1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/input/mt.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/random.h> 21 #include <linux/major.h> 22 #include <linux/proc_fs.h> 23 #include <linux/sched.h> 24 #include <linux/seq_file.h> 25 #include <linux/poll.h> 26 #include <linux/device.h> 27 #include <linux/mutex.h> 28 #include <linux/rcupdate.h> 29 #include "input-compat.h" 30 31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 32 MODULE_DESCRIPTION("Input core"); 33 MODULE_LICENSE("GPL"); 34 35 #define INPUT_DEVICES 256 36 37 static LIST_HEAD(input_dev_list); 38 static LIST_HEAD(input_handler_list); 39 40 /* 41 * input_mutex protects access to both input_dev_list and input_handler_list. 42 * This also causes input_[un]register_device and input_[un]register_handler 43 * be mutually exclusive which simplifies locking in drivers implementing 44 * input handlers. 45 */ 46 static DEFINE_MUTEX(input_mutex); 47 48 static struct input_handler *input_table[8]; 49 50 static inline int is_event_supported(unsigned int code, 51 unsigned long *bm, unsigned int max) 52 { 53 return code <= max && test_bit(code, bm); 54 } 55 56 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 57 { 58 if (fuzz) { 59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 60 return old_val; 61 62 if (value > old_val - fuzz && value < old_val + fuzz) 63 return (old_val * 3 + value) / 4; 64 65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 66 return (old_val + value) / 2; 67 } 68 69 return value; 70 } 71 72 /* 73 * Pass event first through all filters and then, if event has not been 74 * filtered out, through all open handles. This function is called with 75 * dev->event_lock held and interrupts disabled. 76 */ 77 static void input_pass_event(struct input_dev *dev, 78 unsigned int type, unsigned int code, int value) 79 { 80 struct input_handler *handler; 81 struct input_handle *handle; 82 83 rcu_read_lock(); 84 85 handle = rcu_dereference(dev->grab); 86 if (handle) 87 handle->handler->event(handle, type, code, value); 88 else { 89 bool filtered = false; 90 91 list_for_each_entry_rcu(handle, &dev->h_list, d_node) { 92 if (!handle->open) 93 continue; 94 95 handler = handle->handler; 96 if (!handler->filter) { 97 if (filtered) 98 break; 99 100 handler->event(handle, type, code, value); 101 102 } else if (handler->filter(handle, type, code, value)) 103 filtered = true; 104 } 105 } 106 107 rcu_read_unlock(); 108 } 109 110 /* 111 * Generate software autorepeat event. Note that we take 112 * dev->event_lock here to avoid racing with input_event 113 * which may cause keys get "stuck". 114 */ 115 static void input_repeat_key(unsigned long data) 116 { 117 struct input_dev *dev = (void *) data; 118 unsigned long flags; 119 120 spin_lock_irqsave(&dev->event_lock, flags); 121 122 if (test_bit(dev->repeat_key, dev->key) && 123 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 124 125 input_pass_event(dev, EV_KEY, dev->repeat_key, 2); 126 127 if (dev->sync) { 128 /* 129 * Only send SYN_REPORT if we are not in a middle 130 * of driver parsing a new hardware packet. 131 * Otherwise assume that the driver will send 132 * SYN_REPORT once it's done. 133 */ 134 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 135 } 136 137 if (dev->rep[REP_PERIOD]) 138 mod_timer(&dev->timer, jiffies + 139 msecs_to_jiffies(dev->rep[REP_PERIOD])); 140 } 141 142 spin_unlock_irqrestore(&dev->event_lock, flags); 143 } 144 145 static void input_start_autorepeat(struct input_dev *dev, int code) 146 { 147 if (test_bit(EV_REP, dev->evbit) && 148 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 149 dev->timer.data) { 150 dev->repeat_key = code; 151 mod_timer(&dev->timer, 152 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 153 } 154 } 155 156 static void input_stop_autorepeat(struct input_dev *dev) 157 { 158 del_timer(&dev->timer); 159 } 160 161 #define INPUT_IGNORE_EVENT 0 162 #define INPUT_PASS_TO_HANDLERS 1 163 #define INPUT_PASS_TO_DEVICE 2 164 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 165 166 static int input_handle_abs_event(struct input_dev *dev, 167 unsigned int code, int *pval) 168 { 169 bool is_mt_event; 170 int *pold; 171 172 if (code == ABS_MT_SLOT) { 173 /* 174 * "Stage" the event; we'll flush it later, when we 175 * get actual touch data. 176 */ 177 if (*pval >= 0 && *pval < dev->mtsize) 178 dev->slot = *pval; 179 180 return INPUT_IGNORE_EVENT; 181 } 182 183 is_mt_event = input_is_mt_value(code); 184 185 if (!is_mt_event) { 186 pold = &dev->absinfo[code].value; 187 } else if (dev->mt) { 188 struct input_mt_slot *mtslot = &dev->mt[dev->slot]; 189 pold = &mtslot->abs[code - ABS_MT_FIRST]; 190 } else { 191 /* 192 * Bypass filtering for multi-touch events when 193 * not employing slots. 194 */ 195 pold = NULL; 196 } 197 198 if (pold) { 199 *pval = input_defuzz_abs_event(*pval, *pold, 200 dev->absinfo[code].fuzz); 201 if (*pold == *pval) 202 return INPUT_IGNORE_EVENT; 203 204 *pold = *pval; 205 } 206 207 /* Flush pending "slot" event */ 208 if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 209 input_abs_set_val(dev, ABS_MT_SLOT, dev->slot); 210 input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot); 211 } 212 213 return INPUT_PASS_TO_HANDLERS; 214 } 215 216 static void input_handle_event(struct input_dev *dev, 217 unsigned int type, unsigned int code, int value) 218 { 219 int disposition = INPUT_IGNORE_EVENT; 220 221 switch (type) { 222 223 case EV_SYN: 224 switch (code) { 225 case SYN_CONFIG: 226 disposition = INPUT_PASS_TO_ALL; 227 break; 228 229 case SYN_REPORT: 230 if (!dev->sync) { 231 dev->sync = true; 232 disposition = INPUT_PASS_TO_HANDLERS; 233 } 234 break; 235 case SYN_MT_REPORT: 236 dev->sync = false; 237 disposition = INPUT_PASS_TO_HANDLERS; 238 break; 239 } 240 break; 241 242 case EV_KEY: 243 if (is_event_supported(code, dev->keybit, KEY_MAX) && 244 !!test_bit(code, dev->key) != value) { 245 246 if (value != 2) { 247 __change_bit(code, dev->key); 248 if (value) 249 input_start_autorepeat(dev, code); 250 else 251 input_stop_autorepeat(dev); 252 } 253 254 disposition = INPUT_PASS_TO_HANDLERS; 255 } 256 break; 257 258 case EV_SW: 259 if (is_event_supported(code, dev->swbit, SW_MAX) && 260 !!test_bit(code, dev->sw) != value) { 261 262 __change_bit(code, dev->sw); 263 disposition = INPUT_PASS_TO_HANDLERS; 264 } 265 break; 266 267 case EV_ABS: 268 if (is_event_supported(code, dev->absbit, ABS_MAX)) 269 disposition = input_handle_abs_event(dev, code, &value); 270 271 break; 272 273 case EV_REL: 274 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 275 disposition = INPUT_PASS_TO_HANDLERS; 276 277 break; 278 279 case EV_MSC: 280 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 281 disposition = INPUT_PASS_TO_ALL; 282 283 break; 284 285 case EV_LED: 286 if (is_event_supported(code, dev->ledbit, LED_MAX) && 287 !!test_bit(code, dev->led) != value) { 288 289 __change_bit(code, dev->led); 290 disposition = INPUT_PASS_TO_ALL; 291 } 292 break; 293 294 case EV_SND: 295 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 296 297 if (!!test_bit(code, dev->snd) != !!value) 298 __change_bit(code, dev->snd); 299 disposition = INPUT_PASS_TO_ALL; 300 } 301 break; 302 303 case EV_REP: 304 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 305 dev->rep[code] = value; 306 disposition = INPUT_PASS_TO_ALL; 307 } 308 break; 309 310 case EV_FF: 311 if (value >= 0) 312 disposition = INPUT_PASS_TO_ALL; 313 break; 314 315 case EV_PWR: 316 disposition = INPUT_PASS_TO_ALL; 317 break; 318 } 319 320 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 321 dev->sync = false; 322 323 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 324 dev->event(dev, type, code, value); 325 326 if (disposition & INPUT_PASS_TO_HANDLERS) 327 input_pass_event(dev, type, code, value); 328 } 329 330 /** 331 * input_event() - report new input event 332 * @dev: device that generated the event 333 * @type: type of the event 334 * @code: event code 335 * @value: value of the event 336 * 337 * This function should be used by drivers implementing various input 338 * devices to report input events. See also input_inject_event(). 