xref: /openbmc/linux/drivers/input/input.c (revision 93d90ad7)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14 
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static inline int is_event_supported(unsigned int code,
54 				     unsigned long *bm, unsigned int max)
55 {
56 	return code <= max && test_bit(code, bm);
57 }
58 
59 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60 {
61 	if (fuzz) {
62 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63 			return old_val;
64 
65 		if (value > old_val - fuzz && value < old_val + fuzz)
66 			return (old_val * 3 + value) / 4;
67 
68 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69 			return (old_val + value) / 2;
70 	}
71 
72 	return value;
73 }
74 
75 static void input_start_autorepeat(struct input_dev *dev, int code)
76 {
77 	if (test_bit(EV_REP, dev->evbit) &&
78 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79 	    dev->timer.data) {
80 		dev->repeat_key = code;
81 		mod_timer(&dev->timer,
82 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83 	}
84 }
85 
86 static void input_stop_autorepeat(struct input_dev *dev)
87 {
88 	del_timer(&dev->timer);
89 }
90 
91 /*
92  * Pass event first through all filters and then, if event has not been
93  * filtered out, through all open handles. This function is called with
94  * dev->event_lock held and interrupts disabled.
95  */
96 static unsigned int input_to_handler(struct input_handle *handle,
97 			struct input_value *vals, unsigned int count)
98 {
99 	struct input_handler *handler = handle->handler;
100 	struct input_value *end = vals;
101 	struct input_value *v;
102 
103 	for (v = vals; v != vals + count; v++) {
104 		if (handler->filter &&
105 		    handler->filter(handle, v->type, v->code, v->value))
106 			continue;
107 		if (end != v)
108 			*end = *v;
109 		end++;
110 	}
111 
112 	count = end - vals;
113 	if (!count)
114 		return 0;
115 
116 	if (handler->events)
117 		handler->events(handle, vals, count);
118 	else if (handler->event)
119 		for (v = vals; v != end; v++)
120 			handler->event(handle, v->type, v->code, v->value);
121 
122 	return count;
123 }
124 
125 /*
126  * Pass values first through all filters and then, if event has not been
127  * filtered out, through all open handles. This function is called with
128  * dev->event_lock held and interrupts disabled.
129  */
130 static void input_pass_values(struct input_dev *dev,
131 			      struct input_value *vals, unsigned int count)
132 {
133 	struct input_handle *handle;
134 	struct input_value *v;
135 
136 	if (!count)
137 		return;
138 
139 	rcu_read_lock();
140 
141 	handle = rcu_dereference(dev->grab);
142 	if (handle) {
143 		count = input_to_handler(handle, vals, count);
144 	} else {
145 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
146 			if (handle->open)
147 				count = input_to_handler(handle, vals, count);
148 	}
149 
150 	rcu_read_unlock();
151 
152 	add_input_randomness(vals->type, vals->code, vals->value);
153 
154 	/* trigger auto repeat for key events */
155 	for (v = vals; v != vals + count; v++) {
156 		if (v->type == EV_KEY && v->value != 2) {
157 			if (v->value)
158 				input_start_autorepeat(dev, v->code);
159 			else
160 				input_stop_autorepeat(dev);
161 		}
162 	}
163 }
164 
165 static void input_pass_event(struct input_dev *dev,
166 			     unsigned int type, unsigned int code, int value)
167 {
168 	struct input_value vals[] = { { type, code, value } };
169 
170 	input_pass_values(dev, vals, ARRAY_SIZE(vals));
171 }
172 
173 /*
174  * Generate software autorepeat event. Note that we take
175  * dev->event_lock here to avoid racing with input_event
176  * which may cause keys get "stuck".
177  */
178 static void input_repeat_key(unsigned long data)
179 {
180 	struct input_dev *dev = (void *) data;
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&dev->event_lock, flags);
184 
185 	if (test_bit(dev->repeat_key, dev->key) &&
186 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
187 		struct input_value vals[] =  {
188 			{ EV_KEY, dev->repeat_key, 2 },
189 			input_value_sync
190 		};
191 
192 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
193 
194 		if (dev->rep[REP_PERIOD])
195 			mod_timer(&dev->timer, jiffies +
196 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
197 	}
198 
199 	spin_unlock_irqrestore(&dev->event_lock, flags);
200 }
201 
202 #define INPUT_IGNORE_EVENT	0
203 #define INPUT_PASS_TO_HANDLERS	1
204 #define INPUT_PASS_TO_DEVICE	2
205 #define INPUT_SLOT		4
206 #define INPUT_FLUSH		8
207 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
208 
209 static int input_handle_abs_event(struct input_dev *dev,
210 				  unsigned int code, int *pval)
211 {
212 	struct input_mt *mt = dev->mt;
213 	bool is_mt_event;
214 	int *pold;
215 
216 	if (code == ABS_MT_SLOT) {
217 		/*
218 		 * "Stage" the event; we'll flush it later, when we
219 		 * get actual touch data.
220 		 */
221 		if (mt && *pval >= 0 && *pval < mt->num_slots)
222 			mt->slot = *pval;
223 
224 		return INPUT_IGNORE_EVENT;
225 	}
226 
227 	is_mt_event = input_is_mt_value(code);
228 
229 	if (!is_mt_event) {
230 		pold = &dev->absinfo[code].value;
231 	} else if (mt) {
232 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
233 	} else {
234 		/*
235 		 * Bypass filtering for multi-touch events when
236 		 * not employing slots.
237 		 */
238 		pold = NULL;
239 	}
240 
241 	if (pold) {
242 		*pval = input_defuzz_abs_event(*pval, *pold,
243 						dev->absinfo[code].fuzz);
244 		if (*pold == *pval)
245 			return INPUT_IGNORE_EVENT;
246 
247 		*pold = *pval;
248 	}
249 
250 	/* Flush pending "slot" event */
251 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
252 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
253 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
254 	}
255 
256 	return INPUT_PASS_TO_HANDLERS;
257 }
258 
259 static int input_get_disposition(struct input_dev *dev,
260 			  unsigned int type, unsigned int code, int *pval)
261 {
262 	int disposition = INPUT_IGNORE_EVENT;
263 	int value = *pval;
264 
265 	switch (type) {
266 
267 	case EV_SYN:
268 		switch (code) {
269 		case SYN_CONFIG:
270 			disposition = INPUT_PASS_TO_ALL;
271 			break;
272 
273 		case SYN_REPORT:
274 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
275 			break;
276 		case SYN_MT_REPORT:
277 			disposition = INPUT_PASS_TO_HANDLERS;
278 			break;
279 		}
280 		break;
281 
282 	case EV_KEY:
283 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
284 
285 			/* auto-repeat bypasses state updates */
286 			if (value == 2) {
287 				disposition = INPUT_PASS_TO_HANDLERS;
288 				break;
289 			}
290 
291 			if (!!test_bit(code, dev->key) != !!value) {
292 
293 				__change_bit(code, dev->key);
294 				disposition = INPUT_PASS_TO_HANDLERS;
295 			}
296 		}
297 		break;
298 
299 	case EV_SW:
300 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
301 		    !!test_bit(code, dev->sw) != !!value) {
302 
303 			__change_bit(code, dev->sw);
304 			disposition = INPUT_PASS_TO_HANDLERS;
305 		}
306 		break;
307 
308 	case EV_ABS:
309 		if (is_event_supported(code, dev->absbit, ABS_MAX))
310 			disposition = input_handle_abs_event(dev, code, &value);
311 
312 		break;
313 
314 	case EV_REL:
315 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
316 			disposition = INPUT_PASS_TO_HANDLERS;
317 
318 		break;
319 
320 	case EV_MSC:
321 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
322 			disposition = INPUT_PASS_TO_ALL;
323 
324 		break;
325 
326 	case EV_LED:
327 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
328 		    !!test_bit(code, dev->led) != !!value) {
329 
330 			__change_bit(code, dev->led);
331 			disposition = INPUT_PASS_TO_ALL;
332 		}
333 		break;
334 
335 	case EV_SND:
336 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
337 
338 			if (!!test_bit(code, dev->snd) != !!value)
339 				__change_bit(code, dev->snd);
340 			disposition = INPUT_PASS_TO_ALL;
341 		}
342 		break;
343 
344 	case EV_REP:
345 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
346 			dev->rep[code] = value;
347 			disposition = INPUT_PASS_TO_ALL;
348 		}
349 		break;
350 
351 	case EV_FF:
352 		if (value >= 0)
353 			disposition = INPUT_PASS_TO_ALL;
354 		break;
355 
356 	case EV_PWR:
357 		disposition = INPUT_PASS_TO_ALL;
358 		break;
359 	}
360 
361 	*pval = value;
362 	return disposition;
363 }
364 
365 static void input_handle_event(struct input_dev *dev,
366 			       unsigned int type, unsigned int code, int value)
367 {
368 	int disposition;
369 
370 	disposition = input_get_disposition(dev, type, code, &value);
371 
372 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
373 		dev->event(dev, type, code, value);
374 
375 	if (!dev->vals)
376 		return;
377 
378 	if (disposition & INPUT_PASS_TO_HANDLERS) {
379 		struct input_value *v;
380 
381 		if (disposition & INPUT_SLOT) {
382 			v = &dev->vals[dev->num_vals++];
383 			v->type = EV_ABS;
384 			v->code = ABS_MT_SLOT;
385 			v->value = dev->mt->slot;
386 		}
387 
388 		v = &dev->vals[dev->num_vals++];
389 		v->type = type;
390 		v->code = code;
391 		v->value = value;
392 	}
393 
394 	if (disposition & INPUT_FLUSH) {
395 		if (dev->num_vals >= 2)
396 			input_pass_values(dev, dev->vals, dev->num_vals);
397 		dev->num_vals = 0;
398 	} else if (dev->num_vals >= dev->max_vals - 2) {
399 		dev->vals[dev->num_vals++] = input_value_sync;
400 		input_pass_values(dev, dev->vals, dev->num_vals);
401 		dev->num_vals = 0;
402 	}
403 
404 }
405 
406 /**
407  * input_event() - report new input event
408  * @dev: device that generated the event
409  * @type: type of the event
410  * @code: event code
411  * @value: value of the event
412  *
413  * This function should be used by drivers implementing various input
414  * devices to report input events. See also input_inject_event().
