += input_print_modalias_bits(buf + len, size - len,
1342 				'e', id->evbit, 0, EV_MAX);
1343 	len += input_print_modalias_bits(buf + len, size - len,
1344 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1345 	len += input_print_modalias_bits(buf + len, size - len,
1346 				'r', id->relbit, 0, REL_MAX);
1347 	len += input_print_modalias_bits(buf + len, size - len,
1348 				'a', id->absbit, 0, ABS_MAX);
1349 	len += input_print_modalias_bits(buf + len, size - len,
1350 				'm', id->mscbit, 0, MSC_MAX);
1351 	len += input_print_modalias_bits(buf + len, size - len,
1352 				'l', id->ledbit, 0, LED_MAX);
1353 	len += input_print_modalias_bits(buf + len, size - len,
1354 				's', id->sndbit, 0, SND_MAX);
1355 	len += input_print_modalias_bits(buf + len, size - len,
1356 				'f', id->ffbit, 0, FF_MAX);
1357 	len += input_print_modalias_bits(buf + len, size - len,
1358 				'w', id->swbit, 0, SW_MAX);
1359 
1360 	if (add_cr)
1361 		len += snprintf(buf + len, max(size - len, 0), "\n");
1362 
1363 	return len;
1364 }
1365 
1366 static ssize_t input_dev_show_modalias(struct device *dev,
1367 				       struct device_attribute *attr,
1368 				       char *buf)
1369 {
1370 	struct input_dev *id = to_input_dev(dev);
1371 	ssize_t len;
1372 
1373 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1374 
1375 	return min_t(int, len, PAGE_SIZE);
1376 }
1377 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1378 
1379 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1380 			      int max, int add_cr);
1381 
1382 static ssize_t input_dev_show_properties(struct device *dev,
1383 					 struct device_attribute *attr,
1384 					 char *buf)
1385 {
1386 	struct input_dev *input_dev = to_input_dev(dev);
1387 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1388 				     INPUT_PROP_MAX, true);
1389 	return min_t(int, len, PAGE_SIZE);
1390 }
1391 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1392 
1393 static struct attribute *input_dev_attrs[] = {
1394 	&dev_attr_name.attr,
1395 	&dev_attr_phys.attr,
1396 	&dev_attr_uniq.attr,
1397 	&dev_attr_modalias.attr,
1398 	&dev_attr_properties.attr,
1399 	NULL
1400 };
1401 
1402 static struct attribute_group input_dev_attr_group = {
1403 	.attrs	= input_dev_attrs,
1404 };
1405 
1406 #define INPUT_DEV_ID_ATTR(name)						\
1407 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1408 					struct device_attribute *attr,	\
1409 					char *buf)			\
1410 {									\
1411 	struct input_dev *input_dev = to_input_dev(dev);		\
1412 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1413 }									\
1414 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1415 
1416 INPUT_DEV_ID_ATTR(bustype);
1417 INPUT_DEV_ID_ATTR(vendor);
1418 INPUT_DEV_ID_ATTR(product);
1419 INPUT_DEV_ID_ATTR(version);
1420 
1421 static struct attribute *input_dev_id_attrs[] = {
1422 	&dev_attr_bustype.attr,
1423 	&dev_attr_vendor.attr,
1424 	&dev_attr_product.attr,
1425 	&dev_attr_version.attr,
1426 	NULL
1427 };
1428 
1429 static struct attribute_group input_dev_id_attr_group = {
1430 	.name	= "id",
1431 	.attrs	= input_dev_id_attrs,
1432 };
1433 
1434 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1435 			      int max, int add_cr)
1436 {
1437 	int i;
1438 	int len = 0;
1439 	bool skip_empty = true;
1440 
1441 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1442 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1443 					    bitmap[i], skip_empty);
1444 		if (len) {
1445 			skip_empty = false;
1446 			if (i > 0)
1447 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * If no output was produced print a single 0.