339 * 340 * NOTE: input_event() may be safely used right after input device was 341 * allocated with input_allocate_device(), even before it is registered 342 * with input_register_device(), but the event will not reach any of the 343 * input handlers. Such early invocation of input_event() may be used 344 * to 'seed' initial state of a switch or initial position of absolute 345 * axis, etc. 346 */ 347 void input_event(struct input_dev *dev, 348 unsigned int type, unsigned int code, int value) 349 { 350 unsigned long flags; 351 352 if (is_event_supported(type, dev->evbit, EV_MAX)) { 353 354 spin_lock_irqsave(&dev->event_lock, flags); 355 add_input_randomness(type, code, value); 356 input_handle_event(dev, type, code, value); 357 spin_unlock_irqrestore(&dev->event_lock, flags); 358 } 359 } 360 EXPORT_SYMBOL(input_event); 361 362 /** 363 * input_inject_event() - send input event from input handler 364 * @handle: input handle to send event through 365 * @type: type of the event 366 * @code: event code 367 * @value: value of the event 368 * 369 * Similar to input_event() but will ignore event if device is 370 * "grabbed" and handle injecting event is not the one that owns 371 * the device. 372 */ 373 void input_inject_event(struct input_handle *handle, 374 unsigned int type, unsigned int code, int value) 375 { 376 struct input_dev *dev = handle->dev; 377 struct input_handle *grab; 378 unsigned long flags; 379 380 if (is_event_supported(type, dev->evbit, EV_MAX)) { 381 spin_lock_irqsave(&dev->event_lock, flags); 382 383 rcu_read_lock(); 384 grab = rcu_dereference(dev->grab); 385 if (!grab || grab == handle) 386 input_handle_event(dev, type, code, value); 387 rcu_read_unlock(); 388 389 spin_unlock_irqrestore(&dev->event_lock, flags); 390 } 391 } 392 EXPORT_SYMBOL(input_inject_event); 393 394 /** 395 * input_alloc_absinfo - allocates array of input_absinfo structs 396 * @dev: the input device emitting absolute events 397 * 398 * If the absinfo struct the caller asked for is already allocated, this 399 * functions will not do anything. 400 */ 401 void input_alloc_absinfo(struct input_dev *dev) 402 { 403 if (!dev->absinfo) 404 dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo), 405 GFP_KERNEL); 406 407 WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__); 408 } 409 EXPORT_SYMBOL(input_alloc_absinfo); 410 411 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 412 int min, int max, int fuzz, int flat) 413 { 414 struct input_absinfo *absinfo; 415 416 input_alloc_absinfo(dev); 417 if (!dev->absinfo) 418 return; 419 420 absinfo = &dev->absinfo[axis]; 421 absinfo->minimum = min; 422 absinfo->maximum = max; 423 absinfo->fuzz = fuzz; 424 absinfo->flat = flat; 425 426 dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis); 427 } 428 EXPORT_SYMBOL(input_set_abs_params); 429 430 431 /** 432 * input_grab_device - grabs device for exclusive use 433 * @handle: input handle that wants to own the device 434 * 435 * When a device is grabbed by an input handle all events generated by 436 * the device are delivered only to this handle. Also events injected 437 * by other input handles are ignored while device is grabbed. 438 */ 439 int input_grab_device(struct input_handle *handle) 440 { 441 struct input_dev *dev = handle->dev; 442 int retval; 443 444 retval = mutex_lock_interruptible(&dev->mutex); 445 if (retval) 446 return retval; 447 448 if (dev->grab) { 449 retval = -EBUSY; 450 goto out; 451 } 452 453 rcu_assign_pointer(dev->grab, handle); 454 455 out: 456 mutex_unlock(&dev->mutex); 457 return retval; 458 } 459 EXPORT_SYMBOL(input_grab_device); 460 461 static void __input_release_device(struct input_handle *handle) 462 { 463 struct input_dev *dev = handle->dev; 464 465 if (dev->grab == handle) { 466 rcu_assign_pointer(dev->grab, NULL); 467 /* Make sure input_pass_event() notices that grab is gone */ 468 synchronize_rcu(); 469 470 list_for_each_entry(handle, &dev->h_list, d_node) 471 if (handle->open && handle->handler->start) 472 handle->handler->start(handle); 473 } 474 } 475 476 /** 477 * input_release_device - release previously grabbed device 478 * @handle: input handle that owns the device 479 * 480 * Releases previously grabbed device so that other input handles can 481 * start receiving input events. Upon release all handlers attached 482 * to the device have their start() method called so they have a change 483 * to synchronize device state with the rest of the system. 484 */ 485 void input_release_device(struct input_handle *handle) 486 { 487 struct input_dev *dev = handle->dev; 488 489 mutex_lock(&dev->mutex); 490 __input_release_device(handle); 491 mutex_unlock(&dev->mutex); 492 } 493 EXPORT_SYMBOL(input_release_device); 494 495 /** 496 * input_open_device - open input device 497 * @handle: handle through which device is being accessed 498 * 499 * This function should be called by input handlers when they 500 * want to start receive events from given input device. 501 */ 502 int input_open_device(struct input_handle *handle) 503 { 504 struct input_dev *dev = handle->dev; 505 int retval; 506 507 retval = mutex_lock_interruptible(&dev->mutex); 508 if (retval) 509 return retval; 510 511 if (dev->going_away) { 512 retval = -ENODEV; 513 goto out; 514 } 515 516 handle->open++; 517 518 if (!dev->users++ && dev->open) 519 retval = dev->open(dev); 520 521 if (retval) { 522 dev->users--; 523 if (!--handle->open) { 524 /* 525 * Make sure we are not delivering any more events 526 * through this handle 527 */ 528 synchronize_rcu(); 529 } 530 } 531 532 out: 533 mutex_unlock(&dev->mutex); 534 return retval; 535 } 536 EXPORT_SYMBOL(input_open_device); 537 538 int input_flush_device(struct input_handle *handle, struct file *file) 539 { 540 struct input_dev *dev = handle->dev; 541 int retval; 542 543 retval = mutex_lock_interruptible(&dev->mutex); 544 if (retval) 545 return retval; 546 547 if (dev->flush) 548 retval = dev->flush(dev, file); 549 550 mutex_unlock(&dev->mutex); 551 return retval; 552 } 553 EXPORT_SYMBOL(input_flush_device); 554 555 /** 556 * input_close_device - close input device 557 * @handle: handle through which device is being accessed 558 * 559 * This function should be called by input handlers when they 560 * want to stop receive events from given input device. 561 */ 562 void input_close_device(struct input_handle *handle) 563 { 564 struct input_dev *dev = handle->dev; 565 566 mutex_lock(&dev->mutex); 567 568 __input_release_device(handle); 569 570 if (!--dev->users && dev->close) 571 dev->close(dev); 572 573 if (!