415  *
416  * NOTE: input_event() may be safely used right after input device was
417  * allocated with input_allocate_device(), even before it is registered
418  * with input_register_device(), but the event will not reach any of the
419  * input handlers. Such early invocation of input_event() may be used
420  * to 'seed' initial state of a switch or initial position of absolute
421  * axis, etc.
422  */
423 void input_event(struct input_dev *dev,
424 		 unsigned int type, unsigned int code, int value)
425 {
426 	unsigned long flags;
427 
428 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
429 
430 		spin_lock_irqsave(&dev->event_lock, flags);
431 		input_handle_event(dev, type, code, value);
432 		spin_unlock_irqrestore(&dev->event_lock, flags);
433 	}
434 }
435 EXPORT_SYMBOL(input_event);
436 
437 /**
438  * input_inject_event() - send input event from input handler
439  * @handle: input handle to send event through
440  * @type: type of the event
441  * @code: event code
442  * @value: value of the event
443  *
444  * Similar to input_event() but will ignore event if device is
445  * "grabbed" and handle injecting event is not the one that owns
446  * the device.
447  */
448 void input_inject_event(struct input_handle *handle,
449 			unsigned int type, unsigned int code, int value)
450 {
451 	struct input_dev *dev = handle->dev;
452 	struct input_handle *grab;
453 	unsigned long flags;
454 
455 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
456 		spin_lock_irqsave(&dev->event_lock, flags);
457 
458 		rcu_read_lock();
459 		grab = rcu_dereference(dev->grab);
460 		if (!grab || grab == handle)
461 			input_handle_event(dev, type, code, value);
462 		rcu_read_unlock();
463 
464 		spin_unlock_irqrestore(&dev->event_lock, flags);
465 	}
466 }
467 EXPORT_SYMBOL(input_inject_event);
468 
469 /**
470  * input_alloc_absinfo - allocates array of input_absinfo structs
471  * @dev: the input device emitting absolute events
472  *
473  * If the absinfo struct the caller asked for is already allocated, this
474  * functions will not do anything.
475  */
476 void input_alloc_absinfo(struct input_dev *dev)
477 {
478 	if (!dev->absinfo)
479 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
480 					GFP_KERNEL);
481 
482 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
483 }
484 EXPORT_SYMBOL(input_alloc_absinfo);
485 
486 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
487 			  int min, int max, int fuzz, int flat)
488 {
489 	struct input_absinfo *absinfo;
490 
491 	input_alloc_absinfo(dev);
492 	if (!dev->absinfo)
493 		return;
494 
495 	absinfo = &dev->absinfo[axis];
496 	absinfo->minimum = min;
497 	absinfo->maximum = max;
498 	absinfo->fuzz = fuzz;
499 	absinfo->flat = flat;
500 
501 	__set_bit(EV_ABS, dev->evbit);
502 	__set_bit(axis, dev->absbit);
503 }
504 EXPORT_SYMBOL(input_set_abs_params);
505 
506 
507 /**
508  * input_grab_device - grabs device for exclusive use
509  * @handle: input handle that wants to own the device
510  *
511  * When a device is grabbed by an input handle all events generated by
512  * the device are delivered only to this handle. Also events injected
513  * by other input handles are ignored while device is grabbed.
514  */
515 int input_grab_device(struct input_handle *handle)
516 {
517 	struct input_dev *dev = handle->dev;
518 	int retval;
519 
520 	retval = mutex_lock_interruptible(&dev->mutex);
521 	if (retval)
522 		return retval;
523 
524 	if (dev->grab) {
525 		retval = -EBUSY;
526 		goto out;
527 	}
528 
529 	rcu_assign_pointer(dev->grab, handle);
530 
531  out:
532 	mutex_unlock(&dev->mutex);
533 	return retval;
534 }
535 EXPORT_SYMBOL(input_grab_device);
536 
537 static void __input_release_device(struct input_handle *handle)
538 {
539 	struct input_dev *dev = handle->dev;
540 	struct input_handle *grabber;
541 
542 	grabber = rcu_dereference_protected(dev->grab,
543 					    lockdep_is_held(&dev->mutex));
544 	if (grabber == handle) {
545 		rcu_assign_pointer(dev->grab, NULL);
546 		/* Make sure input_pass_event() notices that grab is gone */
547 		synchronize_rcu();
548 
549 		list_for_each_entry(handle, &dev->h_list, d_node)
550 			if (handle->open && handle->handler->start)
551 				handle->handler->start(handle);
552 	}
553 }
554 
555 /**
556  * input_release_device - release previously grabbed device
557  * @handle: input handle that owns the device
558  *
559  * Releases previously grabbed device so that other input handles can
560  * start receiving input events. Upon release all handlers attached
561  * to the device have their start() method called so they have a change
562  * to synchronize device state with the rest of the system.
563  */
564 void input_release_device(struct input_handle *handle)
565 {
566 	struct input_dev *dev = handle->dev;
567 
568 	mutex_lock(&dev->mutex);
569 	__input_release_device(handle);
570 	mutex_unlock(&dev->mutex);
571 }
572 EXPORT_SYMBOL(input_release_device);
573 
574 /**
575  * input_open_device - open input device
576  * @handle: handle through which device is being accessed
577  *
578  * This function should be called by input handlers when they
579  * want to start receive events from given input device.
580  */
581 int input_open_device(struct input_handle *handle)
582 {
583 	struct input_dev *dev = handle->dev;
584 	int retval;
585 
586 	retval = mutex_lock_interruptible(&dev->mutex);
587 	if (retval)
588 		return retval;
589 
590 	if (dev->going_away) {
591 		retval = -ENODEV;
592 		goto out;
593 	}
594 
595 	handle->open++;
596 
597 	if (!dev->users++ && dev->open)
598 		retval = dev->open(dev);
599 
600 	if (retval) {
601 		dev->users--;
602 		if (!--handle->open) {
603 			/*
604 			 * Make sure we are not delivering any more events
605 			 * through this handle
606 			 */
607 			synchronize_rcu();
608 		}
609 	}
610 
611  out:
612 	mutex_unlock(&dev->mutex);
613 	return retval;
614 }
615 EXPORT_SYMBOL(input_open_device);
616 
617 int input_flush_device(struct input_handle *handle, struct file *file)
618 {
619 	struct input_dev *dev = handle->dev;
620 	int retval;
621 
622 	retval = mutex_lock_interruptible(&dev->mutex);
623 	if (retval)
624 		return retval;
625 
626 	if (dev->flush)
627 		retval = dev->flush(dev, file);
628 
629 	mutex_unlock(&dev->mutex);
630 	return retval;
631 }
632 EXPORT_SYMBOL(input_flush_device);
633 
634 /**
635  * input_close_device - close input device
636  * @handle: handle through which device is being accessed
637  *
638  * This function should be called by input handlers when they
639  * want to stop receive events from given input device.
640  */
641 void input_close_device(struct input_handle *handle)
642 {
643 	struct input_dev *dev = handle->dev;
644 
645 	mutex_lock(&dev->mutex);
646 
647 	__input_release_device(handle);
648 
649 	if (!--dev->users && dev->close)
650 		dev->close(dev);
651 
652 	if (!--handle->open) {
653 		/*
654 		 * synchronize_rcu() makes sure that input_pass_event()
655 		 * completed and that no more input events are delivered
656 		 * through this handle
657 		 */
658 		synchronize_rcu();
659 	}
660 
661 	mutex_unlock(&dev->mutex);
662 }
663 EXPORT_SYMBOL(input_close_device);
664 
665 /*
666  * Simulate keyup events for all keys that are marked as pressed.
667  * The function must be called with dev->event_lock held.