1453 	 */
1454 	if (len == 0)
1455 		len = snprintf(buf, buf_size, "%d", 0);
1456 
1457 	if (add_cr)
1458 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1459 
1460 	return len;
1461 }
1462 
1463 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1464 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1465 				       struct device_attribute *attr,	\
1466 				       char *buf)			\
1467 {									\
1468 	struct input_dev *input_dev = to_input_dev(dev);		\
1469 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1470 				     input_dev->bm##bit, ev##_MAX,	\
1471 				     true);				\
1472 	return min_t(int, len, PAGE_SIZE);				\
1473 }									\
1474 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1475 
1476 INPUT_DEV_CAP_ATTR(EV, ev);
1477 INPUT_DEV_CAP_ATTR(KEY, key);
1478 INPUT_DEV_CAP_ATTR(REL, rel);
1479 INPUT_DEV_CAP_ATTR(ABS, abs);
1480 INPUT_DEV_CAP_ATTR(MSC, msc);
1481 INPUT_DEV_CAP_ATTR(LED, led);
1482 INPUT_DEV_CAP_ATTR(SND, snd);
1483 INPUT_DEV_CAP_ATTR(FF, ff);
1484 INPUT_DEV_CAP_ATTR(SW, sw);
1485 
1486 static struct attribute *input_dev_caps_attrs[] = {
1487 	&dev_attr_ev.attr,
1488 	&dev_attr_key.attr,
1489 	&dev_attr_rel.attr,
1490 	&dev_attr_abs.attr,
1491 	&dev_attr_msc.attr,
1492 	&dev_attr_led.attr,
1493 	&dev_attr_snd.attr,
1494 	&dev_attr_ff.attr,
1495 	&dev_attr_sw.attr,
1496 	NULL
1497 };
1498 
1499 static struct attribute_group input_dev_caps_attr_group = {
1500 	.name	= "capabilities",
1501 	.attrs	= input_dev_caps_attrs,
1502 };
1503 
1504 static const struct attribute_group *input_dev_attr_groups[] = {
1505 	&input_dev_attr_group,
1506 	&input_dev_id_attr_group,
1507 	&input_dev_caps_attr_group,
1508 	NULL
1509 };
1510 
1511 static void input_dev_release(struct device *device)
1512 {
1513 	struct input_dev *dev = to_input_dev(device);
1514 
1515 	input_ff_destroy(dev);
1516 	input_mt_destroy_slots(dev);
1517 	kfree(dev->absinfo);
1518 	kfree(dev->vals);
1519 	kfree(dev);
1520 
1521 	module_put(THIS_MODULE);
1522 }
1523 
1524 /*
1525  * Input uevent interface - loading event handlers based on
1526  * device bitfields.
1527  */
1528 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1529 				   const char *name, unsigned long *bitmap, int max)
1530 {
1531 	int len;
1532 
1533 	if (add_uevent_var(env, "%s", name))
1534 		return -ENOMEM;
1535 
1536 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1537 				 sizeof(env->buf) - env->buflen,
1538 				 bitmap, max, false);
1539 	if (len >= (sizeof(env->buf) - env->buflen))
1540 		return -ENOMEM;
1541 
1542 	env->buflen += len;
1543 	return 0;
1544 }
1545 
1546 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1547 					 struct input_dev *dev)
1548 {
1549 	int len;
1550 
1551 	if (add_uevent_var(env, "MODALIAS="))
1552 		return -ENOMEM;
1553 
1554 	len = input_print_modalias(&env->buf[env->buflen - 1],
1555 				   sizeof(env->buf) - env->buflen,
1556 				   dev, 0);
1557 	if (len >= (sizeof(env->buf) - env->buflen))
1558 		return -ENOMEM;
1559 
1560 	env->buflen += len;
1561 	return 0;
1562 }
1563 
1564 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1565 	do {								\
1566 		int err = add_uevent_var(env, fmt, val);		\
1567 		if (err)						\
1568 			return err;					\
1569 	} while (0)
1570 
1571 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1572 	do {								\
1573 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1574 		if (err)						\
1575 			return err;					\
1576 	} while (0)
1577 
1578 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1579 	do {								\
1580 		int err = input_add_uevent_modalias_var(env, dev);	\
1581 		if (err)						\
1582 			return err;					\
1583 	} while (0)
1584 
1585 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1586 {
1587 	struct input_dev *dev = to_input_dev(device);
1588 
1589 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1590 				dev->id.bustype, dev->id.vendor,
1591 				dev->id.product, dev->id.version);
1592 	if (dev->name)
1593 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1594 	if (dev->phys)
1595 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1596 	if (dev->uniq)
1597 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1598 
1599 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1600 
1601 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1602 	if (test_bit(EV_KEY, dev->evbit))
1603 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1604 	if (test_bit(EV_REL, dev->evbit))
1605 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1606 	if (test_bit(EV_ABS, dev->evbit))
1607 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1608 	if (test_bit(EV_MSC, dev->evbit))
1609 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1610 	if (test_bit(EV_LED, dev->evbit))
1611 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1612 	if (test_bit(EV_SND, dev->evbit))
1613 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1614 	if (test_bit(EV_FF, dev->evbit))
1615 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1616 	if (test_bit(EV_SW, dev->evbit))
1617 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1618 
1619 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1620 
1621 	return 0;
1622 }
1623 
1624 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1625 	do {								\
1626 		int i;							\
1627 		bool active;						\
1628 									\
1629 		if (!test_bit(EV_##type, dev->evbit))			\
1630 			break;						\
1631 									\
1632 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1633 			active = test_bit(i, dev->bits);		\
1634 			if (!active && !on)				\
1635 				continue;				\
1636 									\
1637 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1638 		}							\
1639 	} while (0)
1640 
1641 static void input_dev_toggle(struct input_dev *dev, bool activate)
1642 {
1643 	if (!dev->event)
1644 		return;
1645 
1646 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1647 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1648 
1649 	if (activate && test_bit(EV_REP, dev->evbit)) {
1650 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1651 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1652 	}
1653 }
1654 
1655 /**
1656  * input_reset_device() - reset/restore the state of input device
1657  * @dev: input device whose state needs to be reset
1658  *
1659  * This function tries to reset the state of an opened input device and
1660  * bring internal state and state if the hardware in sync with each other.