--handle->open) { 574 /* 575 * synchronize_rcu() makes sure that input_pass_event() 576 * completed and that no more input events are delivered 577 * through this handle 578 */ 579 synchronize_rcu(); 580 } 581 582 mutex_unlock(&dev->mutex); 583 } 584 EXPORT_SYMBOL(input_close_device); 585 586 /* 587 * Simulate keyup events for all keys that are marked as pressed. 588 * The function must be called with dev->event_lock held. 589 */ 590 static void input_dev_release_keys(struct input_dev *dev) 591 { 592 int code; 593 594 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 595 for (code = 0; code <= KEY_MAX; code++) { 596 if (is_event_supported(code, dev->keybit, KEY_MAX) && 597 __test_and_clear_bit(code, dev->key)) { 598 input_pass_event(dev, EV_KEY, code, 0); 599 } 600 } 601 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 602 } 603 } 604 605 /* 606 * Prepare device for unregistering 607 */ 608 static void input_disconnect_device(struct input_dev *dev) 609 { 610 struct input_handle *handle; 611 612 /* 613 * Mark device as going away. Note that we take dev->mutex here 614 * not to protect access to dev->going_away but rather to ensure 615 * that there are no threads in the middle of input_open_device() 616 */ 617 mutex_lock(&dev->mutex); 618 dev->going_away = true; 619 mutex_unlock(&dev->mutex); 620 621 spin_lock_irq(&dev->event_lock); 622 623 /* 624 * Simulate keyup events for all pressed keys so that handlers 625 * are not left with "stuck" keys. The driver may continue 626 * generate events even after we done here but they will not 627 * reach any handlers. 628 */ 629 input_dev_release_keys(dev); 630 631 list_for_each_entry(handle, &dev->h_list, d_node) 632 handle->open = 0; 633 634 spin_unlock_irq(&dev->event_lock); 635 } 636 637 /** 638 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 639 * @ke: keymap entry containing scancode to be converted. 640 * @scancode: pointer to the location where converted scancode should 641 * be stored. 642 * 643 * This function is used to convert scancode stored in &struct keymap_entry 644 * into scalar form understood by legacy keymap handling methods. These 645 * methods expect scancodes to be represented as 'unsigned int'. 646 */ 647 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 648 unsigned int *scancode) 649 { 650 switch (ke->len) { 651 case 1: 652 *scancode = *((u8 *)ke->scancode); 653 break; 654 655 case 2: 656 *scancode = *((u16 *)ke->scancode); 657 break; 658 659 case 4: 660 *scancode = *((u32 *)ke->scancode); 661 break; 662 663 default: 664 return -EINVAL; 665 } 666 667 return 0; 668 } 669 EXPORT_SYMBOL(input_scancode_to_scalar); 670 671 /* 672 * Those routines handle the default case where no [gs]etkeycode() is 673 * defined. In this case, an array indexed by the scancode is used. 674 */ 675 676 static unsigned int input_fetch_keycode(struct input_dev *dev, 677 unsigned int index) 678 { 679 switch (dev->keycodesize) { 680 case 1: 681 return ((u8 *)dev->keycode)[index]; 682 683 case 2: 684 return ((u16 *)dev->keycode)[index]; 685 686 default: 687 return ((u32 *)dev->keycode)[index]; 688 } 689 } 690 691 static int input_default_getkeycode(struct input_dev *dev, 692 struct input_keymap_entry *ke) 693 { 694 unsigned int index; 695 int error; 696 697 if (!dev->keycodesize) 698 return -EINVAL; 699 700 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 701 index = ke->index; 702 else { 703 error = input_scancode_to_scalar(ke, &index); 704 if (error) 705 return error; 706 } 707 708 if (index >= dev->keycodemax) 709 return -EINVAL; 710 711 ke->keycode = input_fetch_keycode(dev, index); 712 ke->index = index; 713 ke->len = sizeof(index); 714 memcpy(ke->scancode, &index, sizeof(index)); 715 716 return 0; 717 } 718 719 static int input_default_setkeycode(struct input_dev *dev, 720 const struct input_keymap_entry *ke, 721 unsigned int *old_keycode) 722 { 723 unsigned int index; 724 int error; 725 int i; 726 727 if (!dev->keycodesize) 728 return -EINVAL; 729 730 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 731 index = ke->index; 732 } else { 733 error = input_scancode_to_scalar(ke, &index); 734 if (error) 735 return error; 736 } 737 738 if (index >= dev->keycodemax) 739 return -EINVAL; 740 741 if (dev->keycodesize < sizeof(ke->keycode) && 742 (ke->keycode >> (dev->keycodesize * 8))) 743 return -EINVAL; 744 745 switch (dev->keycodesize) { 746 case 1: { 747 u8 *k = (u8 *)dev->keycode; 748 *old_keycode = k[index]; 749 k[index] = ke->keycode; 750 break; 751 } 752 case 2: { 753 u16 *k = (u16 *)dev->keycode; 754 *old_keycode = k[index]; 755 k[index] = ke->keycode; 756 break; 757 } 758 default: { 759 u32 *k = (u32 *)dev->keycode; 760 *old_keycode = k[index]; 761 k[index] = ke->keycode; 762 break; 763 } 764 } 765 766 __clear_bit(*old_keycode, dev->keybit); 767 __set_bit(ke->keycode, dev->keybit); 768 769 for (i = 0; i < dev->keycodemax; i++) { 770 if (input_fetch_keycode(dev, i) == *old_keycode) { 771 __set_bit(*old_keycode, dev->keybit); 772 break; /* Setting the bit twice is useless, so break */ 773 } 774 } 775 776 return 0; 777 } 778 779 /** 780 * input_get_keycode - retrieve keycode currently mapped to a given scancode 781 * @dev: input device which keymap is being queried 782 * @ke: keymap entry 783 * 784 * This function should be called by anyone interested in retrieving current 785 * keymap. Presently evdev handlers use it. 786 */ 787 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 788 { 789 unsigned long flags; 790 int retval; 791 792 spin_lock_irqsave(&dev->event_lock, flags); 793 retval = dev->getkeycode(dev, ke); 794 spin_unlock_irqrestore(&dev->event_lock, flags); 795 796 return retval; 797 } 798 EXPORT_SYMBOL(input_get_keycode); 799 800 /** 801 * input_set_keycode - attribute a keycode to a given scancode 802 * @dev: input device which keymap is being updated 803 * @ke: new keymap entry 804 * 805 * This function should be called by anyone needing to update current 806 * keymap. Presently keyboard and evdev handlers use it. 807 */ 808 int input_set_keycode(struct input_dev *dev, 809 const struct input_keymap_entry *ke) 810 { 811 unsigned long flags; 812 unsigned int old_keycode; 813 int retval; 814 815 if (ke->keycode > KEY_MAX) 816 return -EINVAL; 817 818 spin_lock_irqsave(&dev->event_lock, flags); 819 820 retval = dev->setkeycode(dev, ke, &old_keycode); 821 if (retval) 822 goto out; 823 824 /* Make sure KEY_RESERVED did not get enabled. */ 825 __clear_bit(KEY_RESERVED, dev->keybit); 826 827 /* 828 * Simulate keyup event if keycode is not present 829 * in the keymap anymore 830 */ 831 if (test_bit(EV_KEY, dev->evbit) && 832 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 833 __test_and_clear_bit(old_keycode, dev->key)) { 834 835 input_pass_event(dev, EV_KEY, old_keycode, 0); 836 if (dev->sync) 837 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 838 } 839 840 out: 841 spin_unlock_irqrestore(&dev->event_lock, flags); 842 843 return retval; 844 } 845 EXPORT_SYMBOL(input_set_keycode); 846 847 #define MATCH_BIT(bit, max) \ 848 for (i = 0; i < BITS_TO_LONGS(max); i++) \ 849 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ 850 break; \ 851 if (i != BITS_TO_LONGS(max)) \ 852 continue; 853 854 static const struct input_device_id *input_match_device(struct input_handler *handler, 855 struct input_dev *dev) 856 { 857 const struct input_device_id *id; 858 int i; 859 860 for (id = handler->id_table; id->flags || id->driver_info; id++) { 861 862 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 