xref: /openbmc/linux/drivers/input/input.c (revision 9d5dbfe0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/kstrtox.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include "input-compat.h"
28 #include "input-core-private.h"
29 #include "input-poller.h"
30 
31 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
32 MODULE_DESCRIPTION("Input core");
33 MODULE_LICENSE("GPL");
34 
35 #define INPUT_MAX_CHAR_DEVICES		1024
36 #define INPUT_FIRST_DYNAMIC_DEV		256
37 static DEFINE_IDA(input_ida);
38 
39 static LIST_HEAD(input_dev_list);
40 static LIST_HEAD(input_handler_list);
41 
42 /*
43  * input_mutex protects access to both input_dev_list and input_handler_list.
44  * This also causes input_[un]register_device and input_[un]register_handler
45  * be mutually exclusive which simplifies locking in drivers implementing
46  * input handlers.
47  */
48 static DEFINE_MUTEX(input_mutex);
49 
50 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
51 
52 static const unsigned int input_max_code[EV_CNT] = {
53 	[EV_KEY] = KEY_MAX,
54 	[EV_REL] = REL_MAX,
55 	[EV_ABS] = ABS_MAX,
56 	[EV_MSC] = MSC_MAX,
57 	[EV_SW] = SW_MAX,
58 	[EV_LED] = LED_MAX,
59 	[EV_SND] = SND_MAX,
60 	[EV_FF] = FF_MAX,
61 };
62 
63 static inline int is_event_supported(unsigned int code,
64 				     unsigned long *bm, unsigned int max)
65 {
66 	return code <= max && test_bit(code, bm);
67 }
68 
69 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
70 {
71 	if (fuzz) {
72 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
73 			return old_val;
74 
75 		if (value > old_val - fuzz && value < old_val + fuzz)
76 			return (old_val * 3 + value) / 4;
77 
78 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
79 			return (old_val + value) / 2;
80 	}
81 
82 	return value;
83 }
84 
85 static void input_start_autorepeat(struct input_dev *dev, int code)
86 {
87 	if (test_bit(EV_REP, dev->evbit) &&
88 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
89 	    dev->timer.function) {
90 		dev->repeat_key = code;
91 		mod_timer(&dev->timer,
92 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
93 	}
94 }
95 
96 static void input_stop_autorepeat(struct input_dev *dev)
97 {
98 	del_timer(&dev->timer);
99 }
100 
101 /*
102  * Pass event first through all filters and then, if event has not been
103  * filtered out, through all open handles. This function is called with
104  * dev->event_lock held and interrupts disabled.
105  */
106 static unsigned int input_to_handler(struct input_handle *handle,
107 			struct input_value *vals, unsigned int count)
108 {
109 	struct input_handler *handler = handle->handler;
110 	struct input_value *end = vals;
111 	struct input_value *v;
112 
113 	if (handler->filter) {
114 		for (v = vals; v != vals + count; v++) {
115 			if (handler->filter(handle, v->type, v->code, v->value))
116 				continue;
117 			if (end != v)
118 				*end = *v;
119 			end++;
120 		}
121 		count = end - vals;
122 	}
123 
124 	if (!count)
125 		return 0;
126 
127 	if (handler->events)
128 		handler->events(handle, vals, count);
129 	else if (handler->event)
130 		for (v = vals; v != vals + count; v++)
131 			handler->event(handle, v->type, v->code, v->value);
132 
133 	return count;
134 }
135 
136 /*
137  * Pass values first through all filters and then, if event has not been
138  * filtered out, through all open handles. This function is called with
139  * dev->event_lock held and interrupts disabled.
140  */
141 static void input_pass_values(struct input_dev *dev,
142 			      struct input_value *vals, unsigned int count)
143 {
144 	struct input_handle *handle;
145 	struct input_value *v;
146 
147 	lockdep_assert_held(&dev->event_lock);
148 
149 	if (!count)
150 		return;
151 
152 	rcu_read_lock();
153 
154 	handle = rcu_dereference(dev->grab);
155 	if (handle) {
156 		count = input_to_handler(handle, vals, count);
157 	} else {
158 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
159 			if (handle->open) {
160 				count = input_to_handler(handle, vals, count);
161 				if (!count)
162 					break;
163 			}
164 	}
165 
166 	rcu_read_unlock();
167 
168 	/* trigger auto repeat for key events */
169 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
170 		for (v = vals; v != vals + count; v++) {
171 			if (v->type == EV_KEY && v->value != 2) {
172 				if (v->value)
173 					input_start_autorepeat(dev, v->code);
174 				else
175 					input_stop_autorepeat(dev);
176 			}
177 		}
178 	}
179 }
180 
181 #define INPUT_IGNORE_EVENT	0
182 #define INPUT_PASS_TO_HANDLERS	1
183 #define INPUT_PASS_TO_DEVICE	2
184 #define INPUT_SLOT		4
185 #define INPUT_FLUSH		8
186 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
187 
188 static int input_handle_abs_event(struct input_dev *dev,
189 				  unsigned int code, int *pval)
190 {
191 	struct input_mt *mt = dev->mt;
192 	bool is_mt_event;
193 	int *pold;
194 
195 	if (code == ABS_MT_SLOT) {
196 		/*
197 		 * "Stage" the event; we'll flush it later, when we
198 		 * get actual touch data.
199 		 */
200 		if (mt && *pval >= 0 && *pval < mt->num_slots)
201 			mt->slot = *pval;
202 
203 		return INPUT_IGNORE_EVENT;
204 	}
205 
206 	is_mt_event = input_is_mt_value(code);
207 
208 	if (!is_mt_event) {
209 		pold = &dev->absinfo[code].value;
210 	} else if (mt) {
211 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
212 	} else {
213 		/*
214 		 * Bypass filtering for multi-touch events when
215 		 * not employing slots.
216 		 */
217 		pold = NULL;
218 	}
219 
220 	if (pold) {
221 		*pval = input_defuzz_abs_event(*pval, *pold,
222 						dev->absinfo[code].fuzz);
223 		if (*pold == *pval)
224 			return INPUT_IGNORE_EVENT;
225 
226 		*pold = *pval;
227 	}
228 
229 	/* Flush pending "slot" event */
230 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
231 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
232 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
233 	}
234 
235 	return INPUT_PASS_TO_HANDLERS;
236 }
237 
238 static int input_get_disposition(struct input_dev *dev,
239 			  unsigned int type, unsigned int code, int *pval)
240 {
241 	int disposition = INPUT_IGNORE_EVENT;
242 	int value = *pval;
243 
244 	/* filter-out events from inhibited devices */
245 	if (dev->inhibited)
246 		return INPUT_IGNORE_EVENT;
247 
248 	switch (type) {
249 
250 	case EV_SYN:
251 		switch (code) {
252 		case SYN_CONFIG:
253 			disposition = INPUT_PASS_TO_ALL;
254 			break;
255 
256 		case SYN_REPORT:
257 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
258 			break;
259 		case SYN_MT_REPORT:
260 			disposition = INPUT_PASS_TO_HANDLERS;
261 			break;
262 		}
263 		break;
264 
265 	case EV_KEY:
266 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
267 
268 			/* auto-repeat bypasses state updates */
269 			if (value == 2) {
270 				disposition = INPUT_PASS_TO_HANDLERS;
271 				break;
272 			}
273 
274 			if (!!test_bit(code, dev->key) != !!value) {
275 
276 				__change_bit(code, dev->key);
277 				disposition = INPUT_PASS_TO_HANDLERS;
278 			}
279 		}
280 		break;
281 
282 	case EV_SW:
283 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
284 		    !!test_bit(code, dev->sw) != !!value) {
285 
286 			__change_bit(code, dev->sw);
287 			disposition = INPUT_PASS_TO_HANDLERS;
288 		}
289 		break;
290 
291 	case EV_ABS:
292 		if (is_event_supported(code, dev->absbit, ABS_MAX))
293 			disposition = input_handle_abs_event(dev, code, &value);
294 
295 		break;
296 
297 	case EV_REL:
298 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
299 			disposition = INPUT_PASS_TO_HANDLERS;
300 
301 		break;
302 
303 	case EV_MSC:
304 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
305 			disposition = INPUT_PASS_TO_ALL;
306 
307 		break;
308 
309 	case EV_LED:
310 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
311 		    !!test_bit(code, dev->led) != !!value) {
312 
313 			__change_bit(code, dev->led);
314 			disposition = INPUT_PASS_TO_ALL;
315 		}
316 		break;
317 
318 	case EV_SND:
319 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
320 
321 			if (!!test_bit(code, dev->snd) != !!value)
322 				__change_bit(code, dev->snd);
323 			disposition = INPUT_PASS_TO_ALL;
324 		}
325 		break;
326 
327 	case EV_REP:
328 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
329 			dev->rep[code] = value;
330 			disposition = INPUT_PASS_TO_ALL;
331 		}
332 		break;
333 
334 	case EV_FF:
335 		if (value >= 0)
336 			disposition = INPUT_PASS_TO_ALL;
337 		break;
338 
339 	case EV_PWR:
340 		disposition = INPUT_PASS_TO_ALL;
341 		break;
342 	}
343 
344 	*pval = value;
345 	return disposition;
346 }
347 
348 static void input_event_dispose(struct input_dev *dev, int disposition,
349 				unsigned int type, unsigned int code, int value)
350 {
351 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
352 		dev->event(dev, type, code, value);
353 
354 	if (!dev->vals)
355 		return;
356 
357 	if (disposition & INPUT_PASS_TO_HANDLERS) {
358 		struct input_value *v;
359 
360 		if (disposition & INPUT_SLOT) {
361 			v = &dev->vals[dev->num_vals++];
362 			v->type = EV_ABS;
363 			v->code = ABS_MT_SLOT;
364 			v->value = dev->mt->slot;
365 		}
366 
367 		v = &dev->vals[dev->num_vals++];
368 		v->type = type;
369 		v->code = code;
370 		v->value = value;
371 	}
372 
373 	if (disposition & INPUT_FLUSH) {
374 		if (dev->num_vals >= 2)
375 			input_pass_values(dev, dev->vals, dev->num_vals);
376 		dev->num_vals = 0;
377 		/*
378 		 * Reset the timestamp on flush so we won't end up
379 		 * with a stale one. Note we only need to reset the
380 		 * monolithic one as we use its presence when deciding
381 		 * whether to generate a synthetic timestamp.