1661  * We mark all keys as released, restore LED state, repeat rate, etc.
1662  */
1663 void input_reset_device(struct input_dev *dev)
1664 {
1665 	unsigned long flags;
1666 
1667 	mutex_lock(&dev->mutex);
1668 	spin_lock_irqsave(&dev->event_lock, flags);
1669 
1670 	input_dev_toggle(dev, true);
1671 	input_dev_release_keys(dev);
1672 
1673 	spin_unlock_irqrestore(&dev->event_lock, flags);
1674 	mutex_unlock(&dev->mutex);
1675 }
1676 EXPORT_SYMBOL(input_reset_device);
1677 
1678 #ifdef CONFIG_PM_SLEEP
1679 static int input_dev_suspend(struct device *dev)
1680 {
1681 	struct input_dev *input_dev = to_input_dev(dev);
1682 
1683 	spin_lock_irq(&input_dev->event_lock);
1684 
1685 	/*
1686 	 * Keys that are pressed now are unlikely to be
1687 	 * still pressed when we resume.
1688 	 */
1689 	input_dev_release_keys(input_dev);
1690 
1691 	/* Turn off LEDs and sounds, if any are active. */
1692 	input_dev_toggle(input_dev, false);
1693 
1694 	spin_unlock_irq(&input_dev->event_lock);
1695 
1696 	return 0;
1697 }
1698 
1699 static int input_dev_resume(struct device *dev)
1700 {
1701 	struct input_dev *input_dev = to_input_dev(dev);
1702 
1703 	spin_lock_irq(&input_dev->event_lock);
1704 
1705 	/* Restore state of LEDs and sounds, if any were active. */
1706 	input_dev_toggle(input_dev, true);
1707 
1708 	spin_unlock_irq(&input_dev->event_lock);
1709 
1710 	return 0;
1711 }
1712 
1713 static int input_dev_freeze(struct device *dev)
1714 {
1715 	struct input_dev *input_dev = to_input_dev(dev);
1716 
1717 	spin_lock_irq(&input_dev->event_lock);
1718 
1719 	/*
1720 	 * Keys that are pressed now are unlikely to be
1721 	 * still pressed when we resume.
1722 	 */
1723 	input_dev_release_keys(input_dev);
1724 
1725 	spin_unlock_irq(&input_dev->event_lock);
1726 
1727 	return 0;
1728 }
1729 
1730 static int input_dev_poweroff(struct device *dev)
1731 {
1732 	struct input_dev *input_dev = to_input_dev(dev);
1733 
1734 	spin_lock_irq(&input_dev->event_lock);
1735 
1736 	/* Turn off LEDs and sounds, if any are active. */
1737 	input_dev_toggle(input_dev, false);
1738 
1739 	spin_unlock_irq(&input_dev->event_lock);
1740 
1741 	return 0;
1742 }
1743 
1744 static const struct dev_pm_ops input_dev_pm_ops = {
1745 	.suspend	= input_dev_suspend,
1746 	.resume		= input_dev_resume,
1747 	.freeze		= input_dev_freeze,
1748 	.poweroff	= input_dev_poweroff,
1749 	.restore	= input_dev_resume,
1750 };
1751 #endif /* CONFIG_PM */
1752 
1753 static struct device_type input_dev_type = {
1754 	.groups		= input_dev_attr_groups,
1755 	.release	= input_dev_release,
1756 	.uevent		= input_dev_uevent,
1757 #ifdef CONFIG_PM_SLEEP
1758 	.pm		= &input_dev_pm_ops,
1759 #endif
1760 };
1761 
1762 static char *input_devnode(struct device *dev, umode_t *mode)
1763 {
1764 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1765 }
1766 
1767 struct class input_class = {
1768 	.name		= "input",
1769 	.devnode	= input_devnode,
1770 };
1771 EXPORT_SYMBOL_GPL(input_class);
1772 
1773 /**
1774  * input_allocate_device - allocate memory for new input device
1775  *
1776  * Returns prepared struct input_dev or %NULL.