863 if (id->bustype != dev->id.bustype) 864 continue; 865 866 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 867 if (id->vendor != dev->id.vendor) 868 continue; 869 870 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 871 if (id->product != dev->id.product) 872 continue; 873 874 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 875 if (id->version != dev->id.version) 876 continue; 877 878 MATCH_BIT(evbit, EV_MAX); 879 MATCH_BIT(keybit, KEY_MAX); 880 MATCH_BIT(relbit, REL_MAX); 881 MATCH_BIT(absbit, ABS_MAX); 882 MATCH_BIT(mscbit, MSC_MAX); 883 MATCH_BIT(ledbit, LED_MAX); 884 MATCH_BIT(sndbit, SND_MAX); 885 MATCH_BIT(ffbit, FF_MAX); 886 MATCH_BIT(swbit, SW_MAX); 887 888 if (!handler->match || handler->match(handler, dev)) 889 return id; 890 } 891 892 return NULL; 893 } 894 895 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 896 { 897 const struct input_device_id *id; 898 int error; 899 900 id = input_match_device(handler, dev); 901 if (!id) 902 return -ENODEV; 903 904 error = handler->connect(handler, dev, id); 905 if (error && error != -ENODEV) 906 pr_err("failed to attach handler %s to device %s, error: %d\n", 907 handler->name, kobject_name(&dev->dev.kobj), error); 908 909 return error; 910 } 911 912 #ifdef CONFIG_COMPAT 913 914 static int input_bits_to_string(char *buf, int buf_size, 915 unsigned long bits, bool skip_empty) 916 { 917 int len = 0; 918 919 if (INPUT_COMPAT_TEST) { 920 u32 dword = bits >> 32; 921 if (dword || !skip_empty) 922 len += snprintf(buf, buf_size, "%x ", dword); 923 924 dword = bits & 0xffffffffUL; 925 if (dword || !skip_empty || len) 926 len += snprintf(buf + len, max(buf_size - len, 0), 927 "%x", dword); 928 } else { 929 if (bits || !skip_empty) 930 len += snprintf(buf, buf_size, "%lx", bits); 931 } 932 933 return len; 934 } 935 936 #else /* !CONFIG_COMPAT */ 937 938 static int input_bits_to_string(char *buf, int buf_size, 939 unsigned long bits, bool skip_empty) 940 { 941 return bits || !skip_empty ? 942 snprintf(buf, buf_size, "%lx", bits) : 0; 943 } 944 945 #endif 946 947 #ifdef CONFIG_PROC_FS 948 949 static struct proc_dir_entry *proc_bus_input_dir; 950 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 951 static int input_devices_state; 952 953 static inline void input_wakeup_procfs_readers(void) 954 { 955 input_devices_state++; 956 wake_up(&input_devices_poll_wait); 957 } 958 959 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 960 { 961 poll_wait(file, &input_devices_poll_wait, wait); 962 if (file->f_version != input_devices_state) { 963 file->f_version = input_devices_state; 964 return POLLIN | POLLRDNORM; 965 } 966 967 return 0; 968 } 969 970 union input_seq_state { 971 struct { 972 unsigned short pos; 973 bool mutex_acquired; 974 }; 975 void *p; 976 }; 977 978 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 979 { 980 union input_seq_state *state = (union input_seq_state *)&seq->private; 981 int error; 982 983 /* We need to fit into seq->private pointer */ 984 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 985 986 error = mutex_lock_interruptible(&input_mutex); 987 if (error) { 988 state->mutex_acquired = false; 989 return ERR_PTR(error); 990 } 991 992 state->mutex_acquired = true; 993 994 return seq_list_start(&input_dev_list, *pos); 995 } 996 997 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 998 { 999 return seq_list_next(v, &input_dev_list, pos); 1000 } 1001 1002 static void input_seq_stop(struct seq_file *seq, void *v) 1003 { 1004 union input_seq_state *state = (union input_seq_state *)&seq->private; 1005 1006 if (state->mutex_acquired) 1007 mutex_unlock(&input_mutex); 1008 } 1009 1010 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1011 unsigned long *bitmap, int max) 1012 { 1013 int i; 1014 bool skip_empty = true; 1015 char buf[18]; 1016 1017 seq_printf(seq, "B: %s=", name); 1018 1019 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1020 if (input_bits_to_string(buf, sizeof(buf), 1021 bitmap[i], skip_empty)) { 1022 skip_empty = false; 1023 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1024 } 1025 } 1026 1027 /* 1028 * If no output was produced print a single 0. 1029 */ 1030 if (skip_empty) 1031 seq_puts(seq, "0"); 1032 1033 seq_putc(seq, '\n'); 1034 } 1035 1036 static int input_devices_seq_show(struct seq_file *seq, void *v) 1037 { 1038 struct input_dev *dev = container_of(v, struct input_dev, node); 1039 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1040 struct input_handle *handle; 1041 1042 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1043 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1044 1045 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1046 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1047 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1048 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1049 seq_printf(seq, "H: Handlers="); 1050 1051 list_for_each_entry(handle, &dev->h_list, d_node) 1052 seq_printf(seq, "%s ", handle->name); 1053 seq_putc(seq, '\n'); 1054 1055 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1056 1057 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1058 if (test_bit(EV_KEY, dev->evbit)) 1059 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1060 if (test_bit(EV_REL, dev->evbit)) 1061 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1062 if (test_bit(EV_ABS, dev->evbit)) 1063 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1064 if (test_bit(EV_MSC, dev->evbit)) 1065 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1066 if (test_bit(EV_LED, dev->evbit)) 1067 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1068 if (test_bit(EV_SND, dev->evbit)) 1069 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1070 if (test_bit(EV_FF, dev->evbit)) 1071 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1072 if (test_bit(EV_SW, dev->evbit)) 1073 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1074 1075 seq_putc(seq, '\n'); 1076 1077 kfree(path); 1078 return 0; 1079 } 1080 1081 static const struct seq_operations input_devices_seq_ops = { 1082 .start = input_devices_seq_start, 1083 .next = input_devices_seq_next, 1084 .stop = input_seq_stop, 1085 .show = input_devices_seq_show, 1086 }; 1087 1088 static int input_proc_devices_open(struct inode *inode, struct file *file) 1089 { 1090 return seq_open(file, &input_devices_seq_ops); 1091 } 1092 1093 static const struct file_operations input_devices_fileops = { 1094 .owner = THIS_MODULE, 1095 .open = input_proc_devices_open, 1096 .poll = input_proc_devices_poll, 1097 .read = seq_read, 1098 .llseek = seq_lseek, 1099 .release = seq_release, 1100 }; 1101 1102 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1103 { 1104 union input_seq_state *state = (union input_seq_state *)&seq->private; 1105 int error; 1106 1107 /* We need to fit into seq->private pointer */ 1108 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1109 1110 error = mutex_lock_interruptible(&input_mutex); 1111 if (error) { 1112 state->mutex_acquired = false; 1113 return ERR_PTR(error); 1114 } 1115 1116 state->mutex_acquired = true; 1117 state->pos = *pos; 1118 1119 return seq_list_start(&input_handler_list, *pos); 1120 } 1121 1122 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1123 { 1124 union input_seq_state *state = (union input_seq_state *)&seq->private; 1125 1126 state->pos = *pos + 1; 1127 return