xref: /openbmc/linux/drivers/input/input.c (revision 9ffc93f2)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/input/mt.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/random.h>
21 #include <linux/major.h>
22 #include <linux/proc_fs.h>
23 #include <linux/sched.h>
24 #include <linux/seq_file.h>
25 #include <linux/poll.h>
26 #include <linux/device.h>
27 #include <linux/mutex.h>
28 #include <linux/rcupdate.h>
29 #include "input-compat.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_DEVICES	256
36 
37 static LIST_HEAD(input_dev_list);
38 static LIST_HEAD(input_handler_list);
39 
40 /*
41  * input_mutex protects access to both input_dev_list and input_handler_list.
42  * This also causes input_[un]register_device and input_[un]register_handler
43  * be mutually exclusive which simplifies locking in drivers implementing
44  * input handlers.
45  */
46 static DEFINE_MUTEX(input_mutex);
47 
48 static struct input_handler *input_table[8];
49 
50 static inline int is_event_supported(unsigned int code,
51 				     unsigned long *bm, unsigned int max)
52 {
53 	return code <= max && test_bit(code, bm);
54 }
55 
56 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57 {
58 	if (fuzz) {
59 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 			return old_val;
61 
62 		if (value > old_val - fuzz && value < old_val + fuzz)
63 			return (old_val * 3 + value) / 4;
64 
65 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 			return (old_val + value) / 2;
67 	}
68 
69 	return value;
70 }
71 
72 /*
73  * Pass event first through all filters and then, if event has not been
74  * filtered out, through all open handles. This function is called with
75  * dev->event_lock held and interrupts disabled.
76  */
77 static void input_pass_event(struct input_dev *dev,
78 			     unsigned int type, unsigned int code, int value)
79 {
80 	struct input_handler *handler;
81 	struct input_handle *handle;
82 
83 	rcu_read_lock();
84 
85 	handle = rcu_dereference(dev->grab);
86 	if (handle)
87 		handle->handler->event(handle, type, code, value);
88 	else {
89 		bool filtered = false;
90 
91 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
92 			if (!handle->open)
93 				continue;
94 
95 			handler = handle->handler;
96 			if (!handler->filter) {
97 				if (filtered)
98 					break;
99 
100 				handler->event(handle, type, code, value);
101 
102 			} else if (handler->filter(handle, type, code, value))
103 				filtered = true;
104 		}
105 	}
106 
107 	rcu_read_unlock();
108 }
109 
110 /*
111  * Generate software autorepeat event. Note that we take
112  * dev->event_lock here to avoid racing with input_event
113  * which may cause keys get "stuck".
114  */
115 static void input_repeat_key(unsigned long data)
116 {
117 	struct input_dev *dev = (void *) data;
118 	unsigned long flags;
119 
120 	spin_lock_irqsave(&dev->event_lock, flags);
121 
122 	if (test_bit(dev->repeat_key, dev->key) &&
123 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
124 
125 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
126 
127 		if (dev->sync) {
128 			/*
129 			 * Only send SYN_REPORT if we are not in a middle
130 			 * of driver parsing a new hardware packet.
131 			 * Otherwise assume that the driver will send
132 			 * SYN_REPORT once it's done.
133 			 */
134 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
135 		}
136 
137 		if (dev->rep[REP_PERIOD])
138 			mod_timer(&dev->timer, jiffies +
139 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
140 	}
141 
142 	spin_unlock_irqrestore(&dev->event_lock, flags);
143 }
144 
145 static void input_start_autorepeat(struct input_dev *dev, int code)
146 {
147 	if (test_bit(EV_REP, dev->evbit) &&
148 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
149 	    dev->timer.data) {
150 		dev->repeat_key = code;
151 		mod_timer(&dev->timer,
152 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
153 	}
154 }
155 
156 static void input_stop_autorepeat(struct input_dev *dev)
157 {
158 	del_timer(&dev->timer);
159 }
160 
161 #define INPUT_IGNORE_EVENT	0
162 #define INPUT_PASS_TO_HANDLERS	1
163 #define INPUT_PASS_TO_DEVICE	2
164 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
165 
166 static int input_handle_abs_event(struct input_dev *dev,
167 				  unsigned int code, int *pval)
168 {
169 	bool is_mt_event;
170 	int *pold;
171 
172 	if (code == ABS_MT_SLOT) {
173 		/*
174 		 * "Stage" the event; we'll flush it later, when we
175 		 * get actual touch data.
176 		 */
177 		if (*pval >= 0 && *pval < dev->mtsize)
178 			dev->slot = *pval;
179 
180 		return INPUT_IGNORE_EVENT;
181 	}
182 
183 	is_mt_event = input_is_mt_value(code);
184 
185 	if (!is_mt_event) {
186 		pold = &dev->absinfo[code].value;
187 	} else if (dev->mt) {
188 		struct input_mt_slot *mtslot = &dev->mt[dev->slot];
189 		pold = &mtslot->abs[code - ABS_MT_FIRST];
190 	} else {
191 		/*
192 		 * Bypass filtering for multi-touch events when
193 		 * not employing slots.
194 		 */
195 		pold = NULL;
196 	}
197 
198 	if (pold) {
199 		*pval = input_defuzz_abs_event(*pval, *pold,
200 						dev->absinfo[code].fuzz);
201 		if (*pold == *pval)
202 			return INPUT_IGNORE_EVENT;
203 
204 		*pold = *pval;
205 	}
206 
207 	/* Flush pending "slot" event */
208 	if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
209 		input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
210 		input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
211 	}
212 
213 	return INPUT_PASS_TO_HANDLERS;
214 }
215 
216 static void input_handle_event(struct input_dev *dev,
217 			       unsigned int type, unsigned int code, int value)
218 {
219 	int disposition = INPUT_IGNORE_EVENT;
220 
221 	switch (type) {
222 
223 	case EV_SYN:
224 		switch (code) {
225 		case SYN_CONFIG:
226 			disposition = INPUT_PASS_TO_ALL;
227 			break;
228 
229 		case SYN_REPORT:
230 			if (!dev->sync) {
231 				dev->sync = true;
232 				disposition = INPUT_PASS_TO_HANDLERS;
233 			}
234 			break;
235 		case SYN_MT_REPORT:
236 			dev->sync = false;
237 			disposition = INPUT_PASS_TO_HANDLERS;
238 			break;
239 		}
240 		break;
241 
242 	case EV_KEY:
243 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
244 		    !!test_bit(code, dev->key) != value) {
245 
246 			if (value != 2) {
247 				__change_bit(code, dev->key);
248 				if (value)
249 					input_start_autorepeat(dev, code);
250 				else
251 					input_stop_autorepeat(dev);
252 			}
253 
254 			disposition = INPUT_PASS_TO_HANDLERS;
255 		}
256 		break;
257 
258 	case EV_SW:
259 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
260 		    !!test_bit(code, dev->sw) != value) {
261 
262 			__change_bit(code, dev->sw);
263 			disposition = INPUT_PASS_TO_HANDLERS;
264 		}
265 		break;
266 
267 	case EV_ABS:
268 		if (is_event_supported(code, dev->absbit, ABS_MAX))
269 			disposition = input_handle_abs_event(dev, code, &value);
270 
271 		break;
272 
273 	case EV_REL:
274 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
275 			disposition = INPUT_PASS_TO_HANDLERS;
276 
277 		break;
278 
279 	case EV_MSC:
280 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
281 			disposition = INPUT_PASS_TO_ALL;
282 
283 		break;
284 
285 	case EV_LED:
286 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
287 		    !!test_bit(code, dev->led) != value) {
288 
289 			__change_bit(code, dev->led);
290 			disposition = INPUT_PASS_TO_ALL;
291 		}
292 		break;
293 
294 	case EV_SND:
295 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
296 
297 			if (!!test_bit(code, dev->snd) != !!value)
298 				__change_bit(code, dev->snd);
299 			disposition = INPUT_PASS_TO_ALL;
300 		}
301 		break;
302 
303 	case EV_REP:
304 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
305 			dev->rep[code] = value;
306 			disposition = INPUT_PASS_TO_ALL;
307 		}
308 		break;
309 
310 	case EV_FF:
311 		if (value >= 0)
312 			disposition = INPUT_PASS_TO_ALL;
313 		break;
314 
315 	case EV_PWR:
316 		disposition = INPUT_PASS_TO_ALL;
317 		break;
318 	}
319 
320 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
321 		dev->sync = false;
322 
323 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
324 		dev->event(dev, type, code, value);
325 
326 	if (disposition & INPUT_PASS_TO_HANDLERS)
327 		input_pass_event(dev, type, code, value);
328 }
329 
330 /**
331  * input_event() - report new input event
332  * @dev: device that generated the event
333  * @type: type of the event
334  * @code: event code
335  * @value: value of the event
336  *
337  * This function should be used by drivers implementing various input
338  * devices to report input events. See also input_inject_event().