1777  *
1778  * NOTE: Use input_free_device() to free devices that have not been
1779  * registered; input_unregister_device() should be used for already
1780  * registered devices.
1781  */
1782 struct input_dev *input_allocate_device(void)
1783 {
1784 	static atomic_t input_no = ATOMIC_INIT(-1);
1785 	struct input_dev *dev;
1786 
1787 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1788 	if (dev) {
1789 		dev->dev.type = &input_dev_type;
1790 		dev->dev.class = &input_class;
1791 		device_initialize(&dev->dev);
1792 		mutex_init(&dev->mutex);
1793 		spin_lock_init(&dev->event_lock);
1794 		init_timer(&dev->timer);
1795 		INIT_LIST_HEAD(&dev->h_list);
1796 		INIT_LIST_HEAD(&dev->node);
1797 
1798 		dev_set_name(&dev->dev, "input%lu",
1799 			     (unsigned long)atomic_inc_return(&input_no));
1800 
1801 		__module_get(THIS_MODULE);
1802 	}
1803 
1804 	return dev;
1805 }
1806 EXPORT_SYMBOL(input_allocate_device);
1807 
1808 struct input_devres {
1809 	struct input_dev *input;
1810 };
1811 
1812 static int devm_input_device_match(struct device *dev, void *res, void *data)
1813 {
1814 	struct input_devres *devres = res;
1815 
1816 	return devres->input == data;
1817 }
1818 
1819 static void devm_input_device_release(struct device *dev, void *res)
1820 {
1821 	struct input_devres *devres = res;
1822 	struct input_dev *input = devres->input;
1823 
1824 	dev_dbg(dev, "%s: dropping reference to %s\n",
1825 		__func__, dev_name(&input->dev));
1826 	input_put_device(input);
1827 }
1828 
1829 /**
1830  * devm_input_allocate_device - allocate managed input device
1831  * @dev: device owning the input device being created
1832  *
1833  * Returns prepared struct input_dev or %NULL.
1834  *
1835  * Managed input devices do not need to be explicitly unregistered or
1836  * freed as it will be done automatically when owner device unbinds from
1837  * its driver (or binding fails). Once managed input device is allocated,
1838  * it is ready to be set up and registered in the same fashion as regular
1839  * input device. There are no special devm_input_device_[un]register()
1840  * variants, regular ones work with both managed and unmanaged devices,
1841  * should you need them. In most cases however, managed input device need
1842  * not be explicitly unregistered or freed.
1843  *
1844  * NOTE: the owner device is set up as parent of input device and users
1845  * should not override it.
1846  */
1847 struct input_dev *devm_input_allocate_device(struct device *dev)
1848 {
1849 	struct input_dev *input;
1850 	struct input_devres *devres;
1851 
1852 	devres = devres_alloc(devm_input_device_release,
1853 			      sizeof(struct input_devres), GFP_KERNEL);
1854 	if (!devres)
1855 		return NULL;
1856 
1857 	input = input_allocate_device();
1858 	if (!input) {
1859 		devres_free(devres);
1860 		return NULL;
1861 	}
1862 
1863 	input->dev.parent = dev;
1864 	input->devres_managed = true;
1865 
1866 	devres->input = input;
1867 	devres_add(dev, devres);
1868 
1869 	return input;
1870 }
1871 EXPORT_SYMBOL(devm_input_allocate_device);
1872 
1873 /**
1874  * input_free_device - free memory occupied by input_dev structure
1875  * @dev: input device to free
1876  *
1877  * This function should only be used if input_register_device()
1878  * was not called yet or if it failed. Once device was registered
1879  * use input_unregister_device() and memory will be freed once last
1880  * reference to the device is dropped.
1881  *
1882  * Device should be allocated by input_allocate_device().
1883  *
1884  * NOTE: If there are references to the input device then memory
1885  * will not be freed until last reference is dropped.