668  */
669 static void input_dev_release_keys(struct input_dev *dev)
670 {
671 	int code;
672 
673 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
674 		for (code = 0; code <= KEY_MAX; code++) {
675 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
676 			    __test_and_clear_bit(code, dev->key)) {
677 				input_pass_event(dev, EV_KEY, code, 0);
678 			}
679 		}
680 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
681 	}
682 }
683 
684 /*
685  * Prepare device for unregistering
686  */
687 static void input_disconnect_device(struct input_dev *dev)
688 {
689 	struct input_handle *handle;
690 
691 	/*
692 	 * Mark device as going away. Note that we take dev->mutex here
693 	 * not to protect access to dev->going_away but rather to ensure
694 	 * that there are no threads in the middle of input_open_device()
695 	 */
696 	mutex_lock(&dev->mutex);
697 	dev->going_away = true;
698 	mutex_unlock(&dev->mutex);
699 
700 	spin_lock_irq(&dev->event_lock);
701 
702 	/*
703 	 * Simulate keyup events for all pressed keys so that handlers
704 	 * are not left with "stuck" keys. The driver may continue
705 	 * generate events even after we done here but they will not
706 	 * reach any handlers.
707 	 */
708 	input_dev_release_keys(dev);
709 
710 	list_for_each_entry(handle, &dev->h_list, d_node)
711 		handle->open = 0;
712 
713 	spin_unlock_irq(&dev->event_lock);
714 }
715 
716 /**
717  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
718  * @ke: keymap entry containing scancode to be converted.
719  * @scancode: pointer to the location where converted scancode should
720  *	be stored.
721  *
722  * This function is used to convert scancode stored in &struct keymap_entry
723  * into scalar form understood by legacy keymap handling methods. These
724  * methods expect scancodes to be represented as 'unsigned int'.
725  */
726 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
727 			     unsigned int *scancode)
728 {
729 	switch (ke->len) {
730 	case 1:
731 		*scancode = *((u8 *)ke->scancode);
732 		break;
733 
734 	case 2:
735 		*scancode = *((u16 *)ke->scancode);
736 		break;
737 
738 	case 4:
739 		*scancode = *((u32 *)ke->scancode);
740 		break;
741 
742 	default:
743 		return -EINVAL;
744 	}
745 
746 	return 0;
747 }
748 EXPORT_SYMBOL(input_scancode_to_scalar);
749 
750 /*
751  * Those routines handle the default case where no [gs]etkeycode() is
752  * defined. In this case, an array indexed by the scancode is used.
753  */
754 
755 static unsigned int input_fetch_keycode(struct input_dev *dev,
756 					unsigned int index)
757 {
758 	switch (dev->keycodesize) {
759 	case 1:
760 		return ((u8 *)dev->keycode)[index];
761 
762 	case 2:
763 		return ((u16 *)dev->keycode)[index];
764 
765 	default:
766 		return ((u32 *)dev->keycode)[index];
767 	}
768 }
769 
770 static int input_default_getkeycode(struct input_dev *dev,
771 				    struct input_keymap_entry *ke)
772 {
773 	unsigned int index;
774 	int error;
775 
776 	if (!dev->keycodesize)
777 		return -EINVAL;
778 
779 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
780 		index = ke->index;
781 	else {
782 		error = input_scancode_to_scalar(ke, &index);
783 		if (error)
784 			return error;
785 	}
786 
787 	if (index >= dev->keycodemax)
788 		return -EINVAL;
789 
790 	ke->keycode = input_fetch_keycode(dev, index);
791 	ke->index = index;
792 	ke->len = sizeof(index);
793 	memcpy(ke->scancode, &index, sizeof(index));
794 
795 	return 0;
796 }
797 
798 static int input_default_setkeycode(struct input_dev *dev,
799 				    const struct input_keymap_entry *ke,
800 				    unsigned int *old_keycode)
801 {
802 	unsigned int index;
803 	int error;
804 	int i;
805 
806 	if (!dev->keycodesize)
807 		return -EINVAL;
808 
809 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
810 		index = ke->index;
811 	} else {
812 		error = input_scancode_to_scalar(ke, &index);
813 		if (error)
814 			return error;
815 	}
816 
817 	if (index >= dev->keycodemax)
818 		return -EINVAL;
819 
820 	if (dev->keycodesize < sizeof(ke->keycode) &&
821 			(ke->keycode >> (dev->keycodesize * 8)))
822 		return -EINVAL;
823 
824 	switch (dev->keycodesize) {
825 		case 1: {
826 			u8 *k = (u8 *)dev->keycode;
827 			*old_keycode = k[index];
828 			k[index] = ke->keycode;
829 			break;
830 		}
831 		case 2: {
832 			u16 *k = (u16 *)dev->keycode;
833 			*old_keycode = k[index];
834 			k[index] = ke->keycode;
835 			break;
836 		}
837 		default: {
838 			u32 *k = (u32 *)dev->keycode;
839 			*old_keycode = k[index];
840 			k[index] = ke->keycode;
841 			break;
842 		}
843 	}
844 
845 	__clear_bit(*old_keycode, dev->keybit);
846 	__set_bit(ke->keycode, dev->keybit);
847 
848 	for (i = 0; i < dev->keycodemax; i++) {
849 		if (input_fetch_keycode(dev, i) == *old_keycode) {
850 			__set_bit(*old_keycode, dev->keybit);
851 			break; /* Setting the bit twice is useless, so break */
852 		}
853 	}
854 
855 	return 0;
856 }
857 
858 /**
859  * input_get_keycode - retrieve keycode currently mapped to a given scancode
860  * @dev: input device which keymap is being queried
861  * @ke: keymap entry
862  *
863  * This function should be called by anyone interested in retrieving current
864  * keymap. Presently evdev handlers use it.
865  */
866 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
867 {
868 	unsigned long flags;
869 	int retval;
870 
871 	spin_lock_irqsave(&dev->event_lock, flags);
872 	retval = dev->getkeycode(dev, ke);
873 	spin_unlock_irqrestore(&dev->event_lock, flags);
874 
875 	return retval;
876 }
877 EXPORT_SYMBOL(input_get_keycode);
878 
879 /**
880  * input_set_keycode - attribute a keycode to a given scancode
881  * @dev: input device which keymap is being updated
882  * @ke: new keymap entry
883  *
884  * This function should be called by anyone needing to update current
885  * keymap. Presently keyboard and evdev handlers use it.
886  */
887 int input_set_keycode(struct input_dev *dev,
888 		      const struct input_keymap_entry *ke)
889 {
890 	unsigned long flags;
891 	unsigned int old_keycode;
892 	int retval;
893 
894 	if (ke->keycode > KEY_MAX)
895 		return -EINVAL;
896 
897 	spin_lock_irqsave(&dev->event_lock, flags);
898 
899 	retval = dev->setkeycode(dev, ke, &old_keycode);
900 	if (retval)
901 		goto out;
902 
903 	/* Make sure KEY_RESERVED did not get enabled. */
904 	__clear_bit(KEY_RESERVED, dev->keybit);
905 
906 	/*
907 	 * Simulate keyup event if keycode is not present
908 	 * in the keymap anymore
909 	 */
910 	if (test_bit(EV_KEY, dev->evbit) &&
911 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
912 	    __test_and_clear_bit(old_keycode, dev->key)) {
913 		struct input_value vals[] =  {
914 			{ EV_KEY, old_keycode, 0 },
915 			input_value_sync
916 		};
917 
918 		input_pass_values(dev, vals, ARRAY_SIZE(vals));
919 	}
920 
921  out:
922 	spin_unlock_irqrestore(&dev->event_lock, flags);
923 
924 	return retval;
925 }
926 EXPORT_SYMBOL(input_set_keycode);
927 
928 static const struct input_device_id *input_match_device(struct input_handler *handler,
929 							struct input_dev *dev)
930 {
931 	const struct input_device_id *id;
932 
933 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
934 
935 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
936 			if (id->bustype != dev->id.bustype)
937 				continue;
938 
939 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
940 			if (id->vendor != dev->id.vendor)
941 				continue;
942 
943 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
944 			if (id->product != dev->id.product)
945 				continue;
946 
947 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
948 			if (id->version != dev->id.version)
949 				continue;
950 
951 		if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX))
952 			continue;
953 
954 		if (!bitmap_subset(id->keybit, dev->keybit, KEY_MAX))
955 			continue;
956 
957 		if (!bitmap_subset(id->relbit, dev->relbit, REL_MAX))
958 			continue;
959 
960 		if (!bitmap_subset(id->absbit, dev->absbit, ABS_MAX))
961 			continue;
962 
963 		if (!bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX))
964 			continue;
965 
966 		if (!bitmap_subset(id->ledbit, dev->ledbit, LED_MAX))
967 			continue;
968 
969 		if (!bitmap_subset(id->sndbit, dev->sndbit, SND_MAX))
970 			continue;
971 
972 		if (!bitmap_subset(id->ffbit, dev->ffbit, FF_MAX))
973 			continue;
974 
975 		if (!bitmap_subset(id->swbit, dev->swbit, SW_MAX))
976 			continue;
977 
978 		if (!handler->match || handler->match(handler, dev))
979 			return id;
980 	}
981 
982 	return NULL;
983 }
984 
985 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
986 {
987 	const struct input_device_id *id;
988 	int error;
989 
990 	id = input_match_device(handler, dev);
991 	if (!id)
992 		return -ENODEV;
993 
994 	error = handler->connect(handler, dev, id);
995 	if (error && error != -ENODEV)
996 		pr_err("failed to attach handler %s to device %s, error: %d\n",
997 		       handler->name, kobject_name(&dev->dev.kobj), error);
998 
999 	return error;
1000 }
1001 
1002 #ifdef CONFIG_COMPAT
1003 
1004 static int input_bits_to_string(char *buf, int buf_size,
1005 				unsigned long bits, bool skip_empty)
1006 {
1007 	int len = 0;
1008 
1009 	if (INPUT_COMPAT_TEST) {
1010 		u32 dword = bits >> 32;
1011 		if (dword || !skip_empty)
1012 			len += snprintf(buf, buf_size, "%x ", dword);
1013 
1014 		dword = bits & 0xffffffffUL;
1015 		if (dword || !skip_empty || len)
1016 			len += snprintf(buf + len, max(buf_size - len, 0),
1017 					"%x", dword);
1018 	} else {
1019 		if (bits || !skip_empty)
1020 			len += snprintf(buf, buf_size, "%lx", bits);
1021 	}
1022 
1023 	return len;
1024 }
1025 
1026 #else /* !CONFIG_COMPAT */
1027 
1028 static int input_bits_to_string(char *buf, int buf_size,
1029 				unsigned long bits, bool skip_empty)
1030 {
1031 	return bits || !skip_empty ?