seq_list_next(v, &input_handler_list, pos); 1128 } 1129 1130 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1131 { 1132 struct input_handler *handler = container_of(v, struct input_handler, node); 1133 union input_seq_state *state = (union input_seq_state *)&seq->private; 1134 1135 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1136 if (handler->filter) 1137 seq_puts(seq, " (filter)"); 1138 if (handler->fops) 1139 seq_printf(seq, " Minor=%d", handler->minor); 1140 seq_putc(seq, '\n'); 1141 1142 return 0; 1143 } 1144 1145 static const struct seq_operations input_handlers_seq_ops = { 1146 .start = input_handlers_seq_start, 1147 .next = input_handlers_seq_next, 1148 .stop = input_seq_stop, 1149 .show = input_handlers_seq_show, 1150 }; 1151 1152 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1153 { 1154 return seq_open(file, &input_handlers_seq_ops); 1155 } 1156 1157 static const struct file_operations input_handlers_fileops = { 1158 .owner = THIS_MODULE, 1159 .open = input_proc_handlers_open, 1160 .read = seq_read, 1161 .llseek = seq_lseek, 1162 .release = seq_release, 1163 }; 1164 1165 static int __init input_proc_init(void) 1166 { 1167 struct proc_dir_entry *entry; 1168 1169 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1170 if (!proc_bus_input_dir) 1171 return -ENOMEM; 1172 1173 entry = proc_create("devices", 0, proc_bus_input_dir, 1174 &input_devices_fileops); 1175 if (!entry) 1176 goto fail1; 1177 1178 entry = proc_create("handlers", 0, proc_bus_input_dir, 1179 &input_handlers_fileops); 1180 if (!entry) 1181 goto fail2; 1182 1183 return 0; 1184 1185 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1186 fail1: remove_proc_entry("bus/input", NULL); 1187 return -ENOMEM; 1188 } 1189 1190 static void input_proc_exit(void) 1191 { 1192 remove_proc_entry("devices", proc_bus_input_dir); 1193 remove_proc_entry("handlers", proc_bus_input_dir); 1194 remove_proc_entry("bus/input", NULL); 1195 } 1196 1197 #else /* !CONFIG_PROC_FS */ 1198 static inline void input_wakeup_procfs_readers(void) { } 1199 static inline int input_proc_init(void) { return 0; } 1200 static inline void input_proc_exit(void) { } 1201 #endif 1202 1203 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1204 static ssize_t input_dev_show_##name(struct device *dev, \ 1205 struct device_attribute *attr, \ 1206 char *buf) \ 1207 { \ 1208 struct input_dev *input_dev = to_input_dev(dev); \ 1209 \ 1210 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1211 input_dev->name ? input_dev->name : ""); \ 1212 } \ 1213 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1214 1215 INPUT_DEV_STRING_ATTR_SHOW(name); 1216 INPUT_DEV_STRING_ATTR_SHOW(phys); 1217 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1218 1219 static int input_print_modalias_bits(char *buf, int size, 1220 char name, unsigned long *bm, 1221 unsigned int min_bit, unsigned int max_bit) 1222 { 1223 int len = 0, i; 1224 1225 len += snprintf(buf, max(size, 0), "%c", name); 1226 for (i = min_bit; i < max_bit; i++) 1227 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1228 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1229 return len; 1230 } 1231 1232 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1233 int add_cr) 1234 { 1235 int len; 1236 1237 len = snprintf(buf, max(size, 0), 1238 "input:b%04Xv%04Xp%04Xe%04X-", 1239 id->id.bustype, id->id.vendor, 1240 id->id.product, id->id.version); 1241 1242 len += input_print_modalias_bits(buf + len, size - len, 1243 'e', id->evbit, 0, EV_MAX); 1244 len += input_print_modalias_bits(buf + len, size - len, 1245 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1246 len += input_print_modalias_bits(buf + len, size - len, 1247 'r', id->relbit, 0, REL_MAX); 1248 len += input_print_modalias_bits(buf + len, size - len, 1249 'a', id->absbit, 0, ABS_MAX); 1250 len += input_print_modalias_bits(buf + len, size - len, 1251 'm', id->mscbit, 0, MSC_MAX); 1252 len += input_print_modalias_bits(buf + len, size - len, 1253 'l', id->ledbit, 0, LED_MAX); 1254 len += input_print_modalias_bits(buf + len, size - len, 1255 's', id->sndbit, 0, SND_MAX); 1256 len += input_print_modalias_bits(buf + len, size - len, 1257 'f', id->ffbit, 0, FF_MAX); 1258 len += input_print_modalias_bits(buf + len, size - len, 1259 'w', id->swbit, 0, SW_MAX); 1260 1261 if (add_cr) 1262 len += snprintf(buf + len, max(size - len, 0), "\n"); 1263 1264 return len; 1265 } 1266 1267 static ssize_t input_dev_show_modalias(struct device *dev, 1268 struct device_attribute *attr, 1269 char *buf) 1270 { 1271 struct input_dev *id = to_input_dev(dev); 1272 ssize_t len; 1273 1274 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1275 1276 return min_t(int, len, PAGE_SIZE); 1277 } 1278 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1279 1280 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1281 int max, int add_cr); 1282 1283 static ssize_t input_dev_show_properties(struct device *dev, 1284 struct device_attribute *attr, 1285 char *buf) 1286 { 1287 struct input_dev *input_dev = to_input_dev(dev); 1288 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1289 INPUT_PROP_MAX, true); 1290 return min_t(int, len, PAGE_SIZE); 1291 } 1292 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1293 1294 static struct attribute *input_dev_attrs[] = { 1295 &dev_attr_name.attr, 1296 &dev_attr_phys.attr, 1297 &dev_attr_uniq.attr, 1298 &dev_attr_modalias.attr, 1299 &dev_attr_properties.attr, 1300 NULL 1301 }; 1302 1303 static struct attribute_group input_dev_attr_group = { 1304 .attrs = input_dev_attrs, 1305 }; 1306 1307 #define INPUT_DEV_ID_ATTR(name) \ 1308 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1309 struct device_attribute *attr, \ 1310 char *buf) \ 1311 { \ 1312 struct input_dev *input_dev = to_input_dev(dev); \ 1313 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1314 } \ 1315 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1316 1317 INPUT_DEV_ID_ATTR(bustype); 1318 INPUT_DEV_ID_ATTR(vendor); 1319 INPUT_DEV_ID_ATTR(product); 1320 INPUT_DEV_ID_ATTR(version); 1321 1322 static struct attribute *input_dev_id_attrs[] = { 1323 &dev_attr_bustype.attr, 1324 &dev_attr_vendor.attr, 1325 &dev_attr_product.attr, 1326 &dev_attr_version.attr, 1327 NULL 1328 }; 1329 1330 static struct attribute_group input_dev_id_attr_group = { 1331 .name = "id", 1332 .attrs = input_dev_id_attrs, 1333 }; 1334 1335 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1336 int max, int add_cr) 1337 { 1338 int i; 1339 int len = 0; 1340 bool skip_empty = true; 1341 1342 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1343 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1344 bitmap[i], skip_empty); 1345 if (len) { 1346 skip_empty = false; 1347 if (i > 0) 1348 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1349 } 1350 } 1351 1352 /* 1353 * If no output was produced print a single 0. 