1886  */
1887 void input_free_device(struct input_dev *dev)
1888 {
1889 	if (dev) {
1890 		if (dev->devres_managed)
1891 			WARN_ON(devres_destroy(dev->dev.parent,
1892 						devm_input_device_release,
1893 						devm_input_device_match,
1894 						dev));
1895 		input_put_device(dev);
1896 	}
1897 }
1898 EXPORT_SYMBOL(input_free_device);
1899 
1900 /**
1901  * input_set_capability - mark device as capable of a certain event
1902  * @dev: device that is capable of emitting or accepting event
1903  * @type: type of the event (EV_KEY, EV_REL, etc...)
1904  * @code: event code
1905  *
1906  * In addition to setting up corresponding bit in appropriate capability
1907  * bitmap the function also adjusts dev->evbit.
1908  */
1909 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1910 {
1911 	switch (type) {
1912 	case EV_KEY:
1913 		__set_bit(code, dev->keybit);
1914 		break;
1915 
1916 	case EV_REL:
1917 		__set_bit(code, dev->relbit);
1918 		break;
1919 
1920 	case EV_ABS:
1921 		input_alloc_absinfo(dev);
1922 		if (!dev->absinfo)
1923 			return;
1924 
1925 		__set_bit(code, dev->absbit);
1926 		break;
1927 
1928 	case EV_MSC:
1929 		__set_bit(code, dev->mscbit);
1930 		break;
1931 
1932 	case EV_SW:
1933 		__set_bit(code, dev->swbit);
1934 		break;
1935 
1936 	case EV_LED:
1937 		__set_bit(code, dev->ledbit);
1938 		break;
1939 
1940 	case EV_SND:
1941 		__set_bit(code, dev->sndbit);
1942 		break;
1943 
1944 	case EV_FF:
1945 		__set_bit(code, dev->ffbit);
1946 		break;
1947 
1948 	case EV_PWR:
1949 		/* do nothing */
1950 		break;
1951 
1952 	default:
1953 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1954 		       type, code);
1955 		dump_stack();
1956 		return;
1957 	}
1958 
1959 	__set_bit(type, dev->evbit);
1960 }
1961 EXPORT_SYMBOL(input_set_capability);
1962 
1963 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1964 {
1965 	int mt_slots;
1966 	int i;
1967 	unsigned int events;
1968 
1969 	if (dev->mt) {
1970 		mt_slots = dev->mt->num_slots;
1971 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1972 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1973 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1974 		mt_slots = clamp(mt_slots, 2, 32);
1975 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1976 		mt_slots = 2;
1977 	} else {
1978 		mt_slots = 0;
1979 	}
1980 
1981 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1982 
1983 	if (test_bit(EV_ABS, dev->evbit))
1984 		for_each_set_bit(i, dev->absbit, ABS_CNT)
1985 			events += input_is_mt_axis(i) ? mt_slots : 1;
1986 
1987 	if (test_bit(EV_REL, dev->evbit))
1988 		events += bitmap_weight(dev->relbit, REL_CNT);
1989 
1990 	/* Make room for KEY and MSC events */
1991 	events += 7;
1992 
1993 	return events;
1994 }
1995 
1996 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1997 	do {								\
1998 		if (!test_bit(EV_##type, dev->evbit))			\
1999 			memset(dev->bits##bit, 0,			\
2000 				sizeof(dev->bits##bit));		\
2001 	} while (0)
2002 
2003 static void input_cleanse_bitmasks(struct input_dev *dev)
2004 {
2005 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2006 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2007 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2008 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2009 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2010 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2011 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2012 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2013 }
2014 
2015 static void __input_unregister_device(struct input_dev *dev)
2016 {
2017 	struct input_handle *handle, *next;
2018 
2019 	input_disconnect_device(dev);
2020 
2021 	mutex_lock(&input_mutex);
2022 
2023 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2024 		handle->handler->disconnect(handle);
2025 	WARN_ON(!list_empty(&dev->h_list));
2026 
2027 	del_timer_sync(&dev->timer);
2028 	list_del_init(&dev->node);
2029 
2030 	input_wakeup_procfs_readers();
2031 
2032 	mutex_unlock(&input_mutex);
2033 
2034 	device_del(&dev->dev);
2035 }
2036 
2037 static void devm_input_device_unregister(struct device *dev, void *res)
2038 {
2039 	struct input_devres *devres = res;
2040 	struct input_dev *input = devres->input;
2041 
2042 	dev_dbg(dev, "%s: unregistering device %s\n",
2043 		__func__, dev_name(&input->dev));
2044 	__input_unregister_device(input);
2045 }
2046 
2047 /**
2048  * input_enable_softrepeat - enable software autorepeat
2049  * @dev: input device
2050  * @delay: repeat delay
2051  * @period: repeat period
2052  *
2053  * Enable software autorepeat on the input device.