382 		 */
383 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
384 	} else if (dev->num_vals >= dev->max_vals - 2) {
385 		dev->vals[dev->num_vals++] = input_value_sync;
386 		input_pass_values(dev, dev->vals, dev->num_vals);
387 		dev->num_vals = 0;
388 	}
389 }
390 
391 void input_handle_event(struct input_dev *dev,
392 			unsigned int type, unsigned int code, int value)
393 {
394 	int disposition;
395 
396 	lockdep_assert_held(&dev->event_lock);
397 
398 	disposition = input_get_disposition(dev, type, code, &value);
399 	if (disposition != INPUT_IGNORE_EVENT) {
400 		if (type != EV_SYN)
401 			add_input_randomness(type, code, value);
402 
403 		input_event_dispose(dev, disposition, type, code, value);
404 	}
405 }
406 
407 /**
408  * input_event() - report new input event
409  * @dev: device that generated the event
410  * @type: type of the event
411  * @code: event code
412  * @value: value of the event
413  *
414  * This function should be used by drivers implementing various input
415  * devices to report input events. See also input_inject_event().
416  *
417  * NOTE: input_event() may be safely used right after input device was
418  * allocated with input_allocate_device(), even before it is registered
419  * with input_register_device(), but the event will not reach any of the
420  * input handlers. Such early invocation of input_event() may be used
421  * to 'seed' initial state of a switch or initial position of absolute
422  * axis, etc.
423  */
424 void input_event(struct input_dev *dev,
425 		 unsigned int type, unsigned int code, int value)
426 {
427 	unsigned long flags;
428 
429 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
430 
431 		spin_lock_irqsave(&dev->event_lock, flags);
432 		input_handle_event(dev, type, code, value);
433 		spin_unlock_irqrestore(&dev->event_lock, flags);
434 	}
435 }
436 EXPORT_SYMBOL(input_event);
437 
438 /**
439  * input_inject_event() - send input event from input handler
440  * @handle: input handle to send event through
441  * @type: type of the event
442  * @code: event code
443  * @value: value of the event
444  *
445  * Similar to input_event() but will ignore event if device is
446  * "grabbed" and handle injecting event is not the one that owns
447  * the device.
448  */
449 void input_inject_event(struct input_handle *handle,
450 			unsigned int type, unsigned int code, int value)
451 {
452 	struct input_dev *dev = handle->dev;
453 	struct input_handle *grab;
454 	unsigned long flags;
455 
456 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
457 		spin_lock_irqsave(&dev->event_lock, flags);
458 
459 		rcu_read_lock();
460 		grab = rcu_dereference(dev->grab);
461 		if (!grab || grab == handle)
462 			input_handle_event(dev, type, code, value);
463 		rcu_read_unlock();
464 
465 		spin_unlock_irqrestore(&dev->event_lock, flags);
466 	}
467 }
468 EXPORT_SYMBOL(input_inject_event);
469 
470 /**
471  * input_alloc_absinfo - allocates array of input_absinfo structs
472  * @dev: the input device emitting absolute events
473  *
474  * If the absinfo struct the caller asked for is already allocated, this
475  * functions will not do anything.
476  */
477 void input_alloc_absinfo(struct input_dev *dev)
478 {
479 	if (dev->absinfo)
480 		return;
481 
482 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
483 	if (!dev->absinfo) {
484 		dev_err(dev->dev.parent ?: &dev->dev,
485 			"%s: unable to allocate memory\n", __func__);
486 		/*
487 		 * We will handle this allocation failure in
488 		 * input_register_device() when we refuse to register input
489 		 * device with ABS bits but without absinfo.
490 		 */
491 	}
492 }
493 EXPORT_SYMBOL(input_alloc_absinfo);
494 
495 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
496 			  int min, int max, int fuzz, int flat)
497 {
498 	struct input_absinfo *absinfo;
499 
500 	__set_bit(EV_ABS, dev->evbit);
501 	__set_bit(axis, dev->absbit);
502 
503 	input_alloc_absinfo(dev);
504 	if (!dev->absinfo)
505 		return;
506 
507 	absinfo = &dev->absinfo[axis];
508 	absinfo->minimum = min;
509 	absinfo->maximum = max;
510 	absinfo->fuzz = fuzz;
511 	absinfo->flat = flat;
512 }
513 EXPORT_SYMBOL(input_set_abs_params);
514 
515 /**
516  * input_copy_abs - Copy absinfo from one input_dev to another
517  * @dst: Destination input device to copy the abs settings to
518  * @dst_axis: ABS_* value selecting the destination axis
519  * @src: Source input device to copy the abs settings from
520  * @src_axis: ABS_* value selecting the source axis
521  *
522  * Set absinfo for the selected destination axis by copying it from
523  * the specified source input device's source axis.
524  * This is useful to e.g. setup a pen/stylus input-device for combined
525  * touchscreen/pen hardware where the pen uses the same coordinates as
526  * the touchscreen.
527  */
528 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
529 		    const struct input_dev *src, unsigned int src_axis)
530 {
531 	/* src must have EV_ABS and src_axis set */
532 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
533 		      test_bit(src_axis, src->absbit))))
534 		return;
535 
536 	/*
537 	 * input_alloc_absinfo() may have failed for the source. Our caller is
538 	 * expected to catch this when registering the input devices, which may
539 	 * happen after the input_copy_abs() call.
540 	 */
541 	if (!src->absinfo)
542 		return;
543 
544 	input_set_capability(dst, EV_ABS, dst_axis);
545 	if (!dst->absinfo)
546 		return;
547 
548 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
549 }
550 EXPORT_SYMBOL(input_copy_abs);
551 
552 /**
553  * input_grab_device - grabs device for exclusive use
554  * @handle: input handle that wants to own the device
555  *
556  * When a device is grabbed by an input handle all events generated by
557  * the device are delivered only to this handle. Also events injected
558  * by other input handles are ignored while device is grabbed.
559  */
560 int input_grab_device(struct input_handle *handle)
561 {
562 	struct input_dev *dev = handle->dev;
563 	int retval;
564 
565 	retval = mutex_lock_interruptible(&dev->mutex);
566 	if (retval)
567 		return retval;
568 
569 	if (dev->grab) {
570 		retval = -EBUSY;
571 		goto out;
572 	}
573 
574 	rcu_assign_pointer(dev->grab, handle);
575 
576  out:
577 	mutex_unlock(&dev->mutex);
578 	return retval;
579 }
580 EXPORT_SYMBOL(input_grab_device);
581 
582 static void __input_release_device(struct input_handle *handle)
583 {
584 	struct input_dev *dev = handle->dev;
585 	struct input_handle *grabber;
586 
587 	grabber = rcu_dereference_protected(dev->grab,
588 					    lockdep_is_held(&dev->mutex));
589 	if (grabber == handle) {
590 		rcu_assign_pointer(dev->grab, NULL);
591 		/* Make sure input_pass_values() notices that grab is gone */
592 		synchronize_rcu();
593 
594 		list_for_each_entry(handle, &dev->h_list, d_node)
595 			if (handle->open && handle->handler->start)
596 				handle->handler->start(handle);
597 	}
598 }
599 
600 /**
601  * input_release_device - release previously grabbed device
602  * @handle: input handle that owns the device
603  *
604  * Releases previously grabbed device so that other input handles can
605  * start receiving input events. Upon release all handlers attached
606  * to the device have their start() method called so they have a change
607  * to synchronize device state with the rest of the system.
608  */
609 void input_release_device(struct input_handle *handle)
610 {
611 	struct input_dev *dev = handle->dev;
612 
613 	mutex_lock(&dev->mutex);
614 	__input_release_device(handle);
615 	mutex_unlock(&dev->mutex);
616 }
617 EXPORT_SYMBOL(input_release_device);
618 
619 /**
620  * input_open_device - open input device
621  * @handle: handle through which device is being accessed
622  *
623  * This function should be called by input handlers when they
624  * want to start receive events from given input device.
625  */
626 int input_open_device(struct input_handle *handle)
627 {
628 	struct input_dev *dev = handle->dev;
629 	int retval;
630 
631 	retval = mutex_lock_interruptible(&dev->mutex);
632 	if (retval)
633 		return retval;
634 
635 	if (dev->going_away) {
636 		retval = -ENODEV;
637 		goto out;
638 	}
639 
640 	handle->open++;
641 
642 	if (dev->users++ || dev->inhibited) {
643 		/*
644 		 * Device is already opened and/or inhibited,
645 		 * so we can exit immediately and report success.
646 		 */
647 		goto out;
648 	}
649 
650 	if (dev->open) {
651 		retval = dev->open(dev);
652 		if (retval) {
653 			dev->users--;
654 			handle->open--;
655 			/*
656 			 * Make sure we are not delivering any more events
657 			 * through this handle
658 			 */
659 			synchronize_rcu();
660 			goto out;
661 		}
662 	}
663 
664 	if (dev->poller)
665 		input_dev_poller_start(dev->poller);
666 
667  out:
668 	mutex_unlock(&dev->mutex);
669 	return retval;
670 }
671 EXPORT_SYMBOL(input_open_device);
672 
673 int input_flush_device(struct input_handle *handle, struct file *file)
674 {
675 	struct input_dev *dev = handle->dev;
676 	int retval;
677 
678 	retval = mutex_lock_interruptible(&dev->mutex);
679 	if (retval)
680 		return retval;
681 
682 	if (dev->flush)
683 		retval = dev->flush(dev, file);
684 
685 	mutex_unlock(&dev->mutex);
686 	return retval;
687 }
688 EXPORT_SYMBOL(input_flush_device);
689 
690 /**
691  * input_close_device - close input device
692  * @handle: handle through which device is being accessed
693  *
694  * This function should be called by input handlers when they
695  * want to stop receive events from given input device.