339  *
340  * NOTE: input_event() may be safely used right after input device was
341  * allocated with input_allocate_device(), even before it is registered
342  * with input_register_device(), but the event will not reach any of the
343  * input handlers. Such early invocation of input_event() may be used
344  * to 'seed' initial state of a switch or initial position of absolute
345  * axis, etc.
346  */
347 void input_event(struct input_dev *dev,
348 		 unsigned int type, unsigned int code, int value)
349 {
350 	unsigned long flags;
351 
352 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
353 
354 		spin_lock_irqsave(&dev->event_lock, flags);
355 		add_input_randomness(type, code, value);
356 		input_handle_event(dev, type, code, value);
357 		spin_unlock_irqrestore(&dev->event_lock, flags);
358 	}
359 }
360 EXPORT_SYMBOL(input_event);
361 
362 /**
363  * input_inject_event() - send input event from input handler
364  * @handle: input handle to send event through
365  * @type: type of the event
366  * @code: event code
367  * @value: value of the event
368  *
369  * Similar to input_event() but will ignore event if device is
370  * "grabbed" and handle injecting event is not the one that owns
371  * the device.
372  */
373 void input_inject_event(struct input_handle *handle,
374 			unsigned int type, unsigned int code, int value)
375 {
376 	struct input_dev *dev = handle->dev;
377 	struct input_handle *grab;
378 	unsigned long flags;
379 
380 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
381 		spin_lock_irqsave(&dev->event_lock, flags);
382 
383 		rcu_read_lock();
384 		grab = rcu_dereference(dev->grab);
385 		if (!grab || grab == handle)
386 			input_handle_event(dev, type, code, value);
387 		rcu_read_unlock();
388 
389 		spin_unlock_irqrestore(&dev->event_lock, flags);
390 	}
391 }
392 EXPORT_SYMBOL(input_inject_event);
393 
394 /**
395  * input_alloc_absinfo - allocates array of input_absinfo structs
396  * @dev: the input device emitting absolute events
397  *
398  * If the absinfo struct the caller asked for is already allocated, this
399  * functions will not do anything.
400  */
401 void input_alloc_absinfo(struct input_dev *dev)
402 {
403 	if (!dev->absinfo)
404 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
405 					GFP_KERNEL);
406 
407 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
408 }
409 EXPORT_SYMBOL(input_alloc_absinfo);
410 
411 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
412 			  int min, int max, int fuzz, int flat)
413 {
414 	struct input_absinfo *absinfo;
415 
416 	input_alloc_absinfo(dev);
417 	if (!dev->absinfo)
418 		return;
419 
420 	absinfo = &dev->absinfo[axis];
421 	absinfo->minimum = min;
422 	absinfo->maximum = max;
423 	absinfo->fuzz = fuzz;
424 	absinfo->flat = flat;
425 
426 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
427 }
428 EXPORT_SYMBOL(input_set_abs_params);
429 
430 
431 /**
432  * input_grab_device - grabs device for exclusive use
433  * @handle: input handle that wants to own the device
434  *
435  * When a device is grabbed by an input handle all events generated by
436  * the device are delivered only to this handle. Also events injected
437  * by other input handles are ignored while device is grabbed.
438  */
439 int input_grab_device(struct input_handle *handle)
440 {
441 	struct input_dev *dev = handle->dev;
442 	int retval;
443 
444 	retval = mutex_lock_interruptible(&dev->mutex);
445 	if (retval)
446 		return retval;
447 
448 	if (dev->grab) {
449 		retval = -EBUSY;
450 		goto out;
451 	}
452 
453 	rcu_assign_pointer(dev->grab, handle);
454 
455  out:
456 	mutex_unlock(&dev->mutex);
457 	return retval;
458 }
459 EXPORT_SYMBOL(input_grab_device);
460 
461 static void __input_release_device(struct input_handle *handle)
462 {
463 	struct input_dev *dev = handle->dev;
464 
465 	if (dev->grab == handle) {
466 		rcu_assign_pointer(dev->grab, NULL);
467 		/* Make sure input_pass_event() notices that grab is gone */
468 		synchronize_rcu();
469 
470 		list_for_each_entry(handle, &dev->h_list, d_node)
471 			if (handle->open && handle->handler->start)
472 				handle->handler->start(handle);
473 	}
474 }
475 
476 /**
477  * input_release_device - release previously grabbed device
478  * @handle: input handle that owns the device
479  *
480  * Releases previously grabbed device so that other input handles can
481  * start receiving input events. Upon release all handlers attached
482  * to the device have their start() method called so they have a change
483  * to synchronize device state with the rest of the system.
484  */
485 void input_release_device(struct input_handle *handle)
486 {
487 	struct input_dev *dev = handle->dev;
488 
489 	mutex_lock(&dev->mutex);
490 	__input_release_device(handle);
491 	mutex_unlock(&dev->mutex);
492 }
493 EXPORT_SYMBOL(input_release_device);
494 
495 /**
496  * input_open_device - open input device
497  * @handle: handle through which device is being accessed
498  *
499  * This function should be called by input handlers when they
500  * want to start receive events from given input device.
501  */
502 int input_open_device(struct input_handle *handle)
503 {
504 	struct input_dev *dev = handle->dev;
505 	int retval;
506 
507 	retval = mutex_lock_interruptible(&dev->mutex);
508 	if (retval)
509 		return retval;
510 
511 	if (dev->going_away) {
512 		retval = -ENODEV;
513 		goto out;
514 	}
515 
516 	handle->open++;
517 
518 	if (!dev->users++ && dev->open)
519 		retval = dev->open(dev);
520 
521 	if (retval) {
522 		dev->users--;
523 		if (!--handle->open) {
524 			/*
525 			 * Make sure we are not delivering any more events
526 			 * through this handle
527 			 */
528 			synchronize_rcu();
529 		}
530 	}
531 
532  out:
533 	mutex_unlock(&dev->mutex);
534 	return retval;
535 }
536 EXPORT_SYMBOL(input_open_device);
537 
538 int input_flush_device(struct input_handle *handle, struct file *file)
539 {
540 	struct input_dev *dev = handle->dev;
541 	int retval;
542 
543 	retval = mutex_lock_interruptible(&dev->mutex);
544 	if (retval)
545 		return retval;
546 
547 	if (dev->flush)
548 		retval = dev->flush(dev, file);
549 
550 	mutex_unlock(&dev->mutex);
551 	return retval;
552 }
553 EXPORT_SYMBOL(input_flush_device);
554 
555 /**
556  * input_close_device - close input device
557  * @handle: handle through which device is being accessed
558  *
559  * This function should be called by input handlers when they
560  * want to stop receive events from given input device.
561  */
562 void input_close_device(struct input_handle *handle)
563 {
564 	struct input_dev *dev = handle->dev;
565 
566 	mutex_lock(&dev->mutex);
567 
568 	__input_release_device(handle);
569 
570 	if (!--dev->users && dev->close)
571 		dev->close(dev);
572 
573 	if (!--handle->open) {
574 		/*
575 		 * synchronize_rcu() makes sure that input_pass_event()
576 		 * completed and that no more input events are delivered
577 		 * through this handle
578 		 */
579 		synchronize_rcu();
580 	}
581 
582 	mutex_unlock(&dev->mutex);
583 }
584 EXPORT_SYMBOL(input_close_device);
585 
586 /*
587  * Simulate keyup events for all keys that are marked as pressed.