2054  */
2055 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2056 {
2057 	dev->timer.data = (unsigned long) dev;
2058 	dev->timer.function = input_repeat_key;
2059 	dev->rep[REP_DELAY] = delay;
2060 	dev->rep[REP_PERIOD] = period;
2061 }
2062 EXPORT_SYMBOL(input_enable_softrepeat);
2063 
2064 /**
2065  * input_register_device - register device with input core
2066  * @dev: device to be registered
2067  *
2068  * This function registers device with input core. The device must be
2069  * allocated with input_allocate_device() and all it's capabilities
2070  * set up before registering.
2071  * If function fails the device must be freed with input_free_device().
2072  * Once device has been successfully registered it can be unregistered
2073  * with input_unregister_device(); input_free_device() should not be
2074  * called in this case.
2075  *
2076  * Note that this function is also used to register managed input devices
2077  * (ones allocated with devm_input_allocate_device()). Such managed input
2078  * devices need not be explicitly unregistered or freed, their tear down
2079  * is controlled by the devres infrastructure. It is also worth noting
2080  * that tear down of managed input devices is internally a 2-step process:
2081  * registered managed input device is first unregistered, but stays in
2082  * memory and can still handle input_event() calls (although events will
2083  * not be delivered anywhere). The freeing of managed input device will
2084  * happen later, when devres stack is unwound to the point where device
2085  * allocation was made.
2086  */
2087 int input_register_device(struct input_dev *dev)
2088 {
2089 	struct input_devres *devres = NULL;
2090 	struct input_handler *handler;
2091 	unsigned int packet_size;
2092 	const char *path;
2093 	int error;
2094 
2095 	if (dev->devres_managed) {
2096 		devres = devres_alloc(devm_input_device_unregister,
2097 				      sizeof(struct input_devres), GFP_KERNEL);
2098 		if (!devres)
2099 			return -ENOMEM;
2100 
2101 		devres->input = dev;
2102 	}
2103 
2104 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2105 	__set_bit(EV_SYN, dev->evbit);
2106 
2107 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2108 	__clear_bit(KEY_RESERVED, dev->keybit);
2109 
2110 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2111 	input_cleanse_bitmasks(dev);
2112 
2113 	packet_size = input_estimate_events_per_packet(dev);
2114 	if (dev->hint_events_per_packet < packet_size)
2115 		dev->hint_events_per_packet = packet_size;
2116 
2117 	dev->max_vals = dev->hint_events_per_packet + 2;
2118 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2119 	if (!dev->vals) {
2120 		error = -ENOMEM;
2121 		goto err_devres_free;
2122 	}
2123 
2124 	/*
2125 	 * If delay and period are pre-set by the driver, then autorepeating
2126 	 * is handled by the driver itself and we don't do it in input.c.
2127 	 */
2128 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2129 		input_enable_softrepeat(dev, 250, 33);
2130 
2131 	if (!dev->getkeycode)
2132 		dev->getkeycode = input_default_getkeycode;
2133 
2134 	if (!dev->setkeycode)
2135 		dev->setkeycode = input_default_setkeycode;
2136 
2137 	error = device_add(&dev->dev);
2138 	if (error)
2139 		goto err_free_vals;
2140 
2141 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2142 	pr_info("%s as %s\n",
2143 		dev->name ? dev->name : "Unspecified device",
2144 		path ? path : "N/A");
2145 	kfree(path);
2146 
2147 	error = mutex_lock_interruptible(&input_mutex);
2148 	if (error)
2149 		goto err_device_del;
2150 
2151 	list_add_tail(&dev->node, &input_dev_list);
2152 
2153 	list_for_each_entry(handler, &input_handler_list, node)
2154 		input_attach_handler(dev, handler);
2155 
2156 	input_wakeup_procfs_readers();
2157 
2158 	mutex_unlock(&input_mutex);
2159 
2160 	if (dev->devres_managed) {
2161 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2162 			__func__, dev_name(&dev->dev));
2163 		devres_add(dev->dev.parent, devres);
2164 	}
2165 	return 0;
2166 
2167 err_device_del:
2168 	device_del(&dev->dev);
2169 err_free_vals:
2170 	kfree(dev->vals);
2171 	dev->vals = NULL;
2172 err_devres_free:
2173 	devres_free(devres);
2174 	return error;
2175 }
2176 EXPORT_SYMBOL(input_register_device);
2177 
2178 /**
2179  * input_unregister_device - unregister previously registered device
2180  * @dev: device to be unregistered
2181  *
2182  * This function unregisters an input device. Once device is unregistered
2183  * the caller should not try to access it as it may get freed at any moment.