696  */
697 void input_close_device(struct input_handle *handle)
698 {
699 	struct input_dev *dev = handle->dev;
700 
701 	mutex_lock(&dev->mutex);
702 
703 	__input_release_device(handle);
704 
705 	if (!dev->inhibited && !--dev->users) {
706 		if (dev->poller)
707 			input_dev_poller_stop(dev->poller);
708 		if (dev->close)
709 			dev->close(dev);
710 	}
711 
712 	if (!--handle->open) {
713 		/*
714 		 * synchronize_rcu() makes sure that input_pass_values()
715 		 * completed and that no more input events are delivered
716 		 * through this handle
717 		 */
718 		synchronize_rcu();
719 	}
720 
721 	mutex_unlock(&dev->mutex);
722 }
723 EXPORT_SYMBOL(input_close_device);
724 
725 /*
726  * Simulate keyup events for all keys that are marked as pressed.
727  * The function must be called with dev->event_lock held.
728  */
729 static bool input_dev_release_keys(struct input_dev *dev)
730 {
731 	bool need_sync = false;
732 	int code;
733 
734 	lockdep_assert_held(&dev->event_lock);
735 
736 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
737 		for_each_set_bit(code, dev->key, KEY_CNT) {
738 			input_handle_event(dev, EV_KEY, code, 0);
739 			need_sync = true;
740 		}
741 	}
742 
743 	return need_sync;
744 }
745 
746 /*
747  * Prepare device for unregistering
748  */
749 static void input_disconnect_device(struct input_dev *dev)
750 {
751 	struct input_handle *handle;
752 
753 	/*
754 	 * Mark device as going away. Note that we take dev->mutex here
755 	 * not to protect access to dev->going_away but rather to ensure
756 	 * that there are no threads in the middle of input_open_device()
757 	 */
758 	mutex_lock(&dev->mutex);
759 	dev->going_away = true;
760 	mutex_unlock(&dev->mutex);
761 
762 	spin_lock_irq(&dev->event_lock);
763 
764 	/*
765 	 * Simulate keyup events for all pressed keys so that handlers
766 	 * are not left with "stuck" keys. The driver may continue
767 	 * generate events even after we done here but they will not
768 	 * reach any handlers.
769 	 */
770 	if (input_dev_release_keys(dev))
771 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
772 
773 	list_for_each_entry(handle, &dev->h_list, d_node)
774 		handle->open = 0;
775 
776 	spin_unlock_irq(&dev->event_lock);
777 }
778 
779 /**
780  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
781  * @ke: keymap entry containing scancode to be converted.
782  * @scancode: pointer to the location where converted scancode should
783  *	be stored.
784  *
785  * This function is used to convert scancode stored in &struct keymap_entry
786  * into scalar form understood by legacy keymap handling methods. These
787  * methods expect scancodes to be represented as 'unsigned int'.
788  */
789 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
790 			     unsigned int *scancode)
791 {
792 	switch (ke->len) {
793 	case 1:
794 		*scancode = *((u8 *)ke->scancode);
795 		break;
796 
797 	case 2:
798 		*scancode = *((u16 *)ke->scancode);
799 		break;
800 
801 	case 4:
802 		*scancode = *((u32 *)ke->scancode);
803 		break;
804 
805 	default:
806 		return -EINVAL;
807 	}
808 
809 	return 0;
810 }
811 EXPORT_SYMBOL(input_scancode_to_scalar);
812 
813 /*
814  * Those routines handle the default case where no [gs]etkeycode() is
815  * defined. In this case, an array indexed by the scancode is used.
816  */
817 
818 static unsigned int input_fetch_keycode(struct input_dev *dev,
819 					unsigned int index)
820 {
821 	switch (dev->keycodesize) {
822 	case 1:
823 		return ((u8 *)dev->keycode)[index];
824 
825 	case 2:
826 		return ((u16 *)dev->keycode)[index];
827 
828 	default:
829 		return ((u32 *)dev->keycode)[index];
830 	}
831 }
832 
833 static int input_default_getkeycode(struct input_dev *dev,
834 				    struct input_keymap_entry *ke)
835 {
836 	unsigned int index;
837 	int error;
838 
839 	if (!dev->keycodesize)
840 		return -EINVAL;
841 
842 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
843 		index = ke->index;
844 	else {
845 		error = input_scancode_to_scalar(ke, &index);
846 		if (error)
847 			return error;
848 	}
849 
850 	if (index >= dev->keycodemax)
851 		return -EINVAL;
852 
853 	ke->keycode = input_fetch_keycode(dev, index);
854 	ke->index = index;
855 	ke->len = sizeof(index);
856 	memcpy(ke->scancode, &index, sizeof(index));
857 
858 	return 0;
859 }
860 
861 static int input_default_setkeycode(struct input_dev *dev,
862 				    const struct input_keymap_entry *ke,
863 				    unsigned int *old_keycode)
864 {
865 	unsigned int index;
866 	int error;
867 	int i;
868 
869 	if (!dev->keycodesize)
870 		return -EINVAL;
871 
872 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
873 		index = ke->index;
874 	} else {
875 		error = input_scancode_to_scalar(ke, &index);
876 		if (error)
877 			return error;
878 	}
879 
880 	if (index >= dev->keycodemax)
881 		return -EINVAL;
882 
883 	if (dev->keycodesize < sizeof(ke->keycode) &&
884 			(ke->keycode >> (dev->keycodesize * 8)))
885 		return -EINVAL;
886 
887 	switch (dev->keycodesize) {
888 		case 1: {
889 			u8 *k = (u8 *)dev->keycode;
890 			*old_keycode = k[index];
891 			k[index] = ke->keycode;
892 			break;
893 		}
894 		case 2: {
895 			u16 *k = (u16 *)dev->keycode;
896 			*old_keycode = k[index];
897 			k[index] = ke->keycode;
898 			break;
899 		}
900 		default: {
901 			u32 *k = (u32 *)dev->keycode;
902 			*old_keycode = k[index];
903 			k[index] = ke->keycode;
904 			break;
905 		}
906 	}
907 
908 	if (*old_keycode <= KEY_MAX) {
909 		__clear_bit(*old_keycode, dev->keybit);
910 		for (i = 0; i < dev->keycodemax; i++) {
911 			if (input_fetch_keycode(dev, i) == *old_keycode) {
912 				__set_bit(*old_keycode, dev->keybit);
913 				/* Setting the bit twice is useless, so break */
914 				break;
915 			}
916 		}
917 	}
918 
919 	__set_bit(ke->keycode, dev->keybit);
920 	return 0;
921 }
922 
923 /**
924  * input_get_keycode - retrieve keycode currently mapped to a given scancode
925  * @dev: input device which keymap is being queried
926  * @ke: keymap entry
927  *
928  * This function should be called by anyone interested in retrieving current
929  * keymap. Presently evdev handlers use it.
930  */
931 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
932 {
933 	unsigned long flags;
934 	int retval;
935 
936 	spin_lock_irqsave(&dev->event_lock, flags);
937 	retval = dev->getkeycode(dev, ke);
938 	spin_unlock_irqrestore(&dev->event_lock, flags);
939 
940 	return retval;
941 }
942 EXPORT_SYMBOL(input_get_keycode);
943 
944 /**
945  * input_set_keycode - attribute a keycode to a given scancode
946  * @dev: input device which keymap is being updated
947  * @ke: new keymap entry
948  *
949  * This function should be called by anyone needing to update current
950  * keymap. Presently keyboard and evdev handlers use it.
951  */
952 int input_set_keycode(struct input_dev *dev,
953 		      const struct input_keymap_entry *ke)
954 {
955 	unsigned long flags;
956 	unsigned int old_keycode;
957 	int retval;
958 
959 	if (ke->keycode > KEY_MAX)
960 		return -EINVAL;
961 
962 	spin_lock_irqsave(&dev->event_lock, flags);
963 
964 	retval = dev->setkeycode(dev, ke, &old_keycode);
965 	if (retval)
966 		goto out;
967 
968 	/* Make sure KEY_RESERVED did not get enabled. */
969 	__clear_bit(KEY_RESERVED, dev->keybit);
970 
971 	/*
972 	 * Simulate keyup event if keycode is not present
973 	 * in the keymap anymore
974 	 */
975 	if (old_keycode > KEY_MAX) {
976 		dev_warn(dev->dev.parent ?: &dev->dev,
977 			 "%s: got too big old keycode %#x\n",
978 			 __func__, old_keycode);
979 	} else if (test_bit(EV_KEY, dev->evbit) &&
980 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
981 		   __test_and_clear_bit(old_keycode, dev->key)) {
982 		/*
983 		 * We have to use input_event_dispose() here directly instead
984 		 * of input_handle_event() because the key we want to release
985 		 * here is considered no longer supported by the device and
986 		 * input_handle_event() will ignore it.
987 		 */
988 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
989 				    EV_KEY, old_keycode, 0);
990 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
991 				    EV_SYN, SYN_REPORT, 1);
992 	}
993 
994  out:
995 	spin_unlock_irqrestore(&dev->event_lock, flags);
996 
997 	return retval;
998 }
999 EXPORT_SYMBOL(input_set_keycode);
1000 
1001 bool input_match_device_id(const struct input_dev *dev,
1002 			   const struct input_device_id *id)
1003 {
1004 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1005 		if (id->bustype != dev->id.bustype)
1006 			return false;
1007 
1008 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1009 		if (id->vendor != dev->id.vendor)
1010 			return false;
1011 
1012 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1013 		if (id->product != dev->id.product)
1014 			return false;
1015 
1016 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1017 		if (id->version != dev->id.version)
1018 			return false;
1019 
1020 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1021 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1022 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1023 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1024 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1025 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1026 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1027 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1028 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1029 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1030 		return false;
1031 	}
1032 
1033 	return true;
1034 }
1035 EXPORT_SYMBOL(input_match_device_id);
1036 
1037 static const struct input_device_id *input_match_device(struct input_handler *handler,
1038 							struct input_dev *dev)
1039 {
1040 	const struct input_device_id *id;
1041 
1042 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1043 		if (input_match_device_id(dev, id) &&
1044 		    (!handler->match || handler->match(handler, dev))) {
1045 			return id;
1046 		}
1047 	}
1048 
1049 	return NULL;
1050 }
1051 
1052 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1053 {
1054 	const struct input_device_id *id;
1055 	int error;
1056 
1057 	id = input_match_device(handler, dev);
1058 	if (!id)
1059 		return -ENODEV;
1060 
1061 	error = handler->connect(handler, dev, id);
1062 	if (error && error != -ENODEV)
1063 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1064 		       handler->name, kobject_name(&dev->dev.kobj), error);
1065 
1066 	return error;
1067 }
1068 
1069 #ifdef CONFIG_COMPAT
1070 
1071 static int input_bits_to_string(char *buf, int buf_size,
1072 				unsigned long bits, bool skip_empty)
1073 {
1074 	int len = 0;
1075 
1076 	if (in_compat_syscall()) {
1077 		u32 dword = bits >> 32;
1078 		if (dword || !skip_empty)
1079 			len += snprintf(buf, buf_size, "%x ", dword);
1080 
1081 		dword = bits & 0xffffffffUL;
1082 		if (dword || !skip_empty || len)
1083 			len += snprintf(buf + len, max(buf_size - len, 0),
1084 					"%x", dword);
1085 	} else {
1086 		if (bits || !skip_empty)
1087 			len += snprintf(buf, buf_size, "%lx", bits);
1088 	}
1089 
1090 	return len;
1091 }
1092 
1093 #else /* !CONFIG_COMPAT */
1094 
1095 static int input_bits_to_string(char *buf, int buf_size,
1096 				unsigned long bits, bool skip_empty)
1097 {
1098 	return bits || !skip_empty ?