1354 */ 1355 if (len == 0) 1356 len = snprintf(buf, buf_size, "%d", 0); 1357 1358 if (add_cr) 1359 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1360 1361 return len; 1362 } 1363 1364 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1365 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1366 struct device_attribute *attr, \ 1367 char *buf) \ 1368 { \ 1369 struct input_dev *input_dev = to_input_dev(dev); \ 1370 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1371 input_dev->bm##bit, ev##_MAX, \ 1372 true); \ 1373 return min_t(int, len, PAGE_SIZE); \ 1374 } \ 1375 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1376 1377 INPUT_DEV_CAP_ATTR(EV, ev); 1378 INPUT_DEV_CAP_ATTR(KEY, key); 1379 INPUT_DEV_CAP_ATTR(REL, rel); 1380 INPUT_DEV_CAP_ATTR(ABS, abs); 1381 INPUT_DEV_CAP_ATTR(MSC, msc); 1382 INPUT_DEV_CAP_ATTR(LED, led); 1383 INPUT_DEV_CAP_ATTR(SND, snd); 1384 INPUT_DEV_CAP_ATTR(FF, ff); 1385 INPUT_DEV_CAP_ATTR(SW, sw); 1386 1387 static struct attribute *input_dev_caps_attrs[] = { 1388 &dev_attr_ev.attr, 1389 &dev_attr_key.attr, 1390 &dev_attr_rel.attr, 1391 &dev_attr_abs.attr, 1392 &dev_attr_msc.attr, 1393 &dev_attr_led.attr, 1394 &dev_attr_snd.attr, 1395 &dev_attr_ff.attr, 1396 &dev_attr_sw.attr, 1397 NULL 1398 }; 1399 1400 static struct attribute_group input_dev_caps_attr_group = { 1401 .name = "capabilities", 1402 .attrs = input_dev_caps_attrs, 1403 }; 1404 1405 static const struct attribute_group *input_dev_attr_groups[] = { 1406 &input_dev_attr_group, 1407 &input_dev_id_attr_group, 1408 &input_dev_caps_attr_group, 1409 NULL 1410 }; 1411 1412 static void input_dev_release(struct device *device) 1413 { 1414 struct input_dev *dev = to_input_dev(device); 1415 1416 input_ff_destroy(dev); 1417 input_mt_destroy_slots(dev); 1418 kfree(dev->absinfo); 1419 kfree(dev); 1420 1421 module_put(THIS_MODULE); 1422 } 1423 1424 /* 1425 * Input uevent interface - loading event handlers based on 1426 * device bitfields. 1427 */ 1428 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1429 const char *name, unsigned long *bitmap, int max) 1430 { 1431 int len; 1432 1433 if (add_uevent_var(env, "%s", name)) 1434 return -ENOMEM; 1435 1436 len = input_print_bitmap(&env->buf[env->buflen - 1], 1437 sizeof(env->buf) - env->buflen, 1438 bitmap, max, false); 1439 if (len >= (sizeof(env->buf) - env->buflen)) 1440 return -ENOMEM; 1441 1442 env->buflen += len; 1443 return 0; 1444 } 1445 1446 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1447 struct input_dev *dev) 1448 { 1449 int len; 1450 1451 if (add_uevent_var(env, "MODALIAS=")) 1452 return -ENOMEM; 1453 1454 len = input_print_modalias(&env->buf[env->buflen - 1], 1455 sizeof(env->buf) - env->buflen, 1456 dev, 0); 1457 if (len >= (sizeof(env->buf) - env->buflen)) 1458 return -ENOMEM; 1459 1460 env->buflen += len; 1461 return 0; 1462 } 1463 1464 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1465 do { \ 1466 int err = add_uevent_var(env, fmt, val); \ 1467 if (err) \ 1468 return err; \ 1469 } while (0) 1470 1471 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1472 do { \ 1473 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1474 if (err) \ 1475 return err; \ 1476 } while (0) 1477 1478 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1479 do { \ 1480 int err = input_add_uevent_modalias_var(env, dev); \ 1481 if (err) \ 1482 return err; \ 1483 } while (0) 1484 1485 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1486 { 1487 struct input_dev *dev = to_input_dev(device); 1488 1489 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1490 dev->id.bustype, dev->id.vendor, 1491 dev->id.product, dev->id.version); 1492 if (dev->name) 1493 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1494 if (dev->phys) 1495 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1496 if (dev->uniq) 1497 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1498 1499 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1500 1501 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1502 if (test_bit(EV_KEY, dev->evbit)) 1503 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1504 if (test_bit(EV_REL, dev->evbit)) 1505 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1506 if (test_bit(EV_ABS, dev->evbit)) 1507 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1508 if (test_bit(EV_MSC, dev->evbit)) 1509 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1510 if (test_bit(EV_LED, dev->evbit)) 1511 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1512 if (test_bit(EV_SND, dev->evbit)) 1513 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1514 if (test_bit(EV_FF, dev->evbit)) 1515 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1516 if (test_bit(EV_SW, dev->evbit)) 1517 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1518 1519 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1520 1521 return 0; 1522 } 1523 1524 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1525 do { \ 1526 int i; \ 1527 bool active; \ 1528 \ 1529 if (!test_bit(EV_##type, dev->evbit)) \ 1530 break; \ 1531 \ 1532 for (i = 0; i < type##_MAX; i++) { \ 1533 if (!test_bit(i, dev->bits##bit)) \ 1534 continue; \ 1535 \ 1536 active = test_bit(i, dev->bits); \ 1537 if (!active && !on) \ 1538 continue; \ 1539 \ 1540 dev->event(dev, EV_##type, i, on ? active : 0); \ 1541 } \ 1542 } while (0) 1543 1544 static void input_dev_toggle(struct input_dev *dev, bool activate) 1545 { 1546 if (!dev->event) 1547 return; 1548 1549 INPUT_DO_TOGGLE(dev, LED, led, activate); 1550 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1551 1552 if (activate && test_bit(EV_REP, dev->evbit)) { 1553 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1554 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1555 } 1556 } 1557 1558 /** 1559 * input_reset_device() - reset/restore the state of input device 1560 * @dev: input device whose state needs to be reset 1561 * 1562 * This function tries to reset the state of an opened input device and 1563 * bring internal state and state if the hardware in sync with each other. 1564 * We mark all keys as released, restore LED state, repeat rate, etc. 1565 */ 1566 void input_reset_device(struct input_dev *dev) 1567 { 1568 mutex_lock(&dev->mutex); 1569 1570 if (dev->users) { 1571 input_dev_toggle(dev, true); 1572 1573 /* 1574 * Keys that have been pressed at suspend time are unlikely 1575 * to be still pressed when we resume. 1576 */ 1577 spin_lock_irq(&dev->event_lock); 1578 input_dev_release_keys(dev); 1579 spin_unlock_irq(&dev->event_lock); 1580 } 1581 1582 mutex_unlock(&dev->mutex); 1583 } 1584 EXPORT_SYMBOL(input_reset_device); 1585 1586 #ifdef CONFIG_PM 1587 static int input_dev_suspend(struct device *dev) 1588 { 1589 struct input_dev *input_dev = to_input_dev(dev); 1590 1591 mutex_lock(&input_dev->mutex); 1592 1593 if (input_dev->users) 1594 input_dev_toggle(input_dev, false); 1595 1596 mutex_unlock(&input_dev->mutex); 1597 1598 return 0; 1599 } 1600 1601 static int input_dev_resume(struct device *dev) 1602 { 1603 struct input_dev *input_dev = to_input_dev(dev); 1604 1605 input_reset_device(input_dev); 1606 1607 return 0; 1608 } 1609 1610 static const struct dev_pm_ops input_dev_pm_ops = { 1611 .suspend = input_dev_suspend, 1612 .resume = input_dev_resume, 1613 .poweroff = input_dev_suspend, 1614 .restore = input_dev_resume, 1615 }; 1616 #endif /* CONFIG_PM */ 1617 1618 static struct device_type input_dev_type = { 1619 .groups = input_dev_attr_groups, 1620 .release = input_dev_release, 1621 .uevent = input_dev_uevent, 1622 #ifdef CONFIG_PM 1623 .pm = &input_dev_pm_ops, 1624 #endif 1625 }; 1626 1627 static char *input_devnode(struct device *dev, umode_t *mode) 1628 { 1629 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1630 } 1631 1632 struct class input_class = { 1633 .name = "input", 1634 .devnode = input_devnode, 1635 }; 1636 EXPORT_SYMBOL_GPL(input_class); 1637 1638 /** 1639 * input_allocate_device - allocate memory for new input device 1640 * 1641 * Returns prepared struct input_dev or NULL. 1642 * 1643 * NOTE: Use input_free_device() to free devices that have not been 1644 * registered; input_unregister_device() should be used for already 1645 * registered devices. 