2184  */
2185 void input_unregister_device(struct input_dev *dev)
2186 {
2187 	if (dev->devres_managed) {
2188 		WARN_ON(devres_destroy(dev->dev.parent,
2189 					devm_input_device_unregister,
2190 					devm_input_device_match,
2191 					dev));
2192 		__input_unregister_device(dev);
2193 		/*
2194 		 * We do not do input_put_device() here because it will be done
2195 		 * when 2nd devres fires up.
2196 		 */
2197 	} else {
2198 		__input_unregister_device(dev);
2199 		input_put_device(dev);
2200 	}
2201 }
2202 EXPORT_SYMBOL(input_unregister_device);
2203 
2204 /**
2205  * input_register_handler - register a new input handler
2206  * @handler: handler to be registered
2207  *
2208  * This function registers a new input handler (interface) for input
2209  * devices in the system and attaches it to all input devices that
2210  * are compatible with the handler.
2211  */
2212 int input_register_handler(struct input_handler *handler)
2213 {
2214 	struct input_dev *dev;
2215 	int error;
2216 
2217 	error = mutex_lock_interruptible(&input_mutex);
2218 	if (error)
2219 		return error;
2220 
2221 	INIT_LIST_HEAD(&handler->h_list);
2222 
2223 	list_add_tail(&handler->node, &input_handler_list);
2224 
2225 	list_for_each_entry(dev, &input_dev_list, node)
2226 		input_attach_handler(dev, handler);
2227 
2228 	input_wakeup_procfs_readers();
2229 
2230 	mutex_unlock(&input_mutex);
2231 	return 0;
2232 }
2233 EXPORT_SYMBOL(input_register_handler);
2234 
2235 /**
2236  * input_unregister_handler - unregisters an input handler
2237  * @handler: handler to be unregistered
2238  *
2239  * This function disconnects a handler from its input devices and
2240  * removes it from lists of known handlers.
2241  */
2242 void input_unregister_handler(struct input_handler *handler)
2243 {
2244 	struct input_handle *handle, *next;
2245 
2246 	mutex_lock(&input_mutex);
2247 
2248 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2249 		handler->disconnect(handle);
2250 	WARN_ON(!list_empty(&handler->h_list));
2251 
2252 	list_del_init(&handler->node);
2253 
2254 	input_wakeup_procfs_readers();
2255 
2256 	mutex_unlock(&input_mutex);
2257 }
2258 EXPORT_SYMBOL(input_unregister_handler);
2259 
2260 /**
2261  * input_handler_for_each_handle - handle iterator
2262  * @handler: input handler to iterate
2263  * @data: data for the callback
2264  * @fn: function to be called for each handle
2265  *
2266  * Iterate over @bus's list of devices, and call @fn for each, passing
2267  * it @data and stop when @fn returns a non-zero value. The function is
2268  * using RCU to traverse the list and therefore may be using in atomic
2269  * contexts. The @fn callback is invoked from RCU critical section and
2270  * thus must not sleep.
2271  */
2272 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2273 				  int (*fn)(struct input_handle *, void *))
2274 {
2275 	struct input_handle *handle;
2276 	int retval = 0;
2277 
2278 	rcu_read_lock();
2279 
2280 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2281 		retval = fn(handle, data);
2282 		if (retval)
2283 			break;
2284 	}
2285 
2286 	rcu_read_unlock();
2287 
2288 	return retval;
2289 }
2290 EXPORT_SYMBOL(input_handler_for_each_handle);
2291 
2292 /**
2293  * input_register_handle - register a new input handle
2294  * @handle: handle to register
2295  *
2296  * This function puts a new input handle onto device's
2297  * and handler's lists so that events can flow through
2298  * it once it is opened using input_open_device().
2299  *
2300  * This function is supposed to be called from handler's
2301  * connect() method.
2302  */
2303 int input_register_handle(struct input_handle *handle)
2304 {
2305 	struct input_handler *handler = handle->handler;
2306 	struct input_dev *dev = handle->dev;
2307 	int error;
2308 
2309 	/*
2310 	 * We take dev->mutex here to prevent race with
2311 	 * input_release_device().