1099 		snprintf(buf, buf_size, "%lx", bits) : 0;
1100 }
1101 
1102 #endif
1103 
1104 #ifdef CONFIG_PROC_FS
1105 
1106 static struct proc_dir_entry *proc_bus_input_dir;
1107 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1108 static int input_devices_state;
1109 
1110 static inline void input_wakeup_procfs_readers(void)
1111 {
1112 	input_devices_state++;
1113 	wake_up(&input_devices_poll_wait);
1114 }
1115 
1116 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1117 {
1118 	poll_wait(file, &input_devices_poll_wait, wait);
1119 	if (file->f_version != input_devices_state) {
1120 		file->f_version = input_devices_state;
1121 		return EPOLLIN | EPOLLRDNORM;
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 union input_seq_state {
1128 	struct {
1129 		unsigned short pos;
1130 		bool mutex_acquired;
1131 	};
1132 	void *p;
1133 };
1134 
1135 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1136 {
1137 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1138 	int error;
1139 
1140 	/* We need to fit into seq->private pointer */
1141 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1142 
1143 	error = mutex_lock_interruptible(&input_mutex);
1144 	if (error) {
1145 		state->mutex_acquired = false;
1146 		return ERR_PTR(error);
1147 	}
1148 
1149 	state->mutex_acquired = true;
1150 
1151 	return seq_list_start(&input_dev_list, *pos);
1152 }
1153 
1154 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1155 {
1156 	return seq_list_next(v, &input_dev_list, pos);
1157 }
1158 
1159 static void input_seq_stop(struct seq_file *seq, void *v)
1160 {
1161 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1162 
1163 	if (state->mutex_acquired)
1164 		mutex_unlock(&input_mutex);
1165 }
1166 
1167 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1168 				   unsigned long *bitmap, int max)
1169 {
1170 	int i;
1171 	bool skip_empty = true;
1172 	char buf[18];
1173 
1174 	seq_printf(seq, "B: %s=", name);
1175 
1176 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1177 		if (input_bits_to_string(buf, sizeof(buf),
1178 					 bitmap[i], skip_empty)) {
1179 			skip_empty = false;
1180 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1181 		}
1182 	}
1183 
1184 	/*
1185 	 * If no output was produced print a single 0.
1186 	 */
1187 	if (skip_empty)
1188 		seq_putc(seq, '0');
1189 
1190 	seq_putc(seq, '\n');
1191 }
1192 
1193 static int input_devices_seq_show(struct seq_file *seq, void *v)
1194 {
1195 	struct input_dev *dev = container_of(v, struct input_dev, node);
1196 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1197 	struct input_handle *handle;
1198 
1199 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1200 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1201 
1202 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1203 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1204 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1205 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1206 	seq_puts(seq, "H: Handlers=");
1207 
1208 	list_for_each_entry(handle, &dev->h_list, d_node)
1209 		seq_printf(seq, "%s ", handle->name);
1210 	seq_putc(seq, '\n');
1211 
1212 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1213 
1214 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1215 	if (test_bit(EV_KEY, dev->evbit))
1216 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1217 	if (test_bit(EV_REL, dev->evbit))
1218 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1219 	if (test_bit(EV_ABS, dev->evbit))
1220 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1221 	if (test_bit(EV_MSC, dev->evbit))
1222 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1223 	if (test_bit(EV_LED, dev->evbit))
1224 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1225 	if (test_bit(EV_SND, dev->evbit))
1226 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1227 	if (test_bit(EV_FF, dev->evbit))
1228 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1229 	if (test_bit(EV_SW, dev->evbit))
1230 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1231 
1232 	seq_putc(seq, '\n');
1233 
1234 	kfree(path);
1235 	return 0;
1236 }
1237 
1238 static const struct seq_operations input_devices_seq_ops = {
1239 	.start	= input_devices_seq_start,
1240 	.next	= input_devices_seq_next,
1241 	.stop	= input_seq_stop,
1242 	.show	= input_devices_seq_show,
1243 };
1244 
1245 static int input_proc_devices_open(struct inode *inode, struct file *file)
1246 {
1247 	return seq_open(file, &input_devices_seq_ops);
1248 }
1249 
1250 static const struct proc_ops input_devices_proc_ops = {
1251 	.proc_open	= input_proc_devices_open,
1252 	.proc_poll	= input_proc_devices_poll,
1253 	.proc_read	= seq_read,
1254 	.proc_lseek	= seq_lseek,
1255 	.proc_release	= seq_release,
1256 };
1257 
1258 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1259 {
1260 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1261 	int error;
1262 
1263 	/* We need to fit into seq->private pointer */
1264 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1265 
1266 	error = mutex_lock_interruptible(&input_mutex);
1267 	if (error) {
1268 		state->mutex_acquired = false;
1269 		return ERR_PTR(error);
1270 	}
1271 
1272 	state->mutex_acquired = true;
1273 	state->pos = *pos;
1274 
1275 	return seq_list_start(&input_handler_list, *pos);
1276 }
1277 
1278 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1279 {
1280 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1281 
1282 	state->pos = *pos + 1;
1283 	return seq_list_next(v, &input_handler_list, pos);
1284 }
1285 
1286 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1287 {
1288 	struct input_handler *handler = container_of(v, struct input_handler, node);
1289 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1290 
1291 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1292 	if (handler->filter)
1293 		seq_puts(seq, " (filter)");
1294 	if (handler->legacy_minors)
1295 		seq_printf(seq, " Minor=%d", handler->minor);
1296 	seq_putc(seq, '\n');
1297 
1298 	return 0;
1299 }
1300 
1301 static const struct seq_operations input_handlers_seq_ops = {
1302 	.start	= input_handlers_seq_start,
1303 	.next	= input_handlers_seq_next,
1304 	.stop	= input_seq_stop,
1305 	.show	= input_handlers_seq_show,
1306 };
1307 
1308 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1309 {
1310 	return seq_open(file, &input_handlers_seq_ops);
1311 }
1312 
1313 static const struct proc_ops input_handlers_proc_ops = {
1314 	.proc_open	= input_proc_handlers_open,
1315 	.proc_read	= seq_read,
1316 	.proc_lseek	= seq_lseek,
1317 	.proc_release	= seq_release,
1318 };
1319 
1320 static int __init input_proc_init(void)
1321 {
1322 	struct proc_dir_entry *entry;
1323 
1324 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1325 	if (!proc_bus_input_dir)
1326 		return -ENOMEM;
1327 
1328 	entry = proc_create("devices", 0, proc_bus_input_dir,
1329 			    &input_devices_proc_ops);
1330 	if (!entry)
1331 		goto fail1;
1332 
1333 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1334 			    &input_handlers_proc_ops);
1335 	if (!entry)
1336 		goto fail2;
1337 
1338 	return 0;
1339 
1340  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1341  fail1: remove_proc_entry("bus/input", NULL);
1342 	return -ENOMEM;
1343 }
1344 
1345 static void input_proc_exit(void)
1346 {
1347 	remove_proc_entry("devices", proc_bus_input_dir);
1348 	remove_proc_entry("handlers", proc_bus_input_dir);
1349 	remove_proc_entry("bus/input", NULL);
1350 }
1351 
1352 #else /* !CONFIG_PROC_FS */
1353 static inline void input_wakeup_procfs_readers(void) { }
1354 static inline int input_proc_init(void) { return 0; }
1355 static inline void input_proc_exit(void) { }
1356 #endif
1357 
1358 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1359 static ssize_t input_dev_show_##name(struct device *dev,		\
1360 				     struct device_attribute *attr,	\
1361 				     char *buf)				\
1362 {									\
1363 	struct input_dev *input_dev = to_input_dev(dev);		\
1364 									\
1365 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1366 			 input_dev->name ? input_dev->name : "");	\
1367 }									\
1368 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1369 
1370 INPUT_DEV_STRING_ATTR_SHOW(name);
1371 INPUT_DEV_STRING_ATTR_SHOW(phys);
1372 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1373 
1374 static int input_print_modalias_bits(char *buf, int size,
1375 				     char name, unsigned long *bm,
1376 				     unsigned int min_bit, unsigned int max_bit)
1377 {
1378 	int len = 0, i;
1379 
1380 	len += snprintf(buf, max(size, 0), "%c", name);
1381 	for (i = min_bit; i < max_bit; i++)
1382 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1383 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1384 	return len;
1385 }
1386 
1387 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1388 				int add_cr)
1389 {
1390 	int len;
1391 
1392 	len = snprintf(buf, max(size, 0),
1393 		       "input:b%04Xv%04Xp%04Xe%04X-",
1394 		       id->id.bustype, id->id.vendor,
1395 		       id->id.product, id->id.version);
1396 
1397 	len += input_print_modalias_bits(buf + len, size - len,
1398 				'e', id->evbit, 0, EV_MAX);
1399 	len += input_print_modalias_bits(buf + len, size - len,
1400 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1401 	len += input_print_modalias_bits(buf + len, size - len,
1402 				'r', id->relbit, 0, REL_MAX);
1403 	len += input_print_modalias_bits(buf + len, size - len,
1404 				'a', id->absbit, 0, ABS_MAX);
1405 	len += input_print_modalias_bits(buf + len, size - len,
1406 				'm', id->mscbit, 0, MSC_MAX);
1407 	len += input_print_modalias_bits(buf + len, size - len,
1408 				'l', id->ledbit, 0, LED_MAX);
1409 	len += input_print_modalias_bits(buf + len, size - len,
1410 				's', id->sndbit, 0, SND_MAX);
1411 	len += input_print_modalias_bits(buf + len, size - len,
1412 				'f', id->ffbit, 0, FF_MAX);
1413 	len += input_print_modalias_bits(buf + len, size - len,
1414 				'w', id->swbit, 0, SW_MAX);
1415 
1416 	if (add_cr)
1417 		len += snprintf(buf + len, max(size - len, 0), "\n");
1418 