1646 */ 1647 struct input_dev *input_allocate_device(void) 1648 { 1649 struct input_dev *dev; 1650 1651 dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL); 1652 if (dev) { 1653 dev->dev.type = &input_dev_type; 1654 dev->dev.class = &input_class; 1655 device_initialize(&dev->dev); 1656 mutex_init(&dev->mutex); 1657 spin_lock_init(&dev->event_lock); 1658 INIT_LIST_HEAD(&dev->h_list); 1659 INIT_LIST_HEAD(&dev->node); 1660 1661 __module_get(THIS_MODULE); 1662 } 1663 1664 return dev; 1665 } 1666 EXPORT_SYMBOL(input_allocate_device); 1667 1668 /** 1669 * input_free_device - free memory occupied by input_dev structure 1670 * @dev: input device to free 1671 * 1672 * This function should only be used if input_register_device() 1673 * was not called yet or if it failed. Once device was registered 1674 * use input_unregister_device() and memory will be freed once last 1675 * reference to the device is dropped. 1676 * 1677 * Device should be allocated by input_allocate_device(). 1678 * 1679 * NOTE: If there are references to the input device then memory 1680 * will not be freed until last reference is dropped. 1681 */ 1682 void input_free_device(struct input_dev *dev) 1683 { 1684 if (dev) 1685 input_put_device(dev); 1686 } 1687 EXPORT_SYMBOL(input_free_device); 1688 1689 /** 1690 * input_set_capability - mark device as capable of a certain event 1691 * @dev: device that is capable of emitting or accepting event 1692 * @type: type of the event (EV_KEY, EV_REL, etc...) 1693 * @code: event code 1694 * 1695 * In addition to setting up corresponding bit in appropriate capability 1696 * bitmap the function also adjusts dev->evbit. 1697 */ 1698 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1699 { 1700 switch (type) { 1701 case EV_KEY: 1702 __set_bit(code, dev->keybit); 1703 break; 1704 1705 case EV_REL: 1706 __set_bit(code, dev->relbit); 1707 break; 1708 1709 case EV_ABS: 1710 __set_bit(code, dev->absbit); 1711 break; 1712 1713 case EV_MSC: 1714 __set_bit(code, dev->mscbit); 1715 break; 1716 1717 case EV_SW: 1718 __set_bit(code, dev->swbit); 1719 break; 1720 1721 case EV_LED: 1722 __set_bit(code, dev->ledbit); 1723 break; 1724 1725 case EV_SND: 1726 __set_bit(code, dev->sndbit); 1727 break; 1728 1729 case EV_FF: 1730 __set_bit(code, dev->ffbit); 1731 break; 1732 1733 case EV_PWR: 1734 /* do nothing */ 1735 break; 1736 1737 default: 1738 pr_err("input_set_capability: unknown type %u (code %u)\n", 1739 type, code); 1740 dump_stack(); 1741 return; 1742 } 1743 1744 __set_bit(type, dev->evbit); 1745 } 1746 EXPORT_SYMBOL(input_set_capability); 1747 1748 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1749 { 1750 int mt_slots; 1751 int i; 1752 unsigned int events; 1753 1754 if (dev->mtsize) { 1755 mt_slots = dev->mtsize; 1756 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1757 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1758 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1759 mt_slots = clamp(mt_slots, 2, 32); 1760 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1761 mt_slots = 2; 1762 } else { 1763 mt_slots = 0; 1764 } 1765 1766 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1767 1768 for (i = 0; i < ABS_CNT; i++) { 1769 if (test_bit(i, dev->absbit)) { 1770 if (input_is_mt_axis(i)) 1771 events += mt_slots; 1772 else 1773 events++; 1774 } 1775 } 1776 1777 for (i = 0; i < REL_CNT; i++) 1778 if (test_bit(i, dev->relbit)) 1779 events++; 1780 1781 return events; 1782 } 1783 1784 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 1785 do { \ 1786 if (!test_bit(EV_##type, dev->evbit)) \ 1787 memset(dev->bits##bit, 0, \ 1788 sizeof(dev->bits##bit)); \ 1789 } while (0) 1790 1791 static void input_cleanse_bitmasks(struct input_dev *dev) 1792 { 1793 INPUT_CLEANSE_BITMASK(dev, KEY, key); 1794 INPUT_CLEANSE_BITMASK(dev, REL, rel); 1795 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 1796 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 1797 INPUT_CLEANSE_BITMASK(dev, LED, led); 1798 INPUT_CLEANSE_BITMASK(dev, SND, snd); 1799 INPUT_CLEANSE_BITMASK(dev, FF, ff); 1800 INPUT_CLEANSE_BITMASK(dev, SW, sw); 1801 } 1802 1803 /** 1804 * input_register_device - register device with input core 1805 * @dev: device to be registered 1806 * 1807 * This function registers device with input core. The device must be 1808 * allocated with input_allocate_device() and all it's capabilities 1809 * set up before registering. 1810 * If function fails the device must be freed with input_free_device(). 1811 * Once device has been successfully registered it can be unregistered 1812 * with input_unregister_device(); input_free_device() should not be 1813 * called in this case. 1814 */ 1815 int input_register_device(struct input_dev *dev) 1816 { 1817 static atomic_t input_no = ATOMIC_INIT(0); 1818 struct input_handler *handler; 1819 const char *path; 1820 int error; 1821 1822 /* Every input device generates EV_SYN/SYN_REPORT events. */ 1823 __set_bit(EV_SYN, dev->evbit); 1824 1825 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 1826 __clear_bit(KEY_RESERVED, dev->keybit); 1827 1828 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 1829 input_cleanse_bitmasks(dev); 1830 1831 if (!dev->hint_events_per_packet) 1832 dev->hint_events_per_packet = 1833 input_estimate_events_per_packet(dev); 1834 1835 /* 1836 * If delay and period are pre-set by the driver, then autorepeating 1837 * is handled by the driver itself and we don't do it in input.c. 1838 */ 1839 init_timer(&dev->timer); 1840 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { 1841 dev->timer.data = (long) dev; 1842 dev->timer.function = input_repeat_key; 1843 dev->rep[REP_DELAY] = 250; 1844 dev->rep[REP_PERIOD] = 33; 1845 } 1846 1847 if (!dev->getkeycode) 1848 dev->getkeycode = input_default_getkeycode; 1849 1850 if (!dev->setkeycode) 1851 dev->setkeycode = input_default_setkeycode; 1852 1853 dev_set_name(&dev->dev, "input%ld", 1854 (unsigned long) atomic_inc_return(&input_no) - 1); 1855 1856 error = device_add(&dev->dev); 1857 if (error) 1858 return error; 1859 1860 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1861 pr_info("%s as %s\n", 1862 dev->name ? dev->name : "Unspecified device", 1863 path ? path : "N/A"); 1864 kfree(path); 1865 1866 error = mutex_lock_interruptible(&input_mutex); 1867 if (error) { 1868 device_del(&dev->dev); 1869 return error; 1870 } 1871 1872 list_add_tail(&dev->node, &input_dev_list); 1873 1874 list_for_each_entry(handler, &input_handler_list, node) 1875 input_attach_handler(dev, handler); 1876 1877 input_wakeup_procfs_readers(); 1878 1879 mutex_unlock(&input_mutex); 1880 1881 return 0; 1882 } 1883 EXPORT_SYMBOL(input_register_device); 1884 1885 /** 1886 * input_unregister_device - unregister previously registered device 1887 * @dev: device to be unregistered 1888 * 1889 * This function unregisters an input device. Once device is unregistered 1890 * the caller should not try to access it as it may get freed at any moment. 