2312 	 */
2313 	error = mutex_lock_interruptible(&dev->mutex);
2314 	if (error)
2315 		return error;
2316 
2317 	/*
2318 	 * Filters go to the head of the list, normal handlers
2319 	 * to the tail.
2320 	 */
2321 	if (handler->filter)
2322 		list_add_rcu(&handle->d_node, &dev->h_list);
2323 	else
2324 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2325 
2326 	mutex_unlock(&dev->mutex);
2327 
2328 	/*
2329 	 * Since we are supposed to be called from ->connect()
2330 	 * which is mutually exclusive with ->disconnect()
2331 	 * we can't be racing with input_unregister_handle()
2332 	 * and so separate lock is not needed here.
2333 	 */
2334 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2335 
2336 	if (handler->start)
2337 		handler->start(handle);
2338 
2339 	return 0;
2340 }
2341 EXPORT_SYMBOL(input_register_handle);
2342 
2343 /**
2344  * input_unregister_handle - unregister an input handle
2345  * @handle: handle to unregister
2346  *
2347  * This function removes input handle from device's
2348  * and handler's lists.
2349  *
2350  * This function is supposed to be called from handler's
2351  * disconnect() method.
2352  */
2353 void input_unregister_handle(struct input_handle *handle)
2354 {
2355 	struct input_dev *dev = handle->dev;
2356 
2357 	list_del_rcu(&handle->h_node);
2358 
2359 	/*
2360 	 * Take dev->mutex to prevent race with input_release_device().
2361 	 */
2362 	mutex_lock(&dev->mutex);
2363 	list_del_rcu(&handle->d_node);
2364 	mutex_unlock(&dev->mutex);
2365 
2366 	synchronize_rcu();
2367 }
2368 EXPORT_SYMBOL(input_unregister_handle);
2369 
2370 /**
2371  * input_get_new_minor - allocates a new input minor number
2372  * @legacy_base: beginning or the legacy range to be searched
2373  * @legacy_num: size of legacy range
2374  * @allow_dynamic: whether we can also take ID from the dynamic range
2375  *
2376  * This function allocates a new device minor for from input major namespace.
2377  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2378  * parameters and whether ID can be allocated from dynamic range if there are
2379  * no free IDs in legacy range.
2380  */
2381 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2382 			bool allow_dynamic)
2383 {
2384 	/*
2385 	 * This function should be called from input handler's ->connect()
2386 	 * methods, which are serialized with input_mutex, so no additional
2387 	 * locking is needed here.
2388 	 */
2389 	if (legacy_base >= 0) {
2390 		int minor = ida_simple_get(&input_ida,
2391 					   legacy_base,
2392 					   legacy_base + legacy_num,
2393 					   GFP_KERNEL);
2394 		if (minor >= 0 || !allow_dynamic)
2395 			return minor;
2396 	}
2397 
2398 	return ida_simple_get(&input_ida,
2399 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2400 			      GFP_KERNEL);
2401 }
2402 EXPORT_SYMBOL(input_get_new_minor);
2403 
2404 /**
2405  * input_free_minor - release previously allocated minor
2406  * @minor: minor to be released
2407  *
2408  * This function releases previously allocated input minor so that it can be
2409  * reused later.
2410  */
2411 void input_free_minor(unsigned int minor)
2412 {
2413 	ida_simple_remove(&input_ida, minor);
2414 }
2415 EXPORT_SYMBOL(input_free_minor);
2416 
2417 static int __init input_init(void)
2418 {
2419 	int err;
2420 
2421 	err = class_register(&input_class);
2422 	if (err) {
2423 		pr_err("unable to register input_dev class\n");
2424 		return err;
2425 	}
2426 
2427 	err = input_proc_init();
2428 	if (err)
2429 		goto fail1;
2430 
2431 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2432 				     INPUT_MAX_CHAR_DEVICES, "input");
2433 	if (err) {
2434 		pr_err("unable to register char major %d", INPUT_MAJOR);
2435 		goto fail2;
2436 	}
2437 
2438 	return 0;
2439 
2440  fail2:	input_proc_exit();
2441  fail1:	class_unregister(&input_class);
2442 	return err;
2443 }
2444 
2445 static void __exit input_exit(void)
2446 {
2447 	input_proc_exit();
2448 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2449 				 INPUT_MAX_CHAR_DEVICES);
2450 	class_unregister(&input_class);
2451 }
2452 
2453 subsys_initcall(input_init);
2454 module_exit(input_exit);
2455