1419 	return len;
1420 }
1421 
1422 static ssize_t input_dev_show_modalias(struct device *dev,
1423 				       struct device_attribute *attr,
1424 				       char *buf)
1425 {
1426 	struct input_dev *id = to_input_dev(dev);
1427 	ssize_t len;
1428 
1429 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1430 
1431 	return min_t(int, len, PAGE_SIZE);
1432 }
1433 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1434 
1435 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1436 			      int max, int add_cr);
1437 
1438 static ssize_t input_dev_show_properties(struct device *dev,
1439 					 struct device_attribute *attr,
1440 					 char *buf)
1441 {
1442 	struct input_dev *input_dev = to_input_dev(dev);
1443 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1444 				     INPUT_PROP_MAX, true);
1445 	return min_t(int, len, PAGE_SIZE);
1446 }
1447 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1448 
1449 static int input_inhibit_device(struct input_dev *dev);
1450 static int input_uninhibit_device(struct input_dev *dev);
1451 
1452 static ssize_t inhibited_show(struct device *dev,
1453 			      struct device_attribute *attr,
1454 			      char *buf)
1455 {
1456 	struct input_dev *input_dev = to_input_dev(dev);
1457 
1458 	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1459 }
1460 
1461 static ssize_t inhibited_store(struct device *dev,
1462 			       struct device_attribute *attr, const char *buf,
1463 			       size_t len)
1464 {
1465 	struct input_dev *input_dev = to_input_dev(dev);
1466 	ssize_t rv;
1467 	bool inhibited;
1468 
1469 	if (kstrtobool(buf, &inhibited))
1470 		return -EINVAL;
1471 
1472 	if (inhibited)
1473 		rv = input_inhibit_device(input_dev);
1474 	else
1475 		rv = input_uninhibit_device(input_dev);
1476 
1477 	if (rv != 0)
1478 		return rv;
1479 
1480 	return len;
1481 }
1482 
1483 static DEVICE_ATTR_RW(inhibited);
1484 
1485 static struct attribute *input_dev_attrs[] = {
1486 	&dev_attr_name.attr,
1487 	&dev_attr_phys.attr,
1488 	&dev_attr_uniq.attr,
1489 	&dev_attr_modalias.attr,
1490 	&dev_attr_properties.attr,
1491 	&dev_attr_inhibited.attr,
1492 	NULL
1493 };
1494 
1495 static const struct attribute_group input_dev_attr_group = {
1496 	.attrs	= input_dev_attrs,
1497 };
1498 
1499 #define INPUT_DEV_ID_ATTR(name)						\
1500 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1501 					struct device_attribute *attr,	\
1502 					char *buf)			\
1503 {									\
1504 	struct input_dev *input_dev = to_input_dev(dev);		\
1505 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1506 }									\
1507 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1508 
1509 INPUT_DEV_ID_ATTR(bustype);
1510 INPUT_DEV_ID_ATTR(vendor);
1511 INPUT_DEV_ID_ATTR(product);
1512 INPUT_DEV_ID_ATTR(version);
1513 
1514 static struct attribute *input_dev_id_attrs[] = {
1515 	&dev_attr_bustype.attr,
1516 	&dev_attr_vendor.attr,
1517 	&dev_attr_product.attr,
1518 	&dev_attr_version.attr,
1519 	NULL
1520 };
1521 
1522 static const struct attribute_group input_dev_id_attr_group = {
1523 	.name	= "id",
1524 	.attrs	= input_dev_id_attrs,
1525 };
1526 
1527 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1528 			      int max, int add_cr)
1529 {
1530 	int i;
1531 	int len = 0;
1532 	bool skip_empty = true;
1533 
1534 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1535 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1536 					    bitmap[i], skip_empty);
1537 		if (len) {
1538 			skip_empty = false;
1539 			if (i > 0)
1540 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * If no output was produced print a single 0.
1546 	 */
1547 	if (len == 0)
1548 		len = snprintf(buf, buf_size, "%d", 0);
1549 
1550 	if (add_cr)
1551 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1552 
1553 	return len;
1554 }
1555 
1556 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1557 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1558 				       struct device_attribute *attr,	\
1559 				       char *buf)			\
1560 {									\
1561 	struct input_dev *input_dev = to_input_dev(dev);		\
1562 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1563 				     input_dev->bm##bit, ev##_MAX,	\
1564 				     true);				\
1565 	return min_t(int, len, PAGE_SIZE);				\
1566 }									\
1567 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1568 
1569 INPUT_DEV_CAP_ATTR(EV, ev);
1570 INPUT_DEV_CAP_ATTR(KEY, key);
1571 INPUT_DEV_CAP_ATTR(REL, rel);
1572 INPUT_DEV_CAP_ATTR(ABS, abs);
1573 INPUT_DEV_CAP_ATTR(MSC, msc);
1574 INPUT_DEV_CAP_ATTR(LED, led);
1575 INPUT_DEV_CAP_ATTR(SND, snd);
1576 INPUT_DEV_CAP_ATTR(FF, ff);
1577 INPUT_DEV_CAP_ATTR(SW, sw);
1578 
1579 static struct attribute *input_dev_caps_attrs[] = {
1580 	&dev_attr_ev.attr,
1581 	&dev_attr_key.attr,
1582 	&dev_attr_rel.attr,
1583 	&dev_attr_abs.attr,
1584 	&dev_attr_msc.attr,
1585 	&dev_attr_led.attr,
1586 	&dev_attr_snd.attr,
1587 	&dev_attr_ff.attr,
1588 	&dev_attr_sw.attr,
1589 	NULL
1590 };
1591 
1592 static const struct attribute_group input_dev_caps_attr_group = {
1593 	.name	= "capabilities",
1594 	.attrs	= input_dev_caps_attrs,
1595 };
1596 
1597 static const struct attribute_group *input_dev_attr_groups[] = {
1598 	&input_dev_attr_group,
1599 	&input_dev_id_attr_group,
1600 	&input_dev_caps_attr_group,
1601 	&input_poller_attribute_group,
1602 	NULL
1603 };
1604 
1605 static void input_dev_release(struct device *device)
1606 {
1607 	struct input_dev *dev = to_input_dev(device);
1608 
1609 	input_ff_destroy(dev);
1610 	input_mt_destroy_slots(dev);
1611 	kfree(dev->poller);
1612 	kfree(dev->absinfo);
1613 	kfree(dev->vals);
1614 	kfree(dev);
1615 
1616 	module_put(THIS_MODULE);
1617 }
1618 
1619 /*
1620  * Input uevent interface - loading event handlers based on
1621  * device bitfields.
1622  */
1623 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1624 				   const char *name, unsigned long *bitmap, int max)
1625 {
1626 	int len;
1627 
1628 	if (add_uevent_var(env, "%s", name))
1629 		return -ENOMEM;
1630 
1631 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1632 				 sizeof(env->buf) - env->buflen,
1633 				 bitmap, max, false);
1634 	if (len >= (sizeof(env->buf) - env->buflen))
1635 		return -ENOMEM;
1636 
1637 	env->buflen += len;
1638 	return 0;
1639 }
1640 
1641 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1642 					 struct input_dev *dev)
1643 {
1644 	int len;
1645 
1646 	if (add_uevent_var(env, "MODALIAS="))
1647 		return -ENOMEM;
1648 
1649 	len = input_print_modalias(&env->buf[env->buflen - 1],
1650 				   sizeof(env->buf) - env->buflen,
1651 				   dev, 0);
1652 	if (len >= (sizeof(env->buf) - env->buflen))
1653 		return -ENOMEM;
1654 
1655 	env->buflen += len;
1656 	return 0;
1657 }
1658 
1659 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1660 	do {								\
1661 		int err = add_uevent_var(env, fmt, val);		\
1662 		if (err)						\
1663 			return err;					\
1664 	} while (0)
1665 
1666 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1667 	do {								\
1668 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1669 		if (err)						\
1670 			return err;					\
1671 	} while (0)
1672 
1673 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1674 	do {								\
1675 		int err = input_add_uevent_modalias_var(env, dev);	\
1676 		if (err)						\
1677 			return err;					\
1678 	} while (0)
1679 
1680 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1681 {
1682 	struct input_dev *dev = to_input_dev(device);
1683 
1684 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1685 				dev->id.bustype, dev->id.vendor,
1686 				dev->id.product, dev->id.version);
1687 	if (dev->name)
1688 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1689 	if (dev->phys)
1690 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1691 	if (dev->uniq)
1692 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1693 
1694 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1695 
1696 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1697 	if (test_bit(EV_KEY, dev->evbit))
1698 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1699 	if (test_bit(EV_REL, dev->evbit))
1700 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1701 	if (test_bit(EV_ABS, dev->evbit))
1702 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1703 	if (test_bit(EV_MSC, dev->evbit))
1704 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1705 	if (test_bit(EV_LED, dev->evbit))
1706 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1707 	if (test_bit(EV_SND, dev->evbit))
1708 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1709 	if (test_bit(EV_FF, dev->evbit))
1710 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1711 	if (test_bit(EV_SW, dev->evbit))
1712 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1713 
1714 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1715 
1716 	return 0;
1717 }
1718 
1719 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1720 	do {								\
1721 		int i;							\
1722 		bool active;						\
1723 									\
1724 		if (!test_bit(EV_##type, dev->evbit))			\
1725 			break;						\
1726 									\
1727 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1728 			active = test_bit(i, dev->bits);		\
1729 			if (!active && !on)				\
1730 				continue;				\
1731 									\
1732 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1733 		}							\
1734 	} while (0)
1735 
1736 static void input_dev_toggle(struct input_dev *dev, bool activate)
1737 {
1738 	if (!dev->event)
1739 		return;
1740 
1741 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1742 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1743 
1744 	if (activate && test_bit(EV_REP, dev->evbit)) {
1745 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1746 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1747 	}
1748 }
1749 
1750 /**
1751  * input_reset_device() - reset/restore the state of input device
1752  * @dev: input device whose state needs to be reset
1753  *
1754  * This function tries to reset the state of an opened input device and
1755  * bring internal state and state if the hardware in sync with each other.