1032 		snprintf(buf, buf_size, "%lx", bits) : 0;
1033 }
1034 
1035 #endif
1036 
1037 #ifdef CONFIG_PROC_FS
1038 
1039 static struct proc_dir_entry *proc_bus_input_dir;
1040 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1041 static int input_devices_state;
1042 
1043 static inline void input_wakeup_procfs_readers(void)
1044 {
1045 	input_devices_state++;
1046 	wake_up(&input_devices_poll_wait);
1047 }
1048 
1049 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1050 {
1051 	poll_wait(file, &input_devices_poll_wait, wait);
1052 	if (file->f_version != input_devices_state) {
1053 		file->f_version = input_devices_state;
1054 		return POLLIN | POLLRDNORM;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 union input_seq_state {
1061 	struct {
1062 		unsigned short pos;
1063 		bool mutex_acquired;
1064 	};
1065 	void *p;
1066 };
1067 
1068 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1069 {
1070 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1071 	int error;
1072 
1073 	/* We need to fit into seq->private pointer */
1074 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1075 
1076 	error = mutex_lock_interruptible(&input_mutex);
1077 	if (error) {
1078 		state->mutex_acquired = false;
1079 		return ERR_PTR(error);
1080 	}
1081 
1082 	state->mutex_acquired = true;
1083 
1084 	return seq_list_start(&input_dev_list, *pos);
1085 }
1086 
1087 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1088 {
1089 	return seq_list_next(v, &input_dev_list, pos);
1090 }
1091 
1092 static void input_seq_stop(struct seq_file *seq, void *v)
1093 {
1094 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1095 
1096 	if (state->mutex_acquired)
1097 		mutex_unlock(&input_mutex);
1098 }
1099 
1100 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1101 				   unsigned long *bitmap, int max)
1102 {
1103 	int i;
1104 	bool skip_empty = true;
1105 	char buf[18];
1106 
1107 	seq_printf(seq, "B: %s=", name);
1108 
1109 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1110 		if (input_bits_to_string(buf, sizeof(buf),
1111 					 bitmap[i], skip_empty)) {
1112 			skip_empty = false;
1113 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * If no output was produced print a single 0.
1119 	 */
1120 	if (skip_empty)
1121 		seq_puts(seq, "0");
1122 
1123 	seq_putc(seq, '\n');
1124 }
1125 
1126 static int input_devices_seq_show(struct seq_file *seq, void *v)
1127 {
1128 	struct input_dev *dev = container_of(v, struct input_dev, node);
1129 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1130 	struct input_handle *handle;
1131 
1132 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1133 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1134 
1135 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1136 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1137 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1138 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1139 	seq_printf(seq, "H: Handlers=");
1140 
1141 	list_for_each_entry(handle, &dev->h_list, d_node)
1142 		seq_printf(seq, "%s ", handle->name);
1143 	seq_putc(seq, '\n');
1144 
1145 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1146 
1147 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1148 	if (test_bit(EV_KEY, dev->evbit))
1149 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1150 	if (test_bit(EV_REL, dev->evbit))
1151 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1152 	if (test_bit(EV_ABS, dev->evbit))
1153 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1154 	if (test_bit(EV_MSC, dev->evbit))
1155 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1156 	if (test_bit(EV_LED, dev->evbit))
1157 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1158 	if (test_bit(EV_SND, dev->evbit))
1159 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1160 	if (test_bit(EV_FF, dev->evbit))
1161 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1162 	if (test_bit(EV_SW, dev->evbit))
1163 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1164 
1165 	seq_putc(seq, '\n');
1166 
1167 	kfree(path);
1168 	return 0;
1169 }
1170 
1171 static const struct seq_operations input_devices_seq_ops = {
1172 	.start	= input_devices_seq_start,
1173 	.next	= input_devices_seq_next,
1174 	.stop	= input_seq_stop,
1175 	.show	= input_devices_seq_show,
1176 };
1177 
1178 static int input_proc_devices_open(struct inode *inode, struct file *file)
1179 {
1180 	return seq_open(file, &input_devices_seq_ops);
1181 }
1182 
1183 static const struct file_operations input_devices_fileops = {
1184 	.owner		= THIS_MODULE,
1185 	.open		= input_proc_devices_open,
1186 	.poll		= input_proc_devices_poll,
1187 	.read		= seq_read,
1188 	.llseek		= seq_lseek,
1189 	.release	= seq_release,
1190 };
1191 
1192 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1193 {
1194 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1195 	int error;
1196 
1197 	/* We need to fit into seq->private pointer */
1198 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1199 
1200 	error = mutex_lock_interruptible(&input_mutex);
1201 	if (error) {
1202 		state->mutex_acquired = false;
1203 		return ERR_PTR(error);
1204 	}
1205 
1206 	state->mutex_acquired = true;
1207 	state->pos = *pos;
1208 
1209 	return seq_list_start(&input_handler_list, *pos);
1210 }
1211 
1212 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1213 {
1214 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1215 
1216 	state->pos = *pos + 1;
1217 	return seq_list_next(v, &input_handler_list, pos);
1218 }
1219 
1220 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1221 {
1222 	struct input_handler *handler = container_of(v, struct input_handler, node);
1223 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1224 
1225 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1226 	if (handler->filter)
1227 		seq_puts(seq, " (filter)");
1228 	if (handler->legacy_minors)
1229 		seq_printf(seq, " Minor=%d", handler->minor);
1230 	seq_putc(seq, '\n');
1231 
1232 	return 0;
1233 }
1234 
1235 static const struct seq_operations input_handlers_seq_ops = {
1236 	.start	= input_handlers_seq_start,
1237 	.next	= input_handlers_seq_next,
1238 	.stop	= input_seq_stop,
1239 	.show	= input_handlers_seq_show,
1240 };
1241 
1242 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1243 {
1244 	return seq_open(file, &input_handlers_seq_ops);
1245 }
1246 
1247 static const struct file_operations input_handlers_fileops = {
1248 	.owner		= THIS_MODULE,
1249 	.open		= input_proc_handlers_open,
1250 	.read		= seq_read,
1251 	.llseek		= seq_lseek,
1252 	.release	= seq_release,
1253 };
1254 
1255 static int __init input_proc_init(void)
1256 {
1257 	struct proc_dir_entry *entry;
1258 
1259 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1260 	if (!proc_bus_input_dir)
1261 		return -ENOMEM;
1262 
1263 	entry = proc_create("devices", 0, proc_bus_input_dir,
1264 			    &input_devices_fileops);
1265 	if (!entry)
1266 		goto fail1;
1267 
1268 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1269 			    &input_handlers_fileops);
1270 	if (!entry)
1271 		goto fail2;
1272 
1273 	return 0;
1274 
1275  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1276  fail1: remove_proc_entry("bus/input", NULL);
1277 	return -ENOMEM;
1278 }
1279 
1280 static void input_proc_exit(void)
1281 {
1282 	remove_proc_entry("devices", proc_bus_input_dir);