588  * The function must be called with dev->event_lock held.
589  */
590 static void input_dev_release_keys(struct input_dev *dev)
591 {
592 	int code;
593 
594 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595 		for (code = 0; code <= KEY_MAX; code++) {
596 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597 			    __test_and_clear_bit(code, dev->key)) {
598 				input_pass_event(dev, EV_KEY, code, 0);
599 			}
600 		}
601 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
602 	}
603 }
604 
605 /*
606  * Prepare device for unregistering
607  */
608 static void input_disconnect_device(struct input_dev *dev)
609 {
610 	struct input_handle *handle;
611 
612 	/*
613 	 * Mark device as going away. Note that we take dev->mutex here
614 	 * not to protect access to dev->going_away but rather to ensure
615 	 * that there are no threads in the middle of input_open_device()
616 	 */
617 	mutex_lock(&dev->mutex);
618 	dev->going_away = true;
619 	mutex_unlock(&dev->mutex);
620 
621 	spin_lock_irq(&dev->event_lock);
622 
623 	/*
624 	 * Simulate keyup events for all pressed keys so that handlers
625 	 * are not left with "stuck" keys. The driver may continue
626 	 * generate events even after we done here but they will not
627 	 * reach any handlers.
628 	 */
629 	input_dev_release_keys(dev);
630 
631 	list_for_each_entry(handle, &dev->h_list, d_node)
632 		handle->open = 0;
633 
634 	spin_unlock_irq(&dev->event_lock);
635 }
636 
637 /**
638  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
639  * @ke: keymap entry containing scancode to be converted.
640  * @scancode: pointer to the location where converted scancode should
641  *	be stored.
642  *
643  * This function is used to convert scancode stored in &struct keymap_entry
644  * into scalar form understood by legacy keymap handling methods. These
645  * methods expect scancodes to be represented as 'unsigned int'.
646  */
647 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
648 			     unsigned int *scancode)
649 {
650 	switch (ke->len) {
651 	case 1:
652 		*scancode = *((u8 *)ke->scancode);
653 		break;
654 
655 	case 2:
656 		*scancode = *((u16 *)ke->scancode);
657 		break;
658 
659 	case 4:
660 		*scancode = *((u32 *)ke->scancode);
661 		break;
662 
663 	default:
664 		return -EINVAL;
665 	}
666 
667 	return 0;
668 }
669 EXPORT_SYMBOL(input_scancode_to_scalar);
670 
671 /*
672  * Those routines handle the default case where no [gs]etkeycode() is
673  * defined. In this case, an array indexed by the scancode is used.
674  */
675 
676 static unsigned int input_fetch_keycode(struct input_dev *dev,
677 					unsigned int index)
678 {
679 	switch (dev->keycodesize) {
680 	case 1:
681 		return ((u8 *)dev->keycode)[index];
682 
683 	case 2:
684 		return ((u16 *)dev->keycode)[index];
685 
686 	default:
687 		return ((u32 *)dev->keycode)[index];
688 	}
689 }
690 
691 static int input_default_getkeycode(struct input_dev *dev,
692 				    struct input_keymap_entry *ke)
693 {
694 	unsigned int index;
695 	int error;
696 
697 	if (!dev->keycodesize)
698 		return -EINVAL;
699 
700 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
701 		index = ke->index;
702 	else {
703 		error = input_scancode_to_scalar(ke, &index);
704 		if (error)
705 			return error;
706 	}
707 
708 	if (index >= dev->keycodemax)
709 		return -EINVAL;
710 
711 	ke->keycode = input_fetch_keycode(dev, index);
712 	ke->index = index;
713 	ke->len = sizeof(index);
714 	memcpy(ke->scancode, &index, sizeof(index));
715 
716 	return 0;
717 }
718 
719 static int input_default_setkeycode(struct input_dev *dev,
720 				    const struct input_keymap_entry *ke,
721 				    unsigned int *old_keycode)
722 {
723 	unsigned int index;
724 	int error;
725 	int i;
726 
727 	if (!dev->keycodesize)
728 		return -EINVAL;
729 
730 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
731 		index = ke->index;
732 	} else {
733 		error = input_scancode_to_scalar(ke, &index);
734 		if (error)
735 			return error;
736 	}
737 
738 	if (index >= dev->keycodemax)
739 		return -EINVAL;
740 
741 	if (dev->keycodesize < sizeof(ke->keycode) &&
742 			(ke->keycode >> (dev->keycodesize * 8)))
743 		return -EINVAL;
744 
745 	switch (dev->keycodesize) {
746 		case 1: {
747 			u8 *k = (u8 *)dev->keycode;
748 			*old_keycode = k[index];
749 			k[index] = ke->keycode;
750 			break;
751 		}
752 		case 2: {
753 			u16 *k = (u16 *)dev->keycode;
754 			*old_keycode = k[index];
755 			k[index] = ke->keycode;
756 			break;
757 		}
758 		default: {
759 			u32 *k = (u32 *)dev->keycode;
760 			*old_keycode = k[index];
761 			k[index] = ke->keycode;
762 			break;
763 		}
764 	}
765 
766 	__clear_bit(*old_keycode, dev->keybit);
767 	__set_bit(ke->keycode, dev->keybit);
768 
769 	for (i = 0; i < dev->keycodemax; i++) {
770 		if (input_fetch_keycode(dev, i) == *old_keycode) {
771 			__set_bit(*old_keycode, dev->keybit);
772 			break; /* Setting the bit twice is useless, so break */
773 		}
774 	}
775 
776 	return 0;
777 }
778 
779 /**
780  * input_get_keycode - retrieve keycode currently mapped to a given scancode
781  * @dev: input device which keymap is being queried
782  * @ke: keymap entry
783  *
784  * This function should be called by anyone interested in retrieving current
785  * keymap. Presently evdev handlers use it.
786  */
787 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
788 {
789 	unsigned long flags;
790 	int retval;
791 
792 	spin_lock_irqsave(&dev->event_lock, flags);
793 	retval = dev->getkeycode(dev, ke);
794 	spin_unlock_irqrestore(&dev->event_lock, flags);
795 
796 	return retval;
797 }
798 EXPORT_SYMBOL(input_get_keycode);
799 
800 /**
801  * input_set_keycode - attribute a keycode to a given scancode
802  * @dev: input device which keymap is being updated
803  * @ke: new keymap entry
804  *
805  * This function should be called by anyone needing to update current
806  * keymap. Presently keyboard and evdev handlers use it.