1756  * We mark all keys as released, restore LED state, repeat rate, etc.
1757  */
1758 void input_reset_device(struct input_dev *dev)
1759 {
1760 	unsigned long flags;
1761 
1762 	mutex_lock(&dev->mutex);
1763 	spin_lock_irqsave(&dev->event_lock, flags);
1764 
1765 	input_dev_toggle(dev, true);
1766 	if (input_dev_release_keys(dev))
1767 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1768 
1769 	spin_unlock_irqrestore(&dev->event_lock, flags);
1770 	mutex_unlock(&dev->mutex);
1771 }
1772 EXPORT_SYMBOL(input_reset_device);
1773 
1774 static int input_inhibit_device(struct input_dev *dev)
1775 {
1776 	mutex_lock(&dev->mutex);
1777 
1778 	if (dev->inhibited)
1779 		goto out;
1780 
1781 	if (dev->users) {
1782 		if (dev->close)
1783 			dev->close(dev);
1784 		if (dev->poller)
1785 			input_dev_poller_stop(dev->poller);
1786 	}
1787 
1788 	spin_lock_irq(&dev->event_lock);
1789 	input_mt_release_slots(dev);
1790 	input_dev_release_keys(dev);
1791 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1792 	input_dev_toggle(dev, false);
1793 	spin_unlock_irq(&dev->event_lock);
1794 
1795 	dev->inhibited = true;
1796 
1797 out:
1798 	mutex_unlock(&dev->mutex);
1799 	return 0;
1800 }
1801 
1802 static int input_uninhibit_device(struct input_dev *dev)
1803 {
1804 	int ret = 0;
1805 
1806 	mutex_lock(&dev->mutex);
1807 
1808 	if (!dev->inhibited)
1809 		goto out;
1810 
1811 	if (dev->users) {
1812 		if (dev->open) {
1813 			ret = dev->open(dev);
1814 			if (ret)
1815 				goto out;
1816 		}
1817 		if (dev->poller)
1818 			input_dev_poller_start(dev->poller);
1819 	}
1820 
1821 	dev->inhibited = false;
1822 	spin_lock_irq(&dev->event_lock);
1823 	input_dev_toggle(dev, true);
1824 	spin_unlock_irq(&dev->event_lock);
1825 
1826 out:
1827 	mutex_unlock(&dev->mutex);
1828 	return ret;
1829 }
1830 
1831 #ifdef CONFIG_PM_SLEEP
1832 static int input_dev_suspend(struct device *dev)
1833 {
1834 	struct input_dev *input_dev = to_input_dev(dev);
1835 
1836 	spin_lock_irq(&input_dev->event_lock);
1837 
1838 	/*
1839 	 * Keys that are pressed now are unlikely to be
1840 	 * still pressed when we resume.
1841 	 */
1842 	if (input_dev_release_keys(input_dev))
1843 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1844 
1845 	/* Turn off LEDs and sounds, if any are active. */
1846 	input_dev_toggle(input_dev, false);
1847 
1848 	spin_unlock_irq(&input_dev->event_lock);
1849 
1850 	return 0;
1851 }
1852 
1853 static int input_dev_resume(struct device *dev)
1854 {
1855 	struct input_dev *input_dev = to_input_dev(dev);
1856 
1857 	spin_lock_irq(&input_dev->event_lock);
1858 
1859 	/* Restore state of LEDs and sounds, if any were active. */
1860 	input_dev_toggle(input_dev, true);
1861 
1862 	spin_unlock_irq(&input_dev->event_lock);
1863 
1864 	return 0;
1865 }
1866 
1867 static int input_dev_freeze(struct device *dev)
1868 {
1869 	struct input_dev *input_dev = to_input_dev(dev);
1870 
1871 	spin_lock_irq(&input_dev->event_lock);
1872 
1873 	/*
1874 	 * Keys that are pressed now are unlikely to be
1875 	 * still pressed when we resume.
1876 	 */
1877 	if (input_dev_release_keys(input_dev))
1878 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1879 
1880 	spin_unlock_irq(&input_dev->event_lock);
1881 
1882 	return 0;
1883 }
1884 
1885 static int input_dev_poweroff(struct device *dev)
1886 {
1887 	struct input_dev *input_dev = to_input_dev(dev);
1888 
1889 	spin_lock_irq(&input_dev->event_lock);
1890 
1891 	/* Turn off LEDs and sounds, if any are active. */
1892 	input_dev_toggle(input_dev, false);
1893 
1894 	spin_unlock_irq(&input_dev->event_lock);
1895 
1896 	return 0;
1897 }
1898 
1899 static const struct dev_pm_ops input_dev_pm_ops = {
1900 	.suspend	= input_dev_suspend,
1901 	.resume		= input_dev_resume,
1902 	.freeze		= input_dev_freeze,
1903 	.poweroff	= input_dev_poweroff,
1904 	.restore	= input_dev_resume,
1905 };
1906 #endif /* CONFIG_PM */
1907 
1908 static const struct device_type input_dev_type = {
1909 	.groups		= input_dev_attr_groups,
1910 	.release	= input_dev_release,
1911 	.uevent		= input_dev_uevent,
1912 #ifdef CONFIG_PM_SLEEP
1913 	.pm		= &input_dev_pm_ops,
1914 #endif
1915 };
1916 
1917 static char *input_devnode(const struct device *dev, umode_t *mode)
1918 {
1919 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1920 }
1921 
1922 struct class input_class = {
1923 	.name		= "input",
1924 	.devnode	= input_devnode,
1925 };
1926 EXPORT_SYMBOL_GPL(input_class);
1927 
1928 /**
1929  * input_allocate_device - allocate memory for new input device
1930  *
1931  * Returns prepared struct input_dev or %NULL.
1932  *
1933  * NOTE: Use input_free_device() to free devices that have not been
1934  * registered; input_unregister_device() should be used for already
1935  * registered devices.
1936  */
1937 struct input_dev *input_allocate_device(void)
1938 {
1939 	static atomic_t input_no = ATOMIC_INIT(-1);
1940 	struct input_dev *dev;
1941 
1942 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1943 	if (dev) {
1944 		dev->dev.type = &input_dev_type;
1945 		dev->dev.class = &input_class;
1946 		device_initialize(&dev->dev);
1947 		mutex_init(&dev->mutex);
1948 		spin_lock_init(&dev->event_lock);
1949 		timer_setup(&dev->timer, NULL, 0);
1950 		INIT_LIST_HEAD(&dev->h_list);
1951 		INIT_LIST_HEAD(&dev->node);
1952 
1953 		dev_set_name(&dev->dev, "input%lu",
1954 			     (unsigned long)atomic_inc_return(&input_no));
1955 
1956 		__module_get(THIS_MODULE);
1957 	}
1958 
1959 	return dev;
1960 }
1961 EXPORT_SYMBOL(input_allocate_device);
1962 
1963 struct input_devres {
1964 	struct input_dev *input;
1965 };
1966 
1967 static int devm_input_device_match(struct device *dev, void *res, void *data)
1968 {
1969 	struct input_devres *devres = res;
1970 
1971 	return devres->input == data;
1972 }
1973 
1974 static void devm_input_device_release(struct device *dev, void *res)
1975 {
1976 	struct input_devres *devres = res;
1977 	struct input_dev *input = devres->input;
1978 
1979 	dev_dbg(dev, "%s: dropping reference to %s\n",
1980 		__func__, dev_name(&input->dev));
1981 	input_put_device(input);
1982 }
1983 
1984 /**
1985  * devm_input_allocate_device - allocate managed input device
1986  * @dev: device owning the input device being created
1987  *
1988  * Returns prepared struct input_dev or %NULL.
1989  *
1990  * Managed input devices do not need to be explicitly unregistered or
1991  * freed as it will be done automatically when owner device unbinds from
1992  * its driver (or binding fails). Once managed input device is allocated,
1993  * it is ready to be set up and registered in the same fashion as regular
1994  * input device. There are no special devm_input_device_[un]register()
1995  * variants, regular ones work with both managed and unmanaged devices,
1996  * should you need them. In most cases however, managed input device need
1997  * not be explicitly unregistered or freed.
1998  *
1999  * NOTE: the owner device is set up as parent of input device and users
2000  * should not override it.
2001  */
2002 struct input_dev *devm_input_allocate_device(struct device *dev)
2003 {
2004 	struct input_dev *input;
2005 	struct input_devres *devres;
2006 
2007 	devres = devres_alloc(devm_input_device_release,
2008 			      sizeof(*devres), GFP_KERNEL);
2009 	if (!devres)
2010 		return NULL;
2011 
2012 	input = input_allocate_device();
2013 	if (!input) {
2014 		devres_free(devres);
2015 		return NULL;
2016 	}
2017 
2018 	input->dev.parent = dev;
2019 	input->devres_managed = true;
2020 
2021 	devres->input = input;
2022 	devres_add(dev, devres);
2023 
2024 	return input;
2025 }
2026 EXPORT_SYMBOL(devm_input_allocate_device);
2027 
2028 /**
2029  * input_free_device - free memory occupied by input_dev structure
2030  * @dev: input device to free
2031  *
2032  * This function should only be used if input_register_device()
2033  * was not called yet or if it failed. Once device was registered
2034  * use input_unregister_device() and memory will be freed once last
2035  * reference to the device is dropped.
2036  *
2037  * Device should be allocated by input_allocate_device().
2038  *
2039  * NOTE: If there are references to the input device then memory
2040  * will not be freed until last reference is dropped.