1283 	remove_proc_entry("handlers", proc_bus_input_dir);
1284 	remove_proc_entry("bus/input", NULL);
1285 }
1286 
1287 #else /* !CONFIG_PROC_FS */
1288 static inline void input_wakeup_procfs_readers(void) { }
1289 static inline int input_proc_init(void) { return 0; }
1290 static inline void input_proc_exit(void) { }
1291 #endif
1292 
1293 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1294 static ssize_t input_dev_show_##name(struct device *dev,		\
1295 				     struct device_attribute *attr,	\
1296 				     char *buf)				\
1297 {									\
1298 	struct input_dev *input_dev = to_input_dev(dev);		\
1299 									\
1300 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1301 			 input_dev->name ? input_dev->name : "");	\
1302 }									\
1303 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1304 
1305 INPUT_DEV_STRING_ATTR_SHOW(name);
1306 INPUT_DEV_STRING_ATTR_SHOW(phys);
1307 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1308 
1309 static int input_print_modalias_bits(char *buf, int size,
1310 				     char name, unsigned long *bm,
1311 				     unsigned int min_bit, unsigned int max_bit)
1312 {
1313 	int len = 0, i;
1314 
1315 	len += snprintf(buf, max(size, 0), "%c", name);
1316 	for (i = min_bit; i < max_bit; i++)
1317 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1318 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1319 	return len;
1320 }
1321 
1322 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1323 				int add_cr)
1324 {
1325 	int len;
1326 
1327 	len = snprintf(buf, max(size, 0),
1328 		       "input:b%04Xv%04Xp%04Xe%04X-",
1329 		       id->id.bustype, id->id.vendor,
1330 		       id->id.product, id->id.version);
1331 
1332 	len += input_print_modalias_bits(buf + len, size - len,
1333 				'e', id->evbit, 0, EV_MAX);
1334 	len += input_print_modalias_bits(buf + len, size - len,
1335 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1336 	len += input_print_modalias_bits(buf + len, size - len,
1337 				'r', id->relbit, 0, REL_MAX);
1338 	len += input_print_modalias_bits(buf + len, size - len,
1339 				'a', id->absbit, 0, ABS_MAX);
1340 	len += input_print_modalias_bits(buf + len, size - len,
1341 				'm', id->mscbit, 0, MSC_MAX);
1342 	len += input_print_modalias_bits(buf + len, size - len,
1343 				'l', id->ledbit, 0, LED_MAX);
1344 	len += input_print_modalias_bits(buf + len, size - len,
1345 				's', id->sndbit, 0, SND_MAX);
1346 	len += input_print_modalias_bits(buf + len, size - len,
1347 				'f', id->ffbit, 0, FF_MAX);
1348 	len += input_print_modalias_bits(buf + len, size - len,
1349 				'w', id->swbit, 0, SW_MAX);
1350 
1351 	if (add_cr)
1352 		len += snprintf(buf + len, max(size - len, 0), "\n");
1353 
1354 	return len;
1355 }
1356 
1357 static ssize_t input_dev_show_modalias(struct device *dev,
1358 				       struct device_attribute *attr,
1359 				       char *buf)
1360 {
1361 	struct input_dev *id = to_input_dev(dev);
1362 	ssize_t len;
1363 
1364 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1365 
1366 	return min_t(int, len, PAGE_SIZE);
1367 }
1368 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1369 
1370 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1371 			      int max, int add_cr);
1372 
1373 static ssize_t input_dev_show_properties(struct device *dev,
1374 					 struct device_attribute *attr,
1375 					 char *buf)
1376 {
1377 	struct input_dev *input_dev = to_input_dev(dev);
1378 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1379 				     INPUT_PROP_MAX, true);
1380 	return min_t(int, len, PAGE_SIZE);
1381 }
1382 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1383 
1384 static struct attribute *input_dev_attrs[] = {
1385 	&dev_attr_name.attr,
1386 	&dev_attr_phys.attr,
1387 	&dev_attr_uniq.attr,
1388 	&dev_attr_modalias.attr,
1389 	&dev_attr_properties.attr,
1390 	NULL
1391 };
1392 
1393 static struct attribute_group input_dev_attr_group = {
1394 	.attrs	= input_dev_attrs,
1395 };
1396 
1397 #define INPUT_DEV_ID_ATTR(name)						\
1398 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1399 					struct device_attribute *attr,	\
1400 					char *buf)			\
1401 {									\
1402 	struct input_dev *input_dev = to_input_dev(dev);		\
1403 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1404 }									\
1405 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1406 
1407 INPUT_DEV_ID_ATTR(bustype);
1408 INPUT_DEV_ID_ATTR(vendor);
1409 INPUT_DEV_ID_ATTR(product);
1410 INPUT_DEV_ID_ATTR(version);
1411 
1412 static struct attribute *input_dev_id_attrs[] = {
1413 	&dev_attr_bustype.attr,
1414 	&dev_attr_vendor.attr,
1415 	&dev_attr_product.attr,
1416 	&dev_attr_version.attr,
1417 	NULL
1418 };
1419 
1420 static struct attribute_group input_dev_id_attr_group = {
1421 	.name	= "id",
1422 	.attrs	= input_dev_id_attrs,
1423 };
1424 
1425 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1426 			      int max, int add_cr)
1427 {
1428 	int i;
1429 	int len = 0;
1430 	bool skip_empty = true;
1431 
1432 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1433 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1434 					    bitmap[i], skip_empty);
1435 		if (len) {
1436 			skip_empty = false;
1437 			if (i > 0)
1438 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * If no output was produced print a single 0.
1444 	 */
1445 	if (len == 0)
1446 		len = snprintf(buf, buf_size, "%d", 0);
1447 
1448 	if (add_cr)
1449 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1450 
1451 	return len;
1452 }
1453 
1454 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1455 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1456 				       struct device_attribute *attr,	\
1457 				       char *buf)			\
1458 {									\
1459 	struct input_dev *input_dev = to_input_dev(dev);		\
1460 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1461 				     input_dev->bm##bit, ev##_MAX,	\
1462 				     true);				\
1463 	return min_t(int, len, PAGE_SIZE);				\
1464 }									\
1465 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1466 
1467 INPUT_DEV_CAP_ATTR(EV, ev);
1468 INPUT_DEV_CAP_ATTR(KEY, key);
1469 INPUT_DEV_CAP_ATTR(REL, rel);
1470 INPUT_DEV_CAP_ATTR(ABS, abs);
1471 INPUT_DEV_CAP_ATTR(MSC, msc);
1472 INPUT_DEV_CAP_ATTR(LED, led);
1473 INPUT_DEV_CAP_ATTR(SND, snd);
1474 INPUT_DEV_CAP_ATTR(FF, ff);
1475 INPUT_DEV_CAP_ATTR(SW, sw);
1476 
1477 static struct attribute *input_dev_caps_attrs[] = {
1478 	&dev_attr_ev.attr,
1479 	&dev_attr_key.attr,
1480 	&dev_attr_rel.attr,
1481 	&dev_attr_abs.attr,
1482 	&dev_attr_msc.attr,
1483 	&dev_attr_led.attr,
1484 	&dev_attr_snd.attr,
1485 	&dev_attr_ff.attr,
1486 	&dev_attr_sw.attr,
1487 	NULL
1488 };
1489 
1490 static struct attribute_group input_dev_caps_attr_group = {
1491 	.name	= "capabilities",
1492 	.attrs	= input_dev_caps_attrs,
1493 };
1494 
1495 static const struct attribute_group *input_dev_attr_groups[] = {
1496 	&input_dev_attr_group,
1497 	&input_dev_id_attr_group,
1498 	&input_dev_caps_attr_group,
1499 	NULL
1500 };
1501 
1502 static void input_dev_release(struct device *device)
1503 {
1504 	struct input_dev *dev = to_input_dev(device);
1505 
1506 	input_ff_destroy(dev);
1507 	input_mt_destroy_slots(dev);
1508 	kfree(dev->absinfo);
1509 	kfree(dev->vals);
1510 	kfree(dev);
1511 
1512 	module_put(THIS_MODULE);
1513 }
1514 
1515 /*
1516  * Input uevent interface - loading event handlers based on
1517  * device bitfields.