807  */
808 int input_set_keycode(struct input_dev *dev,
809 		      const struct input_keymap_entry *ke)
810 {
811 	unsigned long flags;
812 	unsigned int old_keycode;
813 	int retval;
814 
815 	if (ke->keycode > KEY_MAX)
816 		return -EINVAL;
817 
818 	spin_lock_irqsave(&dev->event_lock, flags);
819 
820 	retval = dev->setkeycode(dev, ke, &old_keycode);
821 	if (retval)
822 		goto out;
823 
824 	/* Make sure KEY_RESERVED did not get enabled. */
825 	__clear_bit(KEY_RESERVED, dev->keybit);
826 
827 	/*
828 	 * Simulate keyup event if keycode is not present
829 	 * in the keymap anymore
830 	 */
831 	if (test_bit(EV_KEY, dev->evbit) &&
832 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
833 	    __test_and_clear_bit(old_keycode, dev->key)) {
834 
835 		input_pass_event(dev, EV_KEY, old_keycode, 0);
836 		if (dev->sync)
837 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
838 	}
839 
840  out:
841 	spin_unlock_irqrestore(&dev->event_lock, flags);
842 
843 	return retval;
844 }
845 EXPORT_SYMBOL(input_set_keycode);
846 
847 #define MATCH_BIT(bit, max) \
848 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
849 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
850 				break; \
851 		if (i != BITS_TO_LONGS(max)) \
852 			continue;
853 
854 static const struct input_device_id *input_match_device(struct input_handler *handler,
855 							struct input_dev *dev)
856 {
857 	const struct input_device_id *id;
858 	int i;
859 
860 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
861 
862 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
863 			if (id->bustype != dev->id.bustype)
864 				continue;
865 
866 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
867 			if (id->vendor != dev->id.vendor)
868 				continue;
869 
870 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
871 			if (id->product != dev->id.product)
872 				continue;
873 
874 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
875 			if (id->version != dev->id.version)
876 				continue;
877 
878 		MATCH_BIT(evbit,  EV_MAX);
879 		MATCH_BIT(keybit, KEY_MAX);
880 		MATCH_BIT(relbit, REL_MAX);
881 		MATCH_BIT(absbit, ABS_MAX);
882 		MATCH_BIT(mscbit, MSC_MAX);
883 		MATCH_BIT(ledbit, LED_MAX);
884 		MATCH_BIT(sndbit, SND_MAX);
885 		MATCH_BIT(ffbit,  FF_MAX);
886 		MATCH_BIT(swbit,  SW_MAX);
887 
888 		if (!handler->match || handler->match(handler, dev))
889 			return id;
890 	}
891 
892 	return NULL;
893 }
894 
895 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
896 {
897 	const struct input_device_id *id;
898 	int error;
899 
900 	id = input_match_device(handler, dev);
901 	if (!id)
902 		return -ENODEV;
903 
904 	error = handler->connect(handler, dev, id);
905 	if (error && error != -ENODEV)
906 		pr_err("failed to attach handler %s to device %s, error: %d\n",
907 		       handler->name, kobject_name(&dev->dev.kobj), error);
908 
909 	return error;
910 }
911 
912 #ifdef CONFIG_COMPAT
913 
914 static int input_bits_to_string(char *buf, int buf_size,
915 				unsigned long bits, bool skip_empty)
916 {
917 	int len = 0;
918 
919 	if (INPUT_COMPAT_TEST) {
920 		u32 dword = bits >> 32;
921 		if (dword || !skip_empty)
922 			len += snprintf(buf, buf_size, "%x ", dword);
923 
924 		dword = bits & 0xffffffffUL;
925 		if (dword || !skip_empty || len)
926 			len += snprintf(buf + len, max(buf_size - len, 0),
927 					"%x", dword);
928 	} else {
929 		if (bits || !skip_empty)
930 			len += snprintf(buf, buf_size, "%lx", bits);
931 	}
932 
933 	return len;
934 }
935 
936 #else /* !CONFIG_COMPAT */
937 
938 static int input_bits_to_string(char *buf, int buf_size,
939 				unsigned long bits, bool skip_empty)
940 {
941 	return bits || !skip_empty ?
942 		snprintf(buf, buf_size, "%lx", bits) : 0;
943 }
944 
945 #endif
946 
947 #ifdef CONFIG_PROC_FS
948 
949 static struct proc_dir_entry *proc_bus_input_dir;
950 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
951 static int input_devices_state;
952 
953 static inline void input_wakeup_procfs_readers(void)
954 {
955 	input_devices_state++;
956 	wake_up(&input_devices_poll_wait);
957 }
958 
959 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
960 {
961 	poll_wait(file, &input_devices_poll_wait, wait);
962 	if (file->f_version != input_devices_state) {
963 		file->f_version = input_devices_state;
964 		return POLLIN | POLLRDNORM;
965 	}
966 
967 	return 0;
968 }
969 
970 union input_seq_state {
971 	struct {
972 		unsigned short pos;
973 		bool mutex_acquired;
974 	};
975 	void *p;
976 };
977 
978 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
979 {
980 	union input_seq_state *state = (union input_seq_state *)&seq->private;
981 	int error;
982 
983 	/* We need to fit into seq->private pointer */
984 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
985 
986 	error = mutex_lock_interruptible(&input_mutex);
987 	if (error) {
988 		state->mutex_acquired = false;
989 		return ERR_PTR(error);
990 	}
991 
992 	state->mutex_acquired = true;
993 
994 	return seq_list_start(&input_dev_list, *pos);
995 }
996 
997 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
998 {
999 	return seq_list_next(v, &input_dev_list, pos);
1000 }
1001 
1002 static void input_seq_stop(struct seq_file *seq, void *v)
1003 {
1004 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1005 
1006 	if (state->mutex_acquired)
1007 		mutex_unlock(&input_mutex);
1008 }
1009 
1010 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1011 				   unsigned long *bitmap, int max)
1012 {
1013 	int i;
1014 	bool skip_empty = true;
1015 	char buf[18];
1016 
1017 	seq_printf(seq, "B: %s=", name);
1018 
1019 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1020 		if (input_bits_to_string(buf, sizeof(buf),
1021 					 bitmap[i], skip_empty)) {
1022 			skip_empty = false;
1023 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1024 		}
1025 	}
1026 
1027 	/*
1028 	 * If no output was produced print a single 0.
1029 	 */
1030 	if (skip_empty)
1031 		seq_puts(seq, "0");
1032 
1033 	seq_putc(seq, '\n');
1034 }
1035 
1036 static int input_devices_seq_show(struct seq_file *seq, void *v)
1037 {
1038 	struct input_dev *dev = container_of(v, struct input_dev, node);
1039 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1040 	struct input_handle *handle;
1041 
1042 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1043 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1044 
1045 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1046 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1047 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1048 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1049 	seq_printf(seq, "H: Handlers=");
1050 
1051 	list_for_each_entry(handle, &dev->h_list, d_node)
1052 		seq_printf(seq, "%s ", handle->name);
1053 	seq_putc(seq, '\n');
1054 
1055 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1056 
1057 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1058 	if (test_bit(EV_KEY, dev->evbit))
1059 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1060 	if (test_bit(EV_REL, dev->evbit))
1061 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1062 	if (test_bit(EV_ABS, dev->evbit))
1063 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1064 	if (test_bit(EV_MSC, dev->evbit))
1065 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1066 	if (test_bit(EV_LED, dev->evbit))
1067 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1068 	if (test_bit(EV_SND, dev->evbit))
1069 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1070 	if (test_bit(EV_FF, dev->evbit))
1071 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1072 	if (test_bit(EV_SW, dev->evbit))
1073 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1074 
1075 	seq_putc(seq, '\n');
1076 
1077 	kfree(path);
1078 	return 0;
1079 }
1080 
1081 static const struct seq_operations input_devices_seq_ops = {
1082 	.start	= input_devices_seq_start,
1083 	.next	= input_devices_seq_next,
1084 	.stop	= input_seq_stop,
1085 	.show	= input_devices_seq_show,
1086 };
1087 
1088 static int input_proc_devices_open(struct inode *inode, struct file *file)
1089 {
1090 	return seq_open(file, &input_devices_seq_ops);
1091 }
1092 