2041  */
2042 void input_free_device(struct input_dev *dev)
2043 {
2044 	if (dev) {
2045 		if (dev->devres_managed)
2046 			WARN_ON(devres_destroy(dev->dev.parent,
2047 						devm_input_device_release,
2048 						devm_input_device_match,
2049 						dev));
2050 		input_put_device(dev);
2051 	}
2052 }
2053 EXPORT_SYMBOL(input_free_device);
2054 
2055 /**
2056  * input_set_timestamp - set timestamp for input events
2057  * @dev: input device to set timestamp for
2058  * @timestamp: the time at which the event has occurred
2059  *   in CLOCK_MONOTONIC
2060  *
2061  * This function is intended to provide to the input system a more
2062  * accurate time of when an event actually occurred. The driver should
2063  * call this function as soon as a timestamp is acquired ensuring
2064  * clock conversions in input_set_timestamp are done correctly.
2065  *
2066  * The system entering suspend state between timestamp acquisition and
2067  * calling input_set_timestamp can result in inaccurate conversions.
2068  */
2069 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2070 {
2071 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2072 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2073 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2074 							   TK_OFFS_BOOT);
2075 }
2076 EXPORT_SYMBOL(input_set_timestamp);
2077 
2078 /**
2079  * input_get_timestamp - get timestamp for input events
2080  * @dev: input device to get timestamp from
2081  *
2082  * A valid timestamp is a timestamp of non-zero value.
2083  */
2084 ktime_t *input_get_timestamp(struct input_dev *dev)
2085 {
2086 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2087 
2088 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2089 		input_set_timestamp(dev, ktime_get());
2090 
2091 	return dev->timestamp;
2092 }
2093 EXPORT_SYMBOL(input_get_timestamp);
2094 
2095 /**
2096  * input_set_capability - mark device as capable of a certain event
2097  * @dev: device that is capable of emitting or accepting event
2098  * @type: type of the event (EV_KEY, EV_REL, etc...)
2099  * @code: event code
2100  *
2101  * In addition to setting up corresponding bit in appropriate capability
2102  * bitmap the function also adjusts dev->evbit.
2103  */
2104 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2105 {
2106 	if (type < EV_CNT && input_max_code[type] &&
2107 	    code > input_max_code[type]) {
2108 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2109 		       type);
2110 		dump_stack();
2111 		return;
2112 	}
2113 
2114 	switch (type) {
2115 	case EV_KEY:
2116 		__set_bit(code, dev->keybit);
2117 		break;
2118 
2119 	case EV_REL:
2120 		__set_bit(code, dev->relbit);
2121 		break;
2122 
2123 	case EV_ABS:
2124 		input_alloc_absinfo(dev);
2125 		__set_bit(code, dev->absbit);
2126 		break;
2127 
2128 	case EV_MSC:
2129 		__set_bit(code, dev->mscbit);
2130 		break;
2131 
2132 	case EV_SW:
2133 		__set_bit(code, dev->swbit);
2134 		break;
2135 
2136 	case EV_LED:
2137 		__set_bit(code, dev->ledbit);
2138 		break;
2139 
2140 	case EV_SND:
2141 		__set_bit(code, dev->sndbit);
2142 		break;
2143 
2144 	case EV_FF:
2145 		__set_bit(code, dev->ffbit);
2146 		break;
2147 
2148 	case EV_PWR:
2149 		/* do nothing */
2150 		break;
2151 
2152 	default:
2153 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2154 		dump_stack();
2155 		return;
2156 	}
2157 
2158 	__set_bit(type, dev->evbit);
2159 }
2160 EXPORT_SYMBOL(input_set_capability);
2161 
2162 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2163 {
2164 	int mt_slots;
2165 	int i;
2166 	unsigned int events;
2167 
2168 	if (dev->mt) {
2169 		mt_slots = dev->mt->num_slots;
2170 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2171 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2172 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2173 		mt_slots = clamp(mt_slots, 2, 32);
2174 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2175 		mt_slots = 2;
2176 	} else {
2177 		mt_slots = 0;
2178 	}
2179 
2180 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2181 
2182 	if (test_bit(EV_ABS, dev->evbit))
2183 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2184 			events += input_is_mt_axis(i) ? mt_slots : 1;
2185 
2186 	if (test_bit(EV_REL, dev->evbit))
2187 		events += bitmap_weight(dev->relbit, REL_CNT);
2188 
2189 	/* Make room for KEY and MSC events */
2190 	events += 7;
2191 
2192 	return events;
2193 }
2194 
2195 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2196 	do {								\
2197 		if (!test_bit(EV_##type, dev->evbit))			\
2198 			memset(dev->bits##bit, 0,			\
2199 				sizeof(dev->bits##bit));		\
2200 	} while (0)
2201 
2202 static void input_cleanse_bitmasks(struct input_dev *dev)
2203 {
2204 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2205 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2206 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2207 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2208 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2209 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2210 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2211 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2212 }
2213 
2214 static void __input_unregister_device(struct input_dev *dev)
2215 {
2216 	struct input_handle *handle, *next;
2217 
2218 	input_disconnect_device(dev);
2219 
2220 	mutex_lock(&input_mutex);
2221 
2222 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2223 		handle->handler->disconnect(handle);
2224 	WARN_ON(!list_empty(&dev->h_list));
2225 
2226 	del_timer_sync(&dev->timer);
2227 	list_del_init(&dev->node);
2228 
2229 	input_wakeup_procfs_readers();
2230 
2231 	mutex_unlock(&input_mutex);
2232 
2233 	device_del(&dev->dev);
2234 }
2235 
2236 static void devm_input_device_unregister(struct device *dev, void *res)
2237 {
2238 	struct input_devres *devres = res;
2239 	struct input_dev *input = devres->input;
2240 
2241 	dev_dbg(dev, "%s: unregistering device %s\n",
2242 		__func__, dev_name(&input->dev));
2243 	__input_unregister_device(input);
2244 }
2245 
2246 /*
2247  * Generate software autorepeat event. Note that we take
2248  * dev->event_lock here to avoid racing with input_event
2249  * which may cause keys get "stuck".
2250  */
2251 static void input_repeat_key(struct timer_list *t)
2252 {
2253 	struct input_dev *dev = from_timer(dev, t, timer);
2254 	unsigned long flags;
2255 
2256 	spin_lock_irqsave(&dev->event_lock, flags);
2257 
2258 	if (!dev->inhibited &&
2259 	    test_bit(dev->repeat_key, dev->key) &&
2260 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2261 
2262 		input_set_timestamp(dev, ktime_get());
2263 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2264 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2265 
2266 		if (dev->rep[REP_PERIOD])
2267 			mod_timer(&dev->timer, jiffies +
2268 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2269 	}
2270 
2271 	spin_unlock_irqrestore(&dev->event_lock, flags);
2272 }
2273 
2274 /**
2275  * input_enable_softrepeat - enable software autorepeat
2276  * @dev: input device
2277  * @delay: repeat delay
2278  * @period: repeat period
2279  *
2280  * Enable software autorepeat on the input device.
2281  */
2282 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2283 {
2284 	dev->timer.function = input_repeat_key;
2285 	dev->rep[REP_DELAY] = delay;
2286 	dev->rep[REP_PERIOD] = period;
2287 }
2288 EXPORT_SYMBOL(input_enable_softrepeat);
2289 
2290 bool input_device_enabled(struct input_dev *dev)
2291 {
2292 	lockdep_assert_held(&dev->mutex);
2293 
2294 	return !dev->inhibited && dev->users > 0;
2295 }
2296 EXPORT_SYMBOL_GPL(input_device_enabled);
2297 
2298 /**
2299  * input_register_device - register device with input core
2300  * @dev: device to be registered
2301  *
2302  * This function registers device with input core. The device must be
2303  * allocated with input_allocate_device() and all it's capabilities
2304  * set up before registering.
2305  * If function fails the device must be freed with input_free_device().
2306  * Once device has been successfully registered it can be unregistered
2307  * with input_unregister_device(); input_free_device() should not be
2308  * called in this case.
2309  *
2310  * Note that this function is also used to register managed input devices
2311  * (ones allocated with devm_input_allocate_device()). Such managed input
2312  * devices need not be explicitly unregistered or freed, their tear down
2313  * is controlled by the devres infrastructure. It is also worth noting
2314  * that tear down of managed input devices is internally a 2-step process:
2315  * registered managed input device is first unregistered, but stays in
2316  * memory and can still handle input_event() calls (although events will
2317  * not be delivered anywhere). The freeing of managed input device will
2318  * happen later, when devres stack is unwound to the point where device
2319  * allocation was made.
2320  */
2321 int input_register_device(struct input_dev *dev)
2322 {
2323 	struct input_devres *devres = NULL;
2324 	struct input_handler *handler;
2325 	unsigned int packet_size;
2326 	const char *path;
2327 	int error;
2328 
2329 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2330 		dev_err(&dev->dev,
2331 			"Absolute device without dev->absinfo, refusing to register\n");
2332 		return -EINVAL;
2333 	}
2334 
2335 	if (dev->devres_managed) {
2336 		devres = devres_alloc(devm_input_device_unregister,
2337 				      sizeof(*devres), GFP_KERNEL);
2338 		if (!devres)
2339 			return -ENOMEM;
2340 
2341 		devres->input = dev;
2342 	}
2343 
2344 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2345 	__set_bit(EV_SYN, dev->evbit);
2346 
2347 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2348 	__clear_bit(KEY_RESERVED, dev->keybit);
2349 
2350 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2351 	input_cleanse_bitmasks(dev);
2352 
2353 	packet_size = input_estimate_events_per_packet(dev);
2354 	if (dev->hint_events_per_packet < packet_size)
2355 		dev->hint_events_per_packet = packet_size;
2356 
2357 	dev->max_vals = dev->hint_events_per_packet + 2;
2358 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2359 	if (!dev->vals) {
2360 		error = -ENOMEM;
2361 		goto err_devres_free;
2362 	}
2363 
2364 	/*
2365 	 * If delay and period are pre-set by the driver, then autorepeating
2366 	 * is handled by the driver itself and we don't do it in input.c.