1518  */
1519 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1520 				   const char *name, unsigned long *bitmap, int max)
1521 {
1522 	int len;
1523 
1524 	if (add_uevent_var(env, "%s", name))
1525 		return -ENOMEM;
1526 
1527 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1528 				 sizeof(env->buf) - env->buflen,
1529 				 bitmap, max, false);
1530 	if (len >= (sizeof(env->buf) - env->buflen))
1531 		return -ENOMEM;
1532 
1533 	env->buflen += len;
1534 	return 0;
1535 }
1536 
1537 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1538 					 struct input_dev *dev)
1539 {
1540 	int len;
1541 
1542 	if (add_uevent_var(env, "MODALIAS="))
1543 		return -ENOMEM;
1544 
1545 	len = input_print_modalias(&env->buf[env->buflen - 1],
1546 				   sizeof(env->buf) - env->buflen,
1547 				   dev, 0);
1548 	if (len >= (sizeof(env->buf) - env->buflen))
1549 		return -ENOMEM;
1550 
1551 	env->buflen += len;
1552 	return 0;
1553 }
1554 
1555 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1556 	do {								\
1557 		int err = add_uevent_var(env, fmt, val);		\
1558 		if (err)						\
1559 			return err;					\
1560 	} while (0)
1561 
1562 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1563 	do {								\
1564 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1565 		if (err)						\
1566 			return err;					\
1567 	} while (0)
1568 
1569 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1570 	do {								\
1571 		int err = input_add_uevent_modalias_var(env, dev);	\
1572 		if (err)						\
1573 			return err;					\
1574 	} while (0)
1575 
1576 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1577 {
1578 	struct input_dev *dev = to_input_dev(device);
1579 
1580 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1581 				dev->id.bustype, dev->id.vendor,
1582 				dev->id.product, dev->id.version);
1583 	if (dev->name)
1584 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1585 	if (dev->phys)
1586 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1587 	if (dev->uniq)
1588 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1589 
1590 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1591 
1592 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1593 	if (test_bit(EV_KEY, dev->evbit))
1594 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1595 	if (test_bit(EV_REL, dev->evbit))
1596 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1597 	if (test_bit(EV_ABS, dev->evbit))
1598 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1599 	if (test_bit(EV_MSC, dev->evbit))
1600 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1601 	if (test_bit(EV_LED, dev->evbit))
1602 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1603 	if (test_bit(EV_SND, dev->evbit))
1604 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1605 	if (test_bit(EV_FF, dev->evbit))
1606 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1607 	if (test_bit(EV_SW, dev->evbit))
1608 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1609 
1610 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1611 
1612 	return 0;
1613 }
1614 
1615 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1616 	do {								\
1617 		int i;							\
1618 		bool active;						\
1619 									\
1620 		if (!test_bit(EV_##type, dev->evbit))			\
1621 			break;						\
1622 									\
1623 		for (i = 0; i < type##_MAX; i++) {			\
1624 			if (!test_bit(i, dev->bits##bit))		\
1625 				continue;				\
1626 									\
1627 			active = test_bit(i, dev->bits);		\
1628 			if (!active && !on)				\
1629 				continue;				\
1630 									\
1631 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1632 		}							\
1633 	} while (0)
1634 
1635 static void input_dev_toggle(struct input_dev *dev, bool activate)
1636 {
1637 	if (!dev->event)
1638 		return;
1639 
1640 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1641 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1642 
1643 	if (activate && test_bit(EV_REP, dev->evbit)) {
1644 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1645 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1646 	}
1647 }
1648 
1649 /**
1650  * input_reset_device() - reset/restore the state of input device
1651  * @dev: input device whose state needs to be reset
1652  *
1653  * This function tries to reset the state of an opened input device and
1654  * bring internal state and state if the hardware in sync with each other.
1655  * We mark all keys as released, restore LED state, repeat rate, etc.
1656  */
1657 void input_reset_device(struct input_dev *dev)
1658 {
1659 	unsigned long flags;
1660 
1661 	mutex_lock(&dev->mutex);
1662 	spin_lock_irqsave(&dev->event_lock, flags);
1663 
1664 	input_dev_toggle(dev, true);
1665 	input_dev_release_keys(dev);
1666 
1667 	spin_unlock_irqrestore(&dev->event_lock, flags);
1668 	mutex_unlock(&dev->mutex);
1669 }
1670 EXPORT_SYMBOL(input_reset_device);
1671 
1672 #ifdef CONFIG_PM_SLEEP
1673 static int input_dev_suspend(struct device *dev)
1674 {
1675 	struct input_dev *input_dev = to_input_dev(dev);
1676 
1677 	spin_lock_irq(&input_dev->event_lock);
1678 
1679 	/*
1680 	 * Keys that are pressed now are unlikely to be
1681 	 * still pressed when we resume.
1682 	 */
1683 	input_dev_release_keys(input_dev);
1684 
1685 	/* Turn off LEDs and sounds, if any are active. */
1686 	input_dev_toggle(input_dev, false);
1687 
1688 	spin_unlock_irq(&input_dev->event_lock);
1689 
1690 	return 0;
1691 }
1692 
1693 static int input_dev_resume(struct device *dev)
1694 {
1695 	struct input_dev *input_dev = to_input_dev(dev);
1696 
1697 	spin_lock_irq(&input_dev->event_lock);
1698 
1699 	/* Restore state of LEDs and sounds, if any were active. */
1700 	input_dev_toggle(input_dev, true);
1701 
1702 	spin_unlock_irq(&input_dev->event_lock);
1703 
1704 	return 0;
1705 }
1706 
1707 static int input_dev_freeze(struct device *dev)
1708 {
1709 	struct input_dev *input_dev = to_input_dev(dev);
1710 
1711 	spin_lock_irq(&input_dev->event_lock);
1712 
1713 	/*
1714 	 * Keys that are pressed now are unlikely to be
1715 	 * still pressed when we resume.
1716 	 */
1717 	input_dev_release_keys(input_dev);
1718 
1719 	spin_unlock_irq(&input_dev->event_lock);
1720 
1721 	return 0;
1722 }
1723 
1724 static int input_dev_poweroff(struct device *dev)
1725 {
1726 	struct input_dev *input_dev = to_input_dev(dev);
1727 
1728 	spin_lock_irq(&input_dev->event_lock);
1729 
1730 	/* Turn off LEDs and sounds, if any are active. */
1731 	input_dev_toggle(input_dev, false);
1732 
1733 	spin_unlock_irq(&input_dev->event_lock);
1734 
1735 	return 0;
1736 }
1737 
1738 static const struct dev_pm_ops input_dev_pm_ops = {
1739 	.suspend	= input_dev_suspend,
1740 	.resume		= input_dev_resume,
1741 	.freeze		= input_dev_freeze,
1742 	.poweroff	= input_dev_poweroff,
1743 	.restore	= input_dev_resume,
1744 };
1745 #endif /* CONFIG_PM */
1746 
1747 static struct device_type input_dev_type = {
1748 	.groups		= input_dev_attr_groups,
1749 	.release	= input_dev_release,
1750 	.uevent		= input_dev_uevent,
1751 #ifdef CONFIG_PM_SLEEP
1752 	.pm		= &input_dev_pm_ops,
1753 #endif
1754 };
1755 
1756 static char *input_devnode(struct device *dev, umode_t *mode)
1757 {
1758 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1759 }
1760 
1761 struct class input_class = {
1762 	.name		= "input",
1763 	.devnode	= input_devnode,
1764 };
1765 EXPORT_SYMBOL_GPL(input_class);
1766 
1767 /**
1768  * input_allocate_device - allocate memory for new input device
1769  *
1770  * Returns prepared struct input_dev or %NULL.
1771  *
1772  * NOTE: Use input_free_device() to free devices that have not been
1773  * registered; input_unregister_device() should be used for already
1774  * registered devices.
1775  */
1776 struct input_dev *input_allocate_device(void)
1777 {
1778 	static atomic_t input_no = ATOMIC_INIT(-1);
1779 	struct input_dev *dev;
1780 
1781 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1782 	if (dev) {
1783 		dev->dev.type = &input_dev_type;
1784 		dev->dev.class = &input_class;
1785 		device_initialize(&dev->dev);
1786 		mutex_init(&dev->mutex);
1787 		spin_lock_init(&dev->event_lock);
1788 		init_timer(&dev->timer);
1789 		INIT_LIST_HEAD(&dev->h_list);
1790 		INIT_LIST_HEAD(&dev->node);
1791 
1792 		dev_set_name(&dev->dev, "input%lu",
1793 			     (unsigned long)atomic_inc_return(&input_no));
1794 
1795 		__module_get(THIS_MODULE);
1796 	}
1797 
1798 	return dev;
1799 }
1800 EXPORT_SYMBOL(input_allocate_device);
1801 
1802 struct input_devres {
1803 	struct input_dev *input;
1804 };
1805 
1806 static int devm_input_device_match(struct device *dev, void *res, void *data)
1807 {
1808 	struct input_devres *devres = res;
1809 
1810 	return devres->input == data;
1811 }
1812 
1813 static void devm_input_device_release(struct device *dev, void *res)
1814 {
1815 	struct input_devres *devres = res;
1816 	struct input_dev *input = devres->input;
1817 
1818 	dev_dbg(dev, "%s: dropping reference to %s\n",
1819 		__func__, dev_name(&input->dev));
1820 	input_put_device(input);
1821 }
1822 
1823 /**
1824  * devm_input_allocate_device - allocate managed input device
1825  * @dev: device owning the input device being created
1826  *
1827  * Returns prepared struct input_dev or %NULL.
1828  *
1829  * Managed input devices do not need to be explicitly unregistered or
1830  * freed as it will be done automatically when owner device unbinds from
1831  * its driver (or binding fails). Once managed input device is allocated,
1832  * it is ready to be set up and registered in the same fashion as regular
1833  * input device. There are no special devm_input_device_[un]register()
1834  * variants, regular ones work with both managed and unmanaged devices,
1835  * should you need them. In most cases however, managed input device need
1836  * not be explicitly unregistered or freed.
1837  *
1838  * NOTE: the owner device is set up as parent of input device and users
1839  * should not override it.
1840  */
1841 struct input_dev *devm_input_allocate_device(struct device *dev)
1842 {
1843 	struct input_dev *input;
1844 	struct input_devres *devres;
1845 
1846 	devres = devres_alloc(devm_input_device_release,
1847 			      sizeof(struct input_devres), GFP_KERNEL);
1848 	if (!devres)
1849 		return NULL;
1850 
1851 	input = input_allocate_device();
1852 	if (!input) {
1853 		devres_free(devres);
1854 		return NULL;
1855 	}
1856 
1857 	input->dev.parent = dev;
1858 	input->devres_managed = true;
1859 
1860 	devres->input = input;
1861 	devres_add(dev, devres);
1862 
1863 	return input;
1864 }
1865 EXPORT_SYMBOL(devm_input_allocate_device);
1866 
1867 /**
1868  * input_free_device - free memory occupied by input_dev structure
1869  * @dev: input device to free
1870  *
1871  * This function should only be used if input_register_device()
1872  * was not called yet or if it failed. Once device was registered
1873  * use input_unregister_device() and memory will be freed once last
1874  * reference to the device is dropped.