1891 */ 1892 void input_unregister_device(struct input_dev *dev) 1893 { 1894 struct input_handle *handle, *next; 1895 1896 input_disconnect_device(dev); 1897 1898 mutex_lock(&input_mutex); 1899 1900 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 1901 handle->handler->disconnect(handle); 1902 WARN_ON(!list_empty(&dev->h_list)); 1903 1904 del_timer_sync(&dev->timer); 1905 list_del_init(&dev->node); 1906 1907 input_wakeup_procfs_readers(); 1908 1909 mutex_unlock(&input_mutex); 1910 1911 device_unregister(&dev->dev); 1912 } 1913 EXPORT_SYMBOL(input_unregister_device); 1914 1915 /** 1916 * input_register_handler - register a new input handler 1917 * @handler: handler to be registered 1918 * 1919 * This function registers a new input handler (interface) for input 1920 * devices in the system and attaches it to all input devices that 1921 * are compatible with the handler. 1922 */ 1923 int input_register_handler(struct input_handler *handler) 1924 { 1925 struct input_dev *dev; 1926 int retval; 1927 1928 retval = mutex_lock_interruptible(&input_mutex); 1929 if (retval) 1930 return retval; 1931 1932 INIT_LIST_HEAD(&handler->h_list); 1933 1934 if (handler->fops != NULL) { 1935 if (input_table[handler->minor >> 5]) { 1936 retval = -EBUSY; 1937 goto out; 1938 } 1939 input_table[handler->minor >> 5] = handler; 1940 } 1941 1942 list_add_tail(&handler->node, &input_handler_list); 1943 1944 list_for_each_entry(dev, &input_dev_list, node) 1945 input_attach_handler(dev, handler); 1946 1947 input_wakeup_procfs_readers(); 1948 1949 out: 1950 mutex_unlock(&input_mutex); 1951 return retval; 1952 } 1953 EXPORT_SYMBOL(input_register_handler); 1954 1955 /** 1956 * input_unregister_handler - unregisters an input handler 1957 * @handler: handler to be unregistered 1958 * 1959 * This function disconnects a handler from its input devices and 1960 * removes it from lists of known handlers. 1961 */ 1962 void input_unregister_handler(struct input_handler *handler) 1963 { 1964 struct input_handle *handle, *next; 1965 1966 mutex_lock(&input_mutex); 1967 1968 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 1969 handler->disconnect(handle); 1970 WARN_ON(!list_empty(&handler->h_list)); 1971 1972 list_del_init(&handler->node); 1973 1974 if (handler->fops != NULL) 1975 input_table[handler->minor >> 5] = NULL; 1976 1977 input_wakeup_procfs_readers(); 1978 1979 mutex_unlock(&input_mutex); 1980 } 1981 EXPORT_SYMBOL(input_unregister_handler); 1982 1983 /** 1984 * input_handler_for_each_handle - handle iterator 1985 * @handler: input handler to iterate 1986 * @data: data for the callback 1987 * @fn: function to be called for each handle 1988 * 1989 * Iterate over @bus's list of devices, and call @fn for each, passing 1990 * it @data and stop when @fn returns a non-zero value. The function is 1991 * using RCU to traverse the list and therefore may be usind in atonic 1992 * contexts. The @fn callback is invoked from RCU critical section and 1993 * thus must not sleep. 1994 */ 1995 int input_handler_for_each_handle(struct input_handler *handler, void *data, 1996 int (*fn)(struct input_handle *, void *)) 1997 { 1998 struct input_handle *handle; 1999 int retval = 0; 2000 2001 rcu_read_lock(); 2002 2003 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2004 retval = fn(handle, data); 2005 if (retval) 2006 break; 2007 } 2008 2009 rcu_read_unlock(); 2010 2011 return retval; 2012 } 2013 EXPORT_SYMBOL(input_handler_for_each_handle); 2014 2015 /** 2016 * input_register_handle - register a new input handle 2017 * @handle: handle to register 2018 * 2019 * This function puts a new input handle onto device's 2020 * and handler's lists so that events can flow through 2021 * it once it is opened using input_open_device(). 2022 * 2023 * This function is supposed to be called from handler's 2024 * connect() method. 2025 */ 2026 int input_register_handle(struct input_handle *handle) 2027 { 2028 struct input_handler *handler = handle->handler; 2029 struct input_dev *dev = handle->dev; 2030 int error; 2031 2032 /* 2033 * We take dev->mutex here to prevent race with 2034 * input_release_device(). 2035 */ 2036 error = mutex_lock_interruptible(&dev->mutex); 2037 if (error) 2038 return error; 2039 2040 /* 2041 * Filters go to the head of the list, normal handlers 2042 * to the tail. 2043 */ 2044 if (handler->filter) 2045 list_add_rcu(&handle->d_node, &dev->h_list); 2046 else 2047 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2048 2049 mutex_unlock(&dev->mutex); 2050 2051 /* 2052 * Since we are supposed to be called from ->connect() 2053 * which is mutually exclusive with ->disconnect() 2054 * we can't be racing with input_unregister_handle() 2055 * and so separate lock is not needed here. 2056 */ 2057 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2058 2059 if (handler->start) 2060 handler->start(handle); 2061 2062 return 0; 2063 } 2064 EXPORT_SYMBOL(input_register_handle); 2065 2066 /** 2067 * input_unregister_handle - unregister an input handle 2068 * @handle: handle to unregister 2069 * 2070 * This function removes input handle from device's 2071 * and handler's lists. 2072 * 2073 * This function is supposed to be called from handler's 2074 * disconnect() method. 2075 */ 2076 void input_unregister_handle(struct input_handle *handle) 2077 { 2078 struct input_dev *dev = handle->dev; 2079 2080 list_del_rcu(&handle->h_node); 2081 2082 /* 2083 * Take dev->mutex to prevent race with input_release_device(). 2084 */ 2085 mutex_lock(&dev->mutex); 2086 list_del_rcu(&handle->d_node); 2087 mutex_unlock(&dev->mutex); 2088 2089 synchronize_rcu(); 2090 } 2091 EXPORT_SYMBOL(input_unregister_handle); 2092 2093 static int input_open_file(struct inode *inode, struct file *file) 2094 { 2095 struct input_handler *handler; 2096 const struct file_operations *old_fops, *new_fops = NULL; 2097 int err; 2098 2099 err = mutex_lock_interruptible(&input_mutex); 2100 if (err) 2101 return err; 2102 2103 /* No load-on-demand here? */ 2104 handler = input_table[iminor(inode) >> 5]; 2105 if (handler) 2106 new_fops = fops_get(handler->fops); 2107 2108 mutex_unlock(&input_mutex); 2109 2110 /* 2111 * That's _really_ odd. Usually NULL ->open means "nothing special", 2112 * not "no device". Oh, well... 2113 */ 2114 if (!new_fops || !new_fops->open) { 2115 fops_put(new_fops); 2116 err = -ENODEV; 2117 goto out; 2118 } 2119 2120 old_fops = file->f_op; 2121 file->f_op = new_fops; 2122 2123 err = new_fops->open(inode, file); 2124 if (err) { 2125 fops_put(file->f_op); 2126 file->f_op = fops_get(old_fops); 2127 } 2128 fops_put(old_fops); 2129 out: 2130 return err; 2131 } 2132 2133 static const struct file_operations input_fops = { 2134 .owner = THIS_MODULE, 2135 .open = input_open_file, 2136 .llseek = noop_llseek, 2137 }; 2138 2139 static int __init input_init(void) 2140 { 2141 int err; 2142 2143 err = class_register(&input_class); 2144 if (err) { 2145 pr_err("unable to register input_dev class\n"); 2146 return err; 2147 } 2148 2149 err = input_proc_init(); 2150 if (err) 2151 goto fail1; 2152 2153 err = register_chrdev(INPUT_MAJOR, "input", &input_fops); 2154 if (err) { 2155 pr_err("unable to register char major %d", INPUT_MAJOR); 2156 goto fail2; 2157 } 2158 2159 return 0; 2160 2161 fail2: input_proc_exit(); 2162 fail1: class_unregister(&input_class); 2163 return err; 2164 } 2165 2166 static void __exit input_exit(void) 2167 { 2168 input_proc_exit(); 2169 unregister_chrdev(INPUT_MAJOR, "input"); 2170 class_unregister(&input_class); 2171 } 2172 2173 subsys_initcall(input_init); 2174 module_exit(input_exit); 2175