2367 	 */
2368 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2369 		input_enable_softrepeat(dev, 250, 33);
2370 
2371 	if (!dev->getkeycode)
2372 		dev->getkeycode = input_default_getkeycode;
2373 
2374 	if (!dev->setkeycode)
2375 		dev->setkeycode = input_default_setkeycode;
2376 
2377 	if (dev->poller)
2378 		input_dev_poller_finalize(dev->poller);
2379 
2380 	error = device_add(&dev->dev);
2381 	if (error)
2382 		goto err_free_vals;
2383 
2384 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2385 	pr_info("%s as %s\n",
2386 		dev->name ? dev->name : "Unspecified device",
2387 		path ? path : "N/A");
2388 	kfree(path);
2389 
2390 	error = mutex_lock_interruptible(&input_mutex);
2391 	if (error)
2392 		goto err_device_del;
2393 
2394 	list_add_tail(&dev->node, &input_dev_list);
2395 
2396 	list_for_each_entry(handler, &input_handler_list, node)
2397 		input_attach_handler(dev, handler);
2398 
2399 	input_wakeup_procfs_readers();
2400 
2401 	mutex_unlock(&input_mutex);
2402 
2403 	if (dev->devres_managed) {
2404 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2405 			__func__, dev_name(&dev->dev));
2406 		devres_add(dev->dev.parent, devres);
2407 	}
2408 	return 0;
2409 
2410 err_device_del:
2411 	device_del(&dev->dev);
2412 err_free_vals:
2413 	kfree(dev->vals);
2414 	dev->vals = NULL;
2415 err_devres_free:
2416 	devres_free(devres);
2417 	return error;
2418 }
2419 EXPORT_SYMBOL(input_register_device);
2420 
2421 /**
2422  * input_unregister_device - unregister previously registered device
2423  * @dev: device to be unregistered
2424  *
2425  * This function unregisters an input device. Once device is unregistered
2426  * the caller should not try to access it as it may get freed at any moment.
2427  */
2428 void input_unregister_device(struct input_dev *dev)
2429 {
2430 	if (dev->devres_managed) {
2431 		WARN_ON(devres_destroy(dev->dev.parent,
2432 					devm_input_device_unregister,
2433 					devm_input_device_match,
2434 					dev));
2435 		__input_unregister_device(dev);
2436 		/*
2437 		 * We do not do input_put_device() here because it will be done
2438 		 * when 2nd devres fires up.
2439 		 */
2440 	} else {
2441 		__input_unregister_device(dev);
2442 		input_put_device(dev);
2443 	}
2444 }
2445 EXPORT_SYMBOL(input_unregister_device);
2446 
2447 /**
2448  * input_register_handler - register a new input handler
2449  * @handler: handler to be registered
2450  *
2451  * This function registers a new input handler (interface) for input
2452  * devices in the system and attaches it to all input devices that
2453  * are compatible with the handler.
2454  */
2455 int input_register_handler(struct input_handler *handler)
2456 {
2457 	struct input_dev *dev;
2458 	int error;
2459 
2460 	error = mutex_lock_interruptible(&input_mutex);
2461 	if (error)
2462 		return error;
2463 
2464 	INIT_LIST_HEAD(&handler->h_list);
2465 
2466 	list_add_tail(&handler->node, &input_handler_list);
2467 
2468 	list_for_each_entry(dev, &input_dev_list, node)
2469 		input_attach_handler(dev, handler);
2470 
2471 	input_wakeup_procfs_readers();
2472 
2473 	mutex_unlock(&input_mutex);
2474 	return 0;
2475 }
2476 EXPORT_SYMBOL(input_register_handler);
2477 
2478 /**
2479  * input_unregister_handler - unregisters an input handler
2480  * @handler: handler to be unregistered
2481  *
2482  * This function disconnects a handler from its input devices and
2483  * removes it from lists of known handlers.
2484  */
2485 void input_unregister_handler(struct input_handler *handler)
2486 {
2487 	struct input_handle *handle, *next;
2488 
2489 	mutex_lock(&input_mutex);
2490 
2491 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2492 		handler->disconnect(handle);
2493 	WARN_ON(!list_empty(&handler->h_list));
2494 
2495 	list_del_init(&handler->node);
2496 
2497 	input_wakeup_procfs_readers();
2498 
2499 	mutex_unlock(&input_mutex);
2500 }
2501 EXPORT_SYMBOL(input_unregister_handler);
2502 
2503 /**
2504  * input_handler_for_each_handle - handle iterator
2505  * @handler: input handler to iterate
2506  * @data: data for the callback
2507  * @fn: function to be called for each handle
2508  *
2509  * Iterate over @bus's list of devices, and call @fn for each, passing
2510  * it @data and stop when @fn returns a non-zero value. The function is
2511  * using RCU to traverse the list and therefore may be using in atomic
2512  * contexts. The @fn callback is invoked from RCU critical section and
2513  * thus must not sleep.
2514  */
2515 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2516 				  int (*fn)(struct input_handle *, void *))
2517 {
2518 	struct input_handle *handle;
2519 	int retval = 0;
2520 
2521 	rcu_read_lock();
2522 
2523 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2524 		retval = fn(handle, data);
2525 		if (retval)
2526 			break;
2527 	}
2528 
2529 	rcu_read_unlock();
2530 
2531 	return retval;
2532 }
2533 EXPORT_SYMBOL(input_handler_for_each_handle);
2534 
2535 /**
2536  * input_register_handle - register a new input handle
2537  * @handle: handle to register
2538  *
2539  * This function puts a new input handle onto device's
2540  * and handler's lists so that events can flow through
2541  * it once it is opened using input_open_device().
2542  *
2543  * This function is supposed to be called from handler's
2544  * connect() method.
2545  */
2546 int input_register_handle(struct input_handle *handle)
2547 {
2548 	struct input_handler *handler = handle->handler;
2549 	struct input_dev *dev = handle->dev;
2550 	int error;
2551 
2552 	/*
2553 	 * We take dev->mutex here to prevent race with
2554 	 * input_release_device().
2555 	 */
2556 	error = mutex_lock_interruptible(&dev->mutex);
2557 	if (error)
2558 		return error;
2559 
2560 	/*
2561 	 * Filters go to the head of the list, normal handlers
2562 	 * to the tail.
2563 	 */
2564 	if (handler->filter)
2565 		list_add_rcu(&handle->d_node, &dev->h_list);
2566 	else
2567 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2568 
2569 	mutex_unlock(&dev->mutex);
2570 
2571 	/*
2572 	 * Since we are supposed to be called from ->connect()
2573 	 * which is mutually exclusive with ->disconnect()
2574 	 * we can't be racing with input_unregister_handle()
2575 	 * and so separate lock is not needed here.
2576 	 */
2577 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2578 
2579 	if (handler->start)
2580 		handler->start(handle);
2581 
2582 	return 0;
2583 }
2584 EXPORT_SYMBOL(input_register_handle);
2585 
2586 /**
2587  * input_unregister_handle - unregister an input handle
2588  * @handle: handle to unregister
2589  *
2590  * This function removes input handle from device's
2591  * and handler's lists.
2592  *
2593  * This function is supposed to be called from handler's
2594  * disconnect() method.
2595  */
2596 void input_unregister_handle(struct input_handle *handle)
2597 {
2598 	struct input_dev *dev = handle->dev;
2599 
2600 	list_del_rcu(&handle->h_node);
2601 
2602 	/*
2603 	 * Take dev->mutex to prevent race with input_release_device().
2604 	 */
2605 	mutex_lock(&dev->mutex);
2606 	list_del_rcu(&handle->d_node);
2607 	mutex_unlock(&dev->mutex);
2608 
2609 	synchronize_rcu();
2610 }
2611 EXPORT_SYMBOL(input_unregister_handle);
2612 
2613 /**
2614  * input_get_new_minor - allocates a new input minor number
2615  * @legacy_base: beginning or the legacy range to be searched
2616  * @legacy_num: size of legacy range
2617  * @allow_dynamic: whether we can also take ID from the dynamic range
2618  *
2619  * This function allocates a new device minor for from input major namespace.
2620  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2621  * parameters and whether ID can be allocated from dynamic range if there are
2622  * no free IDs in legacy range.
2623  */
2624 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2625 			bool allow_dynamic)
2626 {
2627 	/*
2628 	 * This function should be called from input handler's ->connect()
2629 	 * methods, which are serialized with input_mutex, so no additional
2630 	 * locking is needed here.
2631 	 */
2632 	if (legacy_base >= 0) {
2633 		int minor = ida_simple_get(&input_ida,
2634 					   legacy_base,
2635 					   legacy_base + legacy_num,
2636 					   GFP_KERNEL);
2637 		if (minor >= 0 || !allow_dynamic)
2638 			return minor;
2639 	}
2640 
2641 	return ida_simple_get(&input_ida,
2642 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2643 			      GFP_KERNEL);
2644 }
2645 EXPORT_SYMBOL(input_get_new_minor);
2646 
2647 /**
2648  * input_free_minor - release previously allocated minor
2649  * @minor: minor to be released
2650  *
2651  * This function releases previously allocated input minor so that it can be
2652  * reused later.
2653  */
2654 void input_free_minor(unsigned int minor)
2655 {
2656 	ida_simple_remove(&input_ida, minor);
2657 }
2658 EXPORT_SYMBOL(input_free_minor);
2659 
2660 static int __init input_init(void)
2661 {
2662 	int err;
2663 
2664 	err = class_register(&input_class);
2665 	if (err) {
2666 		pr_err("unable to register input_dev class\n");
2667 		return err;
2668 	}
2669 
2670 	err = input_proc_init();
2671 	if (err)
2672 		goto fail1;
2673 
2674 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2675 				     INPUT_MAX_CHAR_DEVICES, "input");
2676 	if (err) {
2677 		pr_err("unable to register char major %d", INPUT_MAJOR);
2678 		goto fail2;
2679 	}
2680 
2681 	return 0;
2682 
2683  fail2:	input_proc_exit();
2684  fail1:	class_unregister(&input_class);
2685 	return err;
2686 }
2687 
2688 static void __exit input_exit(void)
2689 {
2690 	input_proc_exit();
2691 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2692 				 INPUT_MAX_CHAR_DEVICES);
2693 	class_unregister(&input_class);
2694 }
2695 
2696 subsys_initcall(input_init);
2697 module_exit(input_exit);
2698