1875  *
1876  * Device should be allocated by input_allocate_device().
1877  *
1878  * NOTE: If there are references to the input device then memory
1879  * will not be freed until last reference is dropped.
1880  */
1881 void input_free_device(struct input_dev *dev)
1882 {
1883 	if (dev) {
1884 		if (dev->devres_managed)
1885 			WARN_ON(devres_destroy(dev->dev.parent,
1886 						devm_input_device_release,
1887 						devm_input_device_match,
1888 						dev));
1889 		input_put_device(dev);
1890 	}
1891 }
1892 EXPORT_SYMBOL(input_free_device);
1893 
1894 /**
1895  * input_set_capability - mark device as capable of a certain event
1896  * @dev: device that is capable of emitting or accepting event
1897  * @type: type of the event (EV_KEY, EV_REL, etc...)
1898  * @code: event code
1899  *
1900  * In addition to setting up corresponding bit in appropriate capability
1901  * bitmap the function also adjusts dev->evbit.
1902  */
1903 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1904 {
1905 	switch (type) {
1906 	case EV_KEY:
1907 		__set_bit(code, dev->keybit);
1908 		break;
1909 
1910 	case EV_REL:
1911 		__set_bit(code, dev->relbit);
1912 		break;
1913 
1914 	case EV_ABS:
1915 		input_alloc_absinfo(dev);
1916 		if (!dev->absinfo)
1917 			return;
1918 
1919 		__set_bit(code, dev->absbit);
1920 		break;
1921 
1922 	case EV_MSC:
1923 		__set_bit(code, dev->mscbit);
1924 		break;
1925 
1926 	case EV_SW:
1927 		__set_bit(code, dev->swbit);
1928 		break;
1929 
1930 	case EV_LED:
1931 		__set_bit(code, dev->ledbit);
1932 		break;
1933 
1934 	case EV_SND:
1935 		__set_bit(code, dev->sndbit);
1936 		break;
1937 
1938 	case EV_FF:
1939 		__set_bit(code, dev->ffbit);
1940 		break;
1941 
1942 	case EV_PWR:
1943 		/* do nothing */
1944 		break;
1945 
1946 	default:
1947 		pr_err("input_set_capability: unknown type %u (code %u)\n",
1948 		       type, code);
1949 		dump_stack();
1950 		return;
1951 	}
1952 
1953 	__set_bit(type, dev->evbit);
1954 }
1955 EXPORT_SYMBOL(input_set_capability);
1956 
1957 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1958 {
1959 	int mt_slots;
1960 	int i;
1961 	unsigned int events;
1962 
1963 	if (dev->mt) {
1964 		mt_slots = dev->mt->num_slots;
1965 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1966 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1967 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1968 		mt_slots = clamp(mt_slots, 2, 32);
1969 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1970 		mt_slots = 2;
1971 	} else {
1972 		mt_slots = 0;
1973 	}
1974 
1975 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1976 
1977 	if (test_bit(EV_ABS, dev->evbit)) {
1978 		for (i = 0; i < ABS_CNT; i++) {
1979 			if (test_bit(i, dev->absbit)) {
1980 				if (input_is_mt_axis(i))
1981 					events += mt_slots;
1982 				else
1983 					events++;
1984 			}
1985 		}
1986 	}
1987 
1988 	if (test_bit(EV_REL, dev->evbit)) {
1989 		for (i = 0; i < REL_CNT; i++)
1990 			if (test_bit(i, dev->relbit))
1991 				events++;
1992 	}
1993 
1994 	/* Make room for KEY and MSC events */
1995 	events += 7;
1996 
1997 	return events;
1998 }
1999 
2000 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2001 	do {								\
2002 		if (!test_bit(EV_##type, dev->evbit))			\
2003 			memset(dev->bits##bit, 0,			\
2004 				sizeof(dev->bits##bit));		\
2005 	} while (0)
2006 
2007 static void input_cleanse_bitmasks(struct input_dev *dev)
2008 {
2009 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2010 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2011 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2012 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2013 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2014 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2015 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2016 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2017 }
2018 
2019 static void __input_unregister_device(struct input_dev *dev)
2020 {
2021 	struct input_handle *handle, *next;
2022 
2023 	input_disconnect_device(dev);
2024 
2025 	mutex_lock(&input_mutex);
2026 
2027 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2028 		handle->handler->disconnect(handle);
2029 	WARN_ON(!list_empty(&dev->h_list));
2030 
2031 	del_timer_sync(&dev->timer);
2032 	list_del_init(&dev->node);
2033 
2034 	input_wakeup_procfs_readers();
2035 
2036 	mutex_unlock(&input_mutex);
2037 
2038 	device_del(&dev->dev);
2039 }
2040 
2041 static void devm_input_device_unregister(struct device *dev, void *res)
2042 {
2043 	struct input_devres *devres = res;
2044 	struct input_dev *input = devres->input;
2045 
2046 	dev_dbg(dev, "%s: unregistering device %s\n",
2047 		__func__, dev_name(&input->dev));
2048 	__input_unregister_device(input);
2049 }
2050 
2051 /**
2052  * input_register_device - register device with input core
2053  * @dev: device to be registered
2054  *
2055  * This function registers device with input core. The device must be
2056  * allocated with input_allocate_device() and all it's capabilities
2057  * set up before registering.
2058  * If function fails the device must be freed with input_free_device().
2059  * Once device has been successfully registered it can be unregistered
2060  * with input_unregister_device(); input_free_device() should not be
2061  * called in this case.
2062  *
2063  * Note that this function is also used to register managed input devices
2064  * (ones allocated with devm_input_allocate_device()). Such managed input
2065  * devices need not be explicitly unregistered or freed, their tear down
2066  * is controlled by the devres infrastructure. It is also worth noting
2067  * that tear down of managed input devices is internally a 2-step process:
2068  * registered managed input device is first unregistered, but stays in
2069  * memory and can still handle input_event() calls (although events will
2070  * not be delivered anywhere). The freeing of managed input device will
2071  * happen later, when devres stack is unwound to the point where device
2072  * allocation was made.
2073  */
2074 int input_register_device(struct input_dev *dev)
2075 {
2076 	struct input_devres *devres = NULL;
2077 	struct input_handler *handler;
2078 	unsigned int packet_size;
2079 	const char *path;
2080 	int error;
2081 
2082 	if (dev->devres_managed) {
2083 		devres = devres_alloc(devm_input_device_unregister,
2084 				      sizeof(struct input_devres), GFP_KERNEL);
2085 		if (!devres)
2086 			return -ENOMEM;
2087 
2088 		devres->input = dev;
2089 	}
2090 
2091 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2092 	__set_bit(EV_SYN, dev->evbit);
2093 
2094 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2095 	__clear_bit(KEY_RESERVED, dev->keybit);
2096 
2097 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2098 	input_cleanse_bitmasks(dev);
2099 
2100 	packet_size = input_estimate_events_per_packet(dev);
2101 	if (dev->hint_events_per_packet < packet_size)
2102 		dev->hint_events_per_packet = packet_size;
2103 
2104 	dev->max_vals = dev->hint_events_per_packet + 2;
2105 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2106 	if (!dev->vals) {
2107 		error = -ENOMEM;
2108 		goto err_devres_free;
2109 	}
2110 
2111 	/*
2112 	 * If delay and period are pre-set by the driver, then autorepeating
2113 	 * is handled by the driver itself and we don't do it in input.c.
2114 	 */
2115 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
2116 		dev->timer.data = (long) dev;
2117 		dev->timer.function = input_repeat_key;
2118 		dev->rep[REP_DELAY] = 250;
2119 		dev->rep[REP_PERIOD] = 33;
2120 	}
2121 
2122 	if (!dev->getkeycode)
2123 		dev->getkeycode = input_default_getkeycode;
2124 
2125 	if (!dev->setkeycode)
2126 		dev->setkeycode = input_default_setkeycode;
2127 
2128 	error = device_add(&dev->dev);
2129 	if (error)
2130 		goto err_free_vals;
2131 
2132 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2133 	pr_info("%s as %s\n",
2134 		dev->name ? dev->name : "Unspecified device",
2135 		path ? path : "N/A");
2136 	kfree(path);
2137 
2138 	error = mutex_lock_interruptible(&input_mutex);
2139 	if (error)
2140 		goto err_device_del;
2141 
2142 	list_add_tail(&dev->node, &input_dev_list);
2143 
2144 	list_for_each_entry(handler, &input_handler_list, node)
2145 		input_attach_handler(dev, handler);
2146 
2147 	input_wakeup_procfs_readers();
2148 
2149 	mutex_unlock(&input_mutex);
2150 
2151 	if (dev->devres_managed) {
2152 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2153 			__func__, dev_name(&dev->dev));
2154 		devres_add(dev->dev.parent, devres);
2155 	}
2156 	return 0;
2157 
2158 err_device_del:
2159 	device_del(&dev->dev);
2160 err_free_vals:
2161 	kfree(dev->vals);
2162 	dev->vals = NULL;
2163 err_devres_free:
2164 	devres_free(devres);
2165 	return error;
2166 }
2167 EXPORT_SYMBOL(input_register_device);
2168 
2169 /**
2170  * input_unregister_device - unregister previously registered device
2171  * @dev: device to be unregistered
2172  *
2173  * This function unregisters an input device. Once device is unregistered
2174  * the caller should not try to access it as it may get freed at any moment.