1093 static const struct file_operations input_devices_fileops = {
1094 	.owner		= THIS_MODULE,
1095 	.open		= input_proc_devices_open,
1096 	.poll		= input_proc_devices_poll,
1097 	.read		= seq_read,
1098 	.llseek		= seq_lseek,
1099 	.release	= seq_release,
1100 };
1101 
1102 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1103 {
1104 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1105 	int error;
1106 
1107 	/* We need to fit into seq->private pointer */
1108 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1109 
1110 	error = mutex_lock_interruptible(&input_mutex);
1111 	if (error) {
1112 		state->mutex_acquired = false;
1113 		return ERR_PTR(error);
1114 	}
1115 
1116 	state->mutex_acquired = true;
1117 	state->pos = *pos;
1118 
1119 	return seq_list_start(&input_handler_list, *pos);
1120 }
1121 
1122 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1123 {
1124 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1125 
1126 	state->pos = *pos + 1;
1127 	return seq_list_next(v, &input_handler_list, pos);
1128 }
1129 
1130 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1131 {
1132 	struct input_handler *handler = container_of(v, struct input_handler, node);
1133 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1134 
1135 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1136 	if (handler->filter)
1137 		seq_puts(seq, " (filter)");
1138 	if (handler->fops)
1139 		seq_printf(seq, " Minor=%d", handler->minor);
1140 	seq_putc(seq, '\n');
1141 
1142 	return 0;
1143 }
1144 
1145 static const struct seq_operations input_handlers_seq_ops = {
1146 	.start	= input_handlers_seq_start,
1147 	.next	= input_handlers_seq_next,
1148 	.stop	= input_seq_stop,
1149 	.show	= input_handlers_seq_show,
1150 };
1151 
1152 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1153 {
1154 	return seq_open(file, &input_handlers_seq_ops);
1155 }
1156 
1157 static const struct file_operations input_handlers_fileops = {
1158 	.owner		= THIS_MODULE,
1159 	.open		= input_proc_handlers_open,
1160 	.read		= seq_read,
1161 	.llseek		= seq_lseek,
1162 	.release	= seq_release,
1163 };
1164 
1165 static int __init input_proc_init(void)
1166 {
1167 	struct proc_dir_entry *entry;
1168 
1169 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1170 	if (!proc_bus_input_dir)
1171 		return -ENOMEM;
1172 
1173 	entry = proc_create("devices", 0, proc_bus_input_dir,
1174 			    &input_devices_fileops);
1175 	if (!entry)
1176 		goto fail1;
1177 
1178 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1179 			    &input_handlers_fileops);
1180 	if (!entry)
1181 		goto fail2;
1182 
1183 	return 0;
1184 
1185  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1186  fail1: remove_proc_entry("bus/input", NULL);
1187 	return -ENOMEM;
1188 }
1189 
1190 static void input_proc_exit(void)
1191 {
1192 	remove_proc_entry("devices", proc_bus_input_dir);
1193 	remove_proc_entry("handlers", proc_bus_input_dir);
1194 	remove_proc_entry("bus/input", NULL);
1195 }
1196 
1197 #else /* !CONFIG_PROC_FS */
1198 static inline void input_wakeup_procfs_readers(void) { }
1199 static inline int input_proc_init(void) { return 0; }
1200 static inline void input_proc_exit(void) { }
1201 #endif
1202 
1203 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1204 static ssize_t input_dev_show_##name(struct device *dev,		\
1205 				     struct device_attribute *attr,	\
1206 				     char *buf)				\
1207 {									\
1208 	struct input_dev *input_dev = to_input_dev(dev);		\
1209 									\
1210 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1211 			 input_dev->name ? input_dev->name : "");	\
1212 }									\
1213 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1214 
1215 INPUT_DEV_STRING_ATTR_SHOW(name);
1216 INPUT_DEV_STRING_ATTR_SHOW(phys);
1217 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1218 
1219 static int input_print_modalias_bits(char *buf, int size,
1220 				     char name, unsigned long *bm,
1221 				     unsigned int min_bit, unsigned int max_bit)
1222 {
1223 	int len = 0, i;
1224 
1225 	len += snprintf(buf, max(size, 0), "%c", name);
1226 	for (i = min_bit; i < max_bit; i++)
1227 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1228 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1229 	return len;
1230 }
1231 
1232 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1233 				int add_cr)
1234 {
1235 	int len;
1236 
1237 	len = snprintf(buf, max(size, 0),
1238 		       "input:b%04Xv%04Xp%04Xe%04X-",
1239 		       id->id.bustype, id->id.vendor,
1240 		       id->id.product, id->id.version);
1241 
1242 	len += input_print_modalias_bits(buf + len, size - len,
1243 				'e', id->evbit, 0, EV_MAX);
1244 	len += input_print_modalias_bits(buf + len, size - len,
1245 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1246 	len += input_print_modalias_bits(buf + len, size - len,
1247 				'r', id->relbit, 0, REL_MAX);
1248 	len += input_print_modalias_bits(buf + len, size - len,
1249 				'a', id->absbit, 0, ABS_MAX);
1250 	len += input_print_modalias_bits(buf + len, size - len,
1251 				'm', id->mscbit, 0, MSC_MAX);
1252 	len += input_print_modalias_bits(buf + len, size - len,
1253 				'l', id->ledbit, 0, LED_MAX);
1254 	len += input_print_modalias_bits(buf + len, size - len,
1255 				's', id->sndbit, 0, SND_MAX);
1256 	len += input_print_modalias_bits(buf + len, size - len,
1257 				'f', id->ffbit, 0, FF_MAX);
1258 	len += input_print_modalias_bits(buf + len, size - len,
1259 				'w', id->swbit, 0, SW_MAX);
1260 
1261 	if (add_cr)
1262 		len += snprintf(buf + len, max(size - len, 0), "\n");
1263 
1264 	return len;
1265 }
1266 
1267 static ssize_t input_dev_show_modalias(struct device *dev,
1268 				       struct device_attribute *attr,
1269 				       char *buf)
1270 {
1271 	struct input_dev *id = to_input_dev(dev);
1272 	ssize_t len;
1273 
1274 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1275 
1276 	return min_t(int, len, PAGE_SIZE);
1277 }
1278 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1279 
1280 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1281 			      int max, int add_cr);
1282 
1283 static ssize_t input_dev_show_properties(struct device *dev,
1284 					 struct device_attribute *attr,
1285 					 char *buf)
1286 {
1287 	struct input_dev *input_dev = to_input_dev(dev);
1288 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1289 				     INPUT_PROP_MAX, true);
1290 	return min_t(int, len, PAGE_SIZE);
1291 }
1292 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1293 
1294 static struct attribute *input_dev_attrs[] = {
1295 	&dev_attr_name.attr,
1296 	&dev_attr_phys.attr,
1297 	&dev_attr_uniq.attr,
1298 	&dev_attr_modalias.attr,
1299 	&dev_attr_properties.attr,
1300 	NULL
1301 };
1302 
1303 static struct attribute_group input_dev_attr_group = {
1304 	.attrs	= input_dev_attrs,
1305 };
1306 
1307 #define INPUT_DEV_ID_ATTR(name)						\
1308 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1309 					struct device_attribute *attr,	\
1310 					char *buf)			\
1311 {									\
1312 	struct input_dev *input_dev = to_input_dev(dev);		\
1313 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1314 }									\
1315 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1316 
1317 INPUT_DEV_ID_ATTR(bustype);
1318 INPUT_DEV_ID_ATTR(vendor);
1319 INPUT_DEV_ID_ATTR(product);
1320 INPUT_DEV_ID_ATTR(version);
1321 
1322 static struct attribute *input_dev_id_attrs[] = {
1323 	&dev_attr_bustype.attr,
1324 	&dev_attr_vendor.attr,
1325 	&dev_attr_product.attr,
1326 	&dev_attr_version.attr,
1327 	NULL
1328 };
1329 
1330 static struct attribute_group input_dev_id_attr_group = {
1331 	.name	= "id",
1332 	.attrs	= input_dev_id_attrs,
1333 };
1334 
1335 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1336 			      int max, int add_cr)
1337 {
1338 	int i;
1339 	int len = 0;
1340 	bool skip_empty = true;
1341 
1342 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1343 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1344 					    bitmap[i], skip_empty);
1345 		if (len) {
1346 			skip_empty = false;
1347 			if (i > 0)
1348 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * If no output was produced print a single 0.
1354 	 */
1355 	if (len == 0)
1356 		len = snprintf(buf, buf_size, "%d", 0);
1357 
1358 	if (add_cr)
1359 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1360 
1361 	return len;
1362 }
1363 
1364 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1365 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1366 				       struct device_attribute *attr,	\
1367 				       char *buf)			\
1368 {									\
1369 	struct input_dev *input_dev = to_input_dev(dev);		\
1370 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1371 				     input_dev->bm##bit, ev##_MAX,	\
1372 				     true);				\
1373 	return min_t(int, len, PAGE_SIZE);				\
1374 }									\
1375 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1376 
1377 INPUT_DEV_CAP_ATTR(EV, ev);
1378 INPUT_DEV_CAP_ATTR(KEY, key);
1379 INPUT_DEV_CAP_ATTR(REL, rel);
1380 INPUT_DEV_CAP_ATTR(ABS, abs);
1381 INPUT_DEV_CAP_ATTR(MSC, msc);
1382 INPUT_DEV_CAP_ATTR(LED, led);
1383 INPUT_DEV_CAP_ATTR(SND, snd);
1384 INPUT_DEV_CAP_ATTR(FF, ff);
1385 INPUT_DEV_CAP_ATTR(SW, sw);
1386 
1387 static struct attribute *input_dev_caps_attrs[] = {
1388 	&dev_attr_ev.attr,
1389 	&dev_attr_key.attr,
1390 	&dev_attr_rel.attr,
1391 	&dev_attr_abs.attr,
1392 	&dev_attr_msc.attr,
1393 	&dev_attr_led.attr,
1394 	&dev_attr_snd.attr,
1395 	&dev_attr_ff.attr,
1396 	&dev_attr_sw.attr,
1397 	NULL
1398 };
1399 
1400 static struct attribute_group input_dev_caps_attr_group = {
1401 	.name	= "capabilities",
1402 	.attrs	= input_dev_caps_attrs,
1403 };
1404 
1405 static const struct attribute_group *input_dev_attr_groups[] = {
1406 	&input_dev_attr_group,
1407 	&input_dev_id_attr_group,
1408 	&input_dev_caps_attr_group,
1409 	NULL
1410 };
1411 
1412 static void input_dev_release(struct device *device)
1413 {
1414 	struct input_dev *dev = to_input_dev(device);
1415 
1416 	input_ff_destroy(dev);
1417 	input_mt_destroy_slots(dev);
1418 	kfree(dev->absinfo);
1419 	kfree(dev);
1420 
1421 	module_put(THIS_MODULE);
1422 }
1423 
1424 /*
1425  * Input uevent interface - loading event handlers based on
1426  * device bitfields.
1427  */
1428 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1429 				   const char *name, unsigned long *bitmap, int max)
1430 {
1431 	int len;
1432 
1433 	if (add_uevent_var(env, "%s", name))
1434 		return -ENOMEM;
1435 
1436 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1437 				 sizeof(env->buf) - env->buflen,
1438 				 bitmap, max, false);
1439 	if (len >= (sizeof(env->buf) - env->buflen))
1440 		return -ENOMEM;
1441 
1442 	env->buflen += len;
1443 	return 0;
1444 }
1445 
1446 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1447 					 struct input_dev *dev)
1448 {
1449 	int len;
1450 
1451 	if (add_uevent_var(env, "MODALIAS="))
1452 		return -ENOMEM;
1453 
1454 	len = input_print_modalias(&env->buf[env->buflen - 1],
1455 				   sizeof(env->buf) - env->buflen,
1456 				   dev, 0);
1457 	if (len >= (sizeof(env->buf) - env->buflen))
1458 		return -ENOMEM;
1459 
1460 	env->buflen += len;
1461 	return 0;
1462 }
1463 
1464 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1465 	do {								\
1466 		int err = add_uevent_var(env, fmt, val);		\
1467 		if (err)						\
1468 			return err;					\
1469 	} while (0)
1470 
1471 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1472 	do {								\
1473 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1474 		if (err)						\
1475 			return err;					\
1476 	} while (0)
1477 
1478 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1479 	do {								\
1480 		int err = input_add_uevent_modalias_var(env, dev);	\
1481 		if (err)						\
1482 			return err;					\
1483 	} while (0)
1484 
1485 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1486 {
1487 	struct input_dev *dev = to_input_dev(device);
1488 
1489 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1490 				dev->id.bustype, dev->id.vendor,
1491 				dev->id.product, dev->id.version);
1492 	if (dev->name)
1493 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1494 	if (dev->phys)
1495 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1496 	if (dev->uniq)
1497 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1498 
1499 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1500 
1501 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1502 	if (test_bit(EV_KEY, dev->evbit))
1503 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1504 	if (test_bit(EV_REL, dev->evbit))
1505 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1506 	if (test_bit(EV_ABS, dev->evbit))
1507 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1508 	if (test_bit(EV_MSC, dev->evbit))
1509 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1510 	if (test_bit(EV_LED, dev->evbit))
1511 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1512 	if (test_bit(EV_SND, dev->evbit))
1513 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1514 	if (test_bit(EV_FF, dev->evbit))
1515 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1516 	if (test_bit(EV_SW, dev->evbit))
1517 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1518 
1519 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1520 
1521 	return 0;
1522 }
1523 
1524 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1525 	do {								\
1526 		int i;							\
1527 		bool active;						\
1528 									\
1529 		if (!test_bit(EV_##type, dev->evbit))			\
1530 			break;						\
1531 									\
1532 		for (i = 0; i < type##_MAX; i++) {			\
1533 			if (!test_bit(i, dev->bits##bit))		\
1534 				continue;				\
1535 									\
1536 			active = test_bit(i, dev->bits);		\
1537 			if (!active && !on)				\
1538 				continue;				\
1539 									\
1540 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1541 		}							\
1542 	} while (0)
1543 
1544 static void input_dev_toggle(struct input_dev *dev, bool activate)
1545 {
1546 	if (!dev->event)
1547 		return;
1548 
1549 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1550 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1551 
1552 	if (activate && test_bit(EV_REP, dev->evbit)) {
1553 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1554 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1555 	}
1556 }
1557 
1558 /**
1559  * input_reset_device() - reset/restore the state of input device
1560  * @dev: input device whose state needs to be reset
1561  *
1562  * This function tries to reset the state of an opened input device and
1563  * bring internal state and state if the hardware in sync with each other.
1564  * We mark all keys as released, restore LED state, repeat rate, etc.
1565  */
1566 void input_reset_device(struct input_dev *dev)
1567 {
1568 	mutex_lock(&dev->mutex);
1569 
1570 	if (dev->users) {
1571 		input_dev_toggle(dev, true);
1572 
1573 		/*
1574 		 * Keys that have been pressed at suspend time are unlikely
1575 		 * to be still pressed when we resume.
1576 		 */
1577 		spin_lock_irq(&dev->event_lock);
1578 		input_dev_release_keys(dev);
1579 		spin_unlock_irq(&dev->event_lock);
1580 	}
1581 
1582 	mutex_unlock(&dev->mutex);
1583 }
1584 EXPORT_SYMBOL(input_reset_device);
1585 
1586 #ifdef CONFIG_PM
1587 static int input_dev_suspend(struct device *dev)
1588 {
1589 	struct input_dev *input_dev = to_input_dev(dev);
1590 
1591 	mutex_lock(&input_dev->mutex);
1592 
1593 	if (input_dev->users)
1594 		input_dev_toggle(input_dev, false);
1595 
1596 	mutex_unlock(&input_dev->mutex);
1597 
1598 	return 0;
1599 }
1600 
1601 static int input_dev_resume(struct device *dev)
1602 {
1603 	struct input_dev *input_dev = to_input_dev(dev);
1604 
1605 	input_reset_device(input_dev);
1606 
1607 	return 0;
1608 }
1609 
1610 static const struct dev_pm_ops input_dev_pm_ops = {
1611 	.suspend	= input_dev_suspend,
1612 	.resume		= input_dev_resume,
1613 	.poweroff	= input_dev_suspend,
1614 	.restore	= input_dev_resume,
1615 };
1616 #endif /* CONFIG_PM */
1617 
1618 static struct device_type input_dev_type = {
1619 	.groups		= input_dev_attr_groups,
1620 	.release	= input_dev_release,
1621 	.uevent		= input_dev_uevent,
1622 #ifdef CONFIG_PM
1623 	.pm		= &input_dev_pm_ops,
1624 #endif
1625 };
1626 
1627 static char *input_devnode(struct device *dev, umode_t *mode)
1628 {
1629 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1630 }
1631 
1632 struct class input_class = {
1633 	.name		= "input",
1634 	.devnode	= input_devnode,
1635 };
1636 EXPORT_SYMBOL_GPL(input_class);
1637 
1638 /**
1639  * input_allocate_device - allocate memory for new input device
1640  *
1641  * Returns prepared struct input_dev or NULL.