2175  */
2176 void input_unregister_device(struct input_dev *dev)
2177 {
2178 	if (dev->devres_managed) {
2179 		WARN_ON(devres_destroy(dev->dev.parent,
2180 					devm_input_device_unregister,
2181 					devm_input_device_match,
2182 					dev));
2183 		__input_unregister_device(dev);
2184 		/*
2185 		 * We do not do input_put_device() here because it will be done
2186 		 * when 2nd devres fires up.
2187 		 */
2188 	} else {
2189 		__input_unregister_device(dev);
2190 		input_put_device(dev);
2191 	}
2192 }
2193 EXPORT_SYMBOL(input_unregister_device);
2194 
2195 /**
2196  * input_register_handler - register a new input handler
2197  * @handler: handler to be registered
2198  *
2199  * This function registers a new input handler (interface) for input
2200  * devices in the system and attaches it to all input devices that
2201  * are compatible with the handler.
2202  */
2203 int input_register_handler(struct input_handler *handler)
2204 {
2205 	struct input_dev *dev;
2206 	int error;
2207 
2208 	error = mutex_lock_interruptible(&input_mutex);
2209 	if (error)
2210 		return error;
2211 
2212 	INIT_LIST_HEAD(&handler->h_list);
2213 
2214 	list_add_tail(&handler->node, &input_handler_list);
2215 
2216 	list_for_each_entry(dev, &input_dev_list, node)
2217 		input_attach_handler(dev, handler);
2218 
2219 	input_wakeup_procfs_readers();
2220 
2221 	mutex_unlock(&input_mutex);
2222 	return 0;
2223 }
2224 EXPORT_SYMBOL(input_register_handler);
2225 
2226 /**
2227  * input_unregister_handler - unregisters an input handler
2228  * @handler: handler to be unregistered
2229  *
2230  * This function disconnects a handler from its input devices and
2231  * removes it from lists of known handlers.
2232  */
2233 void input_unregister_handler(struct input_handler *handler)
2234 {
2235 	struct input_handle *handle, *next;
2236 
2237 	mutex_lock(&input_mutex);
2238 
2239 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2240 		handler->disconnect(handle);
2241 	WARN_ON(!list_empty(&handler->h_list));
2242 
2243 	list_del_init(&handler->node);
2244 
2245 	input_wakeup_procfs_readers();
2246 
2247 	mutex_unlock(&input_mutex);
2248 }
2249 EXPORT_SYMBOL(input_unregister_handler);
2250 
2251 /**
2252  * input_handler_for_each_handle - handle iterator
2253  * @handler: input handler to iterate
2254  * @data: data for the callback
2255  * @fn: function to be called for each handle
2256  *
2257  * Iterate over @bus's list of devices, and call @fn for each, passing
2258  * it @data and stop when @fn returns a non-zero value. The function is
2259  * using RCU to traverse the list and therefore may be usind in atonic
2260  * contexts. The @fn callback is invoked from RCU critical section and
2261  * thus must not sleep.
2262  */
2263 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2264 				  int (*fn)(struct input_handle *, void *))
2265 {
2266 	struct input_handle *handle;
2267 	int retval = 0;
2268 
2269 	rcu_read_lock();
2270 
2271 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2272 		retval = fn(handle, data);
2273 		if (retval)
2274 			break;
2275 	}
2276 
2277 	rcu_read_unlock();
2278 
2279 	return retval;
2280 }
2281 EXPORT_SYMBOL(input_handler_for_each_handle);
2282 
2283 /**
2284  * input_register_handle - register a new input handle
2285  * @handle: handle to register
2286  *
2287  * This function puts a new input handle onto device's
2288  * and handler's lists so that events can flow through
2289  * it once it is opened using input_open_device().
2290  *
2291  * This function is supposed to be called from handler's
2292  * connect() method.
2293  */
2294 int input_register_handle(struct input_handle *handle)
2295 {
2296 	struct input_handler *handler = handle->handler;
2297 	struct input_dev *dev = handle->dev;
2298 	int error;
2299 
2300 	/*
2301 	 * We take dev->mutex here to prevent race with
2302 	 * input_release_device().
2303 	 */
2304 	error = mutex_lock_interruptible(&dev->mutex);
2305 	if (error)
2306 		return error;
2307 
2308 	/*
2309 	 * Filters go to the head of the list, normal handlers
2310 	 * to the tail.
2311 	 */
2312 	if (handler->filter)
2313 		list_add_rcu(&handle->d_node, &dev->h_list);
2314 	else
2315 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2316 
2317 	mutex_unlock(&dev->mutex);
2318 
2319 	/*
2320 	 * Since we are supposed to be called from ->connect()
2321 	 * which is mutually exclusive with ->disconnect()
2322 	 * we can't be racing with input_unregister_handle()
2323 	 * and so separate lock is not needed here.
2324 	 */
2325 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2326 
2327 	if (handler->start)
2328 		handler->start(handle);
2329 
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL(input_register_handle);
2333 
2334 /**
2335  * input_unregister_handle - unregister an input handle
2336  * @handle: handle to unregister
2337  *
2338  * This function removes input handle from device's
2339  * and handler's lists.
2340  *
2341  * This function is supposed to be called from handler's
2342  * disconnect() method.
2343  */
2344 void input_unregister_handle(struct input_handle *handle)
2345 {
2346 	struct input_dev *dev = handle->dev;
2347 
2348 	list_del_rcu(&handle->h_node);
2349 
2350 	/*
2351 	 * Take dev->mutex to prevent race with input_release_device().
2352 	 */
2353 	mutex_lock(&dev->mutex);
2354 	list_del_rcu(&handle->d_node);
2355 	mutex_unlock(&dev->mutex);
2356 
2357 	synchronize_rcu();
2358 }
2359 EXPORT_SYMBOL(input_unregister_handle);
2360 
2361 /**
2362  * input_get_new_minor - allocates a new input minor number
2363  * @legacy_base: beginning or the legacy range to be searched
2364  * @legacy_num: size of legacy range
2365  * @allow_dynamic: whether we can also take ID from the dynamic range
2366  *
2367  * This function allocates a new device minor for from input major namespace.
2368  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2369  * parameters and whether ID can be allocated from dynamic range if there are
2370  * no free IDs in legacy range.
2371  */
2372 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2373 			bool allow_dynamic)
2374 {
2375 	/*
2376 	 * This function should be called from input handler's ->connect()
2377 	 * methods, which are serialized with input_mutex, so no additional
2378 	 * locking is needed here.
2379 	 */
2380 	if (legacy_base >= 0) {
2381 		int minor = ida_simple_get(&input_ida,
2382 					   legacy_base,
2383 					   legacy_base + legacy_num,
2384 					   GFP_KERNEL);
2385 		if (minor >= 0 || !allow_dynamic)
2386 			return minor;
2387 	}
2388 
2389 	return ida_simple_get(&input_ida,
2390 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2391 			      GFP_KERNEL);
2392 }
2393 EXPORT_SYMBOL(input_get_new_minor);
2394 
2395 /**
2396  * input_free_minor - release previously allocated minor
2397  * @minor: minor to be released
2398  *
2399  * This function releases previously allocated input minor so that it can be
2400  * reused later.
2401  */
2402 void input_free_minor(unsigned int minor)
2403 {
2404 	ida_simple_remove(&input_ida, minor);
2405 }
2406 EXPORT_SYMBOL(input_free_minor);
2407 
2408 static int __init input_init(void)
2409 {
2410 	int err;
2411 
2412 	err = class_register(&input_class);
2413 	if (err) {
2414 		pr_err("unable to register input_dev class\n");
2415 		return err;
2416 	}
2417 
2418 	err = input_proc_init();
2419 	if (err)
2420 		goto fail1;
2421 
2422 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2423 				     INPUT_MAX_CHAR_DEVICES, "input");
2424 	if (err) {
2425 		pr_err("unable to register char major %d", INPUT_MAJOR);
2426 		goto fail2;
2427 	}
2428 
2429 	return 0;
2430 
2431  fail2:	input_proc_exit();
2432  fail1:	class_unregister(&input_class);
2433 	return err;
2434 }
2435 
2436 static void __exit input_exit(void)
2437 {
2438 	input_proc_exit();
2439 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2440 				 INPUT_MAX_CHAR_DEVICES);
2441 	class_unregister(&input_class);
2442 }
2443 
2444 subsys_initcall(input_init);
2445 module_exit(input_exit);
2446