1642  *
1643  * NOTE: Use input_free_device() to free devices that have not been
1644  * registered; input_unregister_device() should be used for already
1645  * registered devices.
1646  */
1647 struct input_dev *input_allocate_device(void)
1648 {
1649 	struct input_dev *dev;
1650 
1651 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1652 	if (dev) {
1653 		dev->dev.type = &input_dev_type;
1654 		dev->dev.class = &input_class;
1655 		device_initialize(&dev->dev);
1656 		mutex_init(&dev->mutex);
1657 		spin_lock_init(&dev->event_lock);
1658 		INIT_LIST_HEAD(&dev->h_list);
1659 		INIT_LIST_HEAD(&dev->node);
1660 
1661 		__module_get(THIS_MODULE);
1662 	}
1663 
1664 	return dev;
1665 }
1666 EXPORT_SYMBOL(input_allocate_device);
1667 
1668 /**
1669  * input_free_device - free memory occupied by input_dev structure
1670  * @dev: input device to free
1671  *
1672  * This function should only be used if input_register_device()
1673  * was not called yet or if it failed. Once device was registered
1674  * use input_unregister_device() and memory will be freed once last
1675  * reference to the device is dropped.
1676  *
1677  * Device should be allocated by input_allocate_device().
1678  *
1679  * NOTE: If there are references to the input device then memory
1680  * will not be freed until last reference is dropped.
1681  */
1682 void input_free_device(struct input_dev *dev)
1683 {
1684 	if (dev)
1685 		input_put_device(dev);
1686 }
1687 EXPORT_SYMBOL(input_free_device);
1688 
1689 /**
1690  * input_set_capability - mark device as capable of a certain event
1691  * @dev: device that is capable of emitting or accepting event
1692  * @type: type of the event (EV_KEY, EV_REL, etc...)
1693  * @code: event code
1694  *
1695  * In addition to setting up corresponding bit in appropriate capability
1696  * bitmap the function also adjusts dev->evbit.
1697  */
1698 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1699 {
1700 	switch (type) {
1701 	case EV_KEY:
1702 		__set_bit(code, dev->keybit);
1703 		break;
1704 
1705 	case EV_REL:
1706 		__set_bit(code, dev->relbit);
1707 		break;
1708 
1709 	case EV_ABS:
1710 		__set_bit(code, dev->absbit);
1711 		break;
1712 
1713 	case EV_MSC:
1714 		__set_bit(code, dev->mscbit);
1715 		break;
1716 
1717 	case EV_SW:
1718 		__set_bit(code, dev->swbit);
1719 		break;
1720 
1721 	case EV_LED:
1722 		__set_bit(code, dev->ledbit);
1723 		break;
1724 
1725 	case EV_SND:
1726 		__set_bit(code, dev->sndbit);
1727 		break;
1728 
1729 	case EV_FF:
1730 		__set_bit(code, dev->ffbit);
1731 		break;
1732 
1733 	case EV_PWR:
1734 		/* do nothing */
1735 		break;
1736 
1737 	default:
1738 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1739 		       type, code);
1740 		dump_stack();
1741 		return;
1742 	}
1743 
1744 	__set_bit(type, dev->evbit);
1745 }
1746 EXPORT_SYMBOL(input_set_capability);
1747 
1748 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1749 {
1750 	int mt_slots;
1751 	int i;
1752 	unsigned int events;
1753 
1754 	if (dev->mtsize) {
1755 		mt_slots = dev->mtsize;
1756 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1757 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1758 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1759 		mt_slots = clamp(mt_slots, 2, 32);
1760 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1761 		mt_slots = 2;
1762 	} else {
1763 		mt_slots = 0;
1764 	}
1765 
1766 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1767 
1768 	for (i = 0; i < ABS_CNT; i++) {
1769 		if (test_bit(i, dev->absbit)) {
1770 			if (input_is_mt_axis(i))
1771 				events += mt_slots;
1772 			else
1773 				events++;
1774 		}
1775 	}
1776 
1777 	for (i = 0; i < REL_CNT; i++)
1778 		if (test_bit(i, dev->relbit))
1779 			events++;
1780 
1781 	return events;
1782 }
1783 
1784 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1785 	do {								\
1786 		if (!test_bit(EV_##type, dev->evbit))			\
1787 			memset(dev->bits##bit, 0,			\
1788 				sizeof(dev->bits##bit));		\
1789 	} while (0)
1790 
1791 static void input_cleanse_bitmasks(struct input_dev *dev)
1792 {
1793 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1794 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1795 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1796 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1797 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1798 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1799 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1800 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1801 }
1802 
1803 /**
1804  * input_register_device - register device with input core
1805  * @dev: device to be registered
1806  *
1807  * This function registers device with input core. The device must be
1808  * allocated with input_allocate_device() and all it's capabilities
1809  * set up before registering.
1810  * If function fails the device must be freed with input_free_device().
1811  * Once device has been successfully registered it can be unregistered
1812  * with input_unregister_device(); input_free_device() should not be
1813  * called in this case.
1814  */
1815 int input_register_device(struct input_dev *dev)
1816 {
1817 	static atomic_t input_no = ATOMIC_INIT(0);
1818 	struct input_handler *handler;
1819 	const char *path;
1820 	int error;
1821 
1822 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1823 	__set_bit(EV_SYN, dev->evbit);
1824 
1825 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1826 	__clear_bit(KEY_RESERVED, dev->keybit);
1827 
1828 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1829 	input_cleanse_bitmasks(dev);
1830 
1831 	if (!dev->hint_events_per_packet)
1832 		dev->hint_events_per_packet =
1833 				input_estimate_events_per_packet(dev);
1834 
1835 	/*
1836 	 * If delay and period are pre-set by the driver, then autorepeating
1837 	 * is handled by the driver itself and we don't do it in input.c.
1838 	 */
1839 	init_timer(&dev->timer);
1840 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1841 		dev->timer.data = (long) dev;
1842 		dev->timer.function = input_repeat_key;
1843 		dev->rep[REP_DELAY] = 250;
1844 		dev->rep[REP_PERIOD] = 33;
1845 	}
1846 
1847 	if (!dev->getkeycode)
1848 		dev->getkeycode = input_default_getkeycode;
1849 
1850 	if (!dev->setkeycode)
1851 		dev->setkeycode = input_default_setkeycode;
1852 
1853 	dev_set_name(&dev->dev, "input%ld",
1854 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1855 
1856 	error = device_add(&dev->dev);
1857 	if (error)
1858 		return error;
1859 
1860 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1861 	pr_info("%s as %s\n",
1862 		dev->name ? dev->name : "Unspecified device",
1863 		path ? path : "N/A");
1864 	kfree(path);
1865 
1866 	error = mutex_lock_interruptible(&input_mutex);
1867 	if (error) {
1868 		device_del(&dev->dev);
1869 		return error;
1870 	}
1871 
1872 	list_add_tail(&dev->node, &input_dev_list);
1873 
1874 	list_for_each_entry(handler, &input_handler_list, node)
1875 		input_attach_handler(dev, handler);
1876 
1877 	input_wakeup_procfs_readers();
1878 
1879 	mutex_unlock(&input_mutex);
1880 
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(input_register_device);
1884 
1885 /**
1886  * input_unregister_device - unregister previously registered device
1887  * @dev: device to be unregistered
1888  *
1889  * This function unregisters an input device. Once device is unregistered
1890  * the caller should not try to access it as it may get freed at any moment.
1891  */
1892 void input_unregister_device(struct input_dev *dev)
1893 {
1894 	struct input_handle *handle, *next;
1895 
1896 	input_disconnect_device(dev);
1897 
1898 	mutex_lock(&input_mutex);
1899 
1900 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1901 		handle->handler->disconnect(handle);
1902 	WARN_ON(!list_empty(&dev->h_list));
1903 
1904 	del_timer_sync(&dev->timer);
1905 	list_del_init(&dev->node);
1906 
1907 	input_wakeup_procfs_readers();
1908 
1909 	mutex_unlock(&input_mutex);
1910 
1911 	device_unregister(&dev->dev);
1912 }
1913 EXPORT_SYMBOL(input_unregister_device);
1914 
1915 /**
1916  * input_register_handler - register a new input handler
1917  * @handler: handler to be registered
1918  *
1919  * This function registers a new input handler (interface) for input
1920  * devices in the system and attaches it to all input devices that
1921  * are compatible with the handler.
1922  */
1923 int input_register_handler(struct input_handler *handler)
1924 {
1925 	struct input_dev *dev;
1926 	int retval;
1927 
1928 	retval = mutex_lock_interruptible(&input_mutex);
1929 	if (retval)
1930 		return retval;
1931 
1932 	INIT_LIST_HEAD(&handler->h_list);
1933 
1934 	if (handler->fops != NULL) {
1935 		if (input_table[handler->minor >> 5]) {
1936 			retval = -EBUSY;
1937 			goto out;
1938 		}
1939 		input_table[handler->minor >> 5] = handler;
1940 	}
1941 
1942 	list_add_tail(&handler->node, &input_handler_list);
1943 
1944 	list_for_each_entry(dev, &input_dev_list, node)
1945 		input_attach_handler(dev, handler);
1946 
1947 	input_wakeup_procfs_readers();
1948 
1949  out:
1950 	mutex_unlock(&input_mutex);
1951 	return retval;
1952 }
1953 EXPORT_SYMBOL(input_register_handler);
1954 
1955 /**
1956  * input_unregister_handler - unregisters an input handler
1957  * @handler: handler to be unregistered
1958  *
1959  * This function disconnects a handler from its input devices and
1960  * removes it from lists of known handlers.
1961  */
1962 void input_unregister_handler(struct input_handler *handler)
1963 {
1964 	struct input_handle *handle, *next;
1965 
1966 	mutex_lock(&input_mutex);
1967 
1968 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1969 		handler->disconnect(handle);
1970 	WARN_ON(!list_empty(&handler->h_list));
1971 
1972 	list_del_init(&handler->node);
1973 
1974 	if (handler->fops != NULL)
1975 		input_table[handler->minor >> 5] = NULL;
1976 
1977 	input_wakeup_procfs_readers();
1978 
1979 	mutex_unlock(&input_mutex);
1980 }
1981 EXPORT_SYMBOL(input_unregister_handler);
1982 
1983 /**
1984  * input_handler_for_each_handle - handle iterator
1985  * @handler: input handler to iterate
1986  * @data: data for the callback
1987  * @fn: function to be called for each handle
1988  *
1989  * Iterate over @bus's list of devices, and call @fn for each, passing
1990  * it @data and stop when @fn returns a non-zero value. The function is
1991  * using RCU to traverse the list and therefore may be usind in atonic
1992  * contexts. The @fn callback is invoked from RCU critical section and
1993  * thus must not sleep.
1994  */
1995 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1996 				  int (*fn)(struct input_handle *, void *))
1997 {
1998 	struct input_handle *handle;
1999 	int retval = 0;
2000 
2001 	rcu_read_lock();
2002 
2003 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2004 		retval = fn(handle, data);
2005 		if (retval)
2006 			break;
2007 	}
2008 
2009 	rcu_read_unlock();
2010 
2011 	return retval;
2012 }
2013 EXPORT_SYMBOL(input_handler_for_each_handle);
2014 
2015 /**
2016  * input_register_handle - register a new input handle
2017  * @handle: handle to register
2018  *
2019  * This function puts a new input handle onto device's
2020  * and handler's lists so that events can flow through
2021  * it once it is opened using input_open_device().
2022  *
2023  * This function is supposed to be called from handler's
2024  * connect() method.
2025  */
2026 int input_register_handle(struct input_handle *handle)
2027 {
2028 	struct input_handler *handler = handle->handler;
2029 	struct input_dev *dev = handle->dev;
2030 	int error;
2031 
2032 	/*
2033 	 * We take dev->mutex here to prevent race with
2034 	 * input_release_device().
2035 	 */
2036 	error = mutex_lock_interruptible(&dev->mutex);
2037 	if (error)
2038 		return error;
2039 
2040 	/*
2041 	 * Filters go to the head of the list, normal handlers
2042 	 * to the tail.
2043 	 */
2044 	if (handler->filter)
2045 		list_add_rcu(&handle->d_node, &dev->h_list);
2046 	else
2047 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2048 
2049 	mutex_unlock(&dev->mutex);
2050 
2051 	/*
2052 	 * Since we are supposed to be called from ->connect()
2053 	 * which is mutually exclusive with ->disconnect()
2054 	 * we can't be racing with input_unregister_handle()
2055 	 * and so separate lock is not needed here.
2056 	 */
2057 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2058 
2059 	if (handler->start)
2060 		handler->start(handle);
2061 
2062 	return 0;
2063 }
2064 EXPORT_SYMBOL(input_register_handle);
2065 
2066 /**
2067  * input_unregister_handle - unregister an input handle
2068  * @handle: handle to unregister
2069  *
2070  * This function removes input handle from device's
2071  * and handler's lists.
2072  *
2073  * This function is supposed to be called from handler's
2074  * disconnect() method.
2075  */
2076 void input_unregister_handle(struct input_handle *handle)
2077 {
2078 	struct input_dev *dev = handle->dev;
2079 
2080 	list_del_rcu(&handle->h_node);
2081 
2082 	/*
2083 	 * Take dev->mutex to prevent race with input_release_device().
2084 	 */
2085 	mutex_lock(&dev->mutex);
2086 	list_del_rcu(&handle->d_node);
2087 	mutex_unlock(&dev->mutex);
2088 
2089 	synchronize_rcu();
2090 }
2091 EXPORT_SYMBOL(input_unregister_handle);
2092 
2093 static int input_open_file(struct inode *inode, struct file *file)
2094 {
2095 	struct input_handler *handler;
2096 	const struct file_operations *old_fops, *new_fops = NULL;
2097 	int err;
2098 
2099 	err = mutex_lock_interruptible(&input_mutex);
2100 	if (err)
2101 		return err;
2102 
2103 	/* No load-on-demand here? */
2104 	handler = input_table[iminor(inode) >> 5];
2105 	if (handler)
2106 		new_fops = fops_get(handler->fops);
2107 
2108 	mutex_unlock(&input_mutex);
2109 
2110 	/*
2111 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2112 	 * not "no device". Oh, well...
2113 	 */
2114 	if (!new_fops || !new_fops->open) {
2115 		fops_put(new_fops);
2116 		err = -ENODEV;
2117 		goto out;
2118 	}
2119 
2120 	old_fops = file->f_op;
2121 	file->f_op = new_fops;
2122 
2123 	err = new_fops->open(inode, file);
2124 	if (err) {
2125 		fops_put(file->f_op);
2126 		file->f_op = fops_get(old_fops);
2127 	}
2128 	fops_put(old_fops);
2129 out:
2130 	return err;
2131 }
2132 
2133 static const struct file_operations input_fops = {
2134 	.owner = THIS_MODULE,
2135 	.open = input_open_file,
2136 	.llseek = noop_llseek,
2137 };
2138 
2139 static int __init input_init(void)
2140 {
2141 	int err;
2142 
2143 	err = class_register(&input_class);
2144 	if (err) {
2145 		pr_err("unable to register input_dev class\n");
2146 		return err;
2147 	}
2148 
2149 	err = input_proc_init();
2150 	if (err)
2151 		goto fail1;
2152 
2153 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2154 	if (err) {
2155 		pr_err("unable to register char major %d", INPUT_MAJOR);
2156 		goto fail2;
2157 	}
2158 
2159 	return 0;
2160 
2161  fail2:	input_proc_exit();
2162  fail1:	class_unregister(&input_class);
2163 	return err;
2164 }
2165 
2166 static void __exit input_exit(void)
2167 {
2168 	input_proc_exit();
2169 	unregister_chrdev(INPUT_MAJOR, "input");
2170 	class_unregister(&input_class);
2171 }
2172 
2173 subsys_initcall(input_init);
2174 module_exit(input_exit);
2175