xref: /openbmc/linux/drivers/input/input.c (revision 7dd65feb)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include <linux/smp_lock.h>
27 
28 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
29 MODULE_DESCRIPTION("Input core");
30 MODULE_LICENSE("GPL");
31 
32 #define INPUT_DEVICES	256
33 
34 /*
35  * EV_ABS events which should not be cached are listed here.
36  */
37 static unsigned int input_abs_bypass_init_data[] __initdata = {
38 	ABS_MT_TOUCH_MAJOR,
39 	ABS_MT_TOUCH_MINOR,
40 	ABS_MT_WIDTH_MAJOR,
41 	ABS_MT_WIDTH_MINOR,
42 	ABS_MT_ORIENTATION,
43 	ABS_MT_POSITION_X,
44 	ABS_MT_POSITION_Y,
45 	ABS_MT_TOOL_TYPE,
46 	ABS_MT_BLOB_ID,
47 	ABS_MT_TRACKING_ID,
48 	0
49 };
50 static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
51 
52 static LIST_HEAD(input_dev_list);
53 static LIST_HEAD(input_handler_list);
54 
55 /*
56  * input_mutex protects access to both input_dev_list and input_handler_list.
57  * This also causes input_[un]register_device and input_[un]register_handler
58  * be mutually exclusive which simplifies locking in drivers implementing
59  * input handlers.
60  */
61 static DEFINE_MUTEX(input_mutex);
62 
63 static struct input_handler *input_table[8];
64 
65 static inline int is_event_supported(unsigned int code,
66 				     unsigned long *bm, unsigned int max)
67 {
68 	return code <= max && test_bit(code, bm);
69 }
70 
71 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 {
73 	if (fuzz) {
74 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
75 			return old_val;
76 
77 		if (value > old_val - fuzz && value < old_val + fuzz)
78 			return (old_val * 3 + value) / 4;
79 
80 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
81 			return (old_val + value) / 2;
82 	}
83 
84 	return value;
85 }
86 
87 /*
88  * Pass event through all open handles. This function is called with
89  * dev->event_lock held and interrupts disabled.
90  */
91 static void input_pass_event(struct input_dev *dev,
92 			     unsigned int type, unsigned int code, int value)
93 {
94 	struct input_handle *handle;
95 
96 	rcu_read_lock();
97 
98 	handle = rcu_dereference(dev->grab);
99 	if (handle)
100 		handle->handler->event(handle, type, code, value);
101 	else
102 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
103 			if (handle->open)
104 				handle->handler->event(handle,
105 							type, code, value);
106 	rcu_read_unlock();
107 }
108 
109 /*
110  * Generate software autorepeat event. Note that we take
111  * dev->event_lock here to avoid racing with input_event
112  * which may cause keys get "stuck".
113  */
114 static void input_repeat_key(unsigned long data)
115 {
116 	struct input_dev *dev = (void *) data;
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&dev->event_lock, flags);
120 
121 	if (test_bit(dev->repeat_key, dev->key) &&
122 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
123 
124 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
125 
126 		if (dev->sync) {
127 			/*
128 			 * Only send SYN_REPORT if we are not in a middle
129 			 * of driver parsing a new hardware packet.
130 			 * Otherwise assume that the driver will send
131 			 * SYN_REPORT once it's done.
132 			 */
133 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
134 		}
135 
136 		if (dev->rep[REP_PERIOD])
137 			mod_timer(&dev->timer, jiffies +
138 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
139 	}
140 
141 	spin_unlock_irqrestore(&dev->event_lock, flags);
142 }
143 
144 static void input_start_autorepeat(struct input_dev *dev, int code)
145 {
146 	if (test_bit(EV_REP, dev->evbit) &&
147 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 	    dev->timer.data) {
149 		dev->repeat_key = code;
150 		mod_timer(&dev->timer,
151 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 	}
153 }
154 
155 static void input_stop_autorepeat(struct input_dev *dev)
156 {
157 	del_timer(&dev->timer);
158 }
159 
160 #define INPUT_IGNORE_EVENT	0
161 #define INPUT_PASS_TO_HANDLERS	1
162 #define INPUT_PASS_TO_DEVICE	2
163 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
164 
165 static void input_handle_event(struct input_dev *dev,
166 			       unsigned int type, unsigned int code, int value)
167 {
168 	int disposition = INPUT_IGNORE_EVENT;
169 
170 	switch (type) {
171 
172 	case EV_SYN:
173 		switch (code) {
174 		case SYN_CONFIG:
175 			disposition = INPUT_PASS_TO_ALL;
176 			break;
177 
178 		case SYN_REPORT:
179 			if (!dev->sync) {
180 				dev->sync = 1;
181 				disposition = INPUT_PASS_TO_HANDLERS;
182 			}
183 			break;
184 		case SYN_MT_REPORT:
185 			dev->sync = 0;
186 			disposition = INPUT_PASS_TO_HANDLERS;
187 			break;
188 		}
189 		break;
190 
191 	case EV_KEY:
192 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
193 		    !!test_bit(code, dev->key) != value) {
194 
195 			if (value != 2) {
196 				__change_bit(code, dev->key);
197 				if (value)
198 					input_start_autorepeat(dev, code);
199 				else
200 					input_stop_autorepeat(dev);
201 			}
202 
203 			disposition = INPUT_PASS_TO_HANDLERS;
204 		}
205 		break;
206 
207 	case EV_SW:
208 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
209 		    !!test_bit(code, dev->sw) != value) {
210 
211 			__change_bit(code, dev->sw);
212 			disposition = INPUT_PASS_TO_HANDLERS;
213 		}
214 		break;
215 
216 	case EV_ABS:
217 		if (is_event_supported(code, dev->absbit, ABS_MAX)) {
218 
219 			if (test_bit(code, input_abs_bypass)) {
220 				disposition = INPUT_PASS_TO_HANDLERS;
221 				break;
222 			}
223 
224 			value = input_defuzz_abs_event(value,
225 					dev->abs[code], dev->absfuzz[code]);
226 
227 			if (dev->abs[code] != value) {
228 				dev->abs[code] = value;
229 				disposition = INPUT_PASS_TO_HANDLERS;
230 			}
231 		}
232 		break;
233 
234 	case EV_REL:
235 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
236 			disposition = INPUT_PASS_TO_HANDLERS;
237 
238 		break;
239 
240 	case EV_MSC:
241 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
242 			disposition = INPUT_PASS_TO_ALL;
243 
244 		break;
245 
246 	case EV_LED:
247 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
248 		    !!test_bit(code, dev->led) != value) {
249 
250 			__change_bit(code, dev->led);
251 			disposition = INPUT_PASS_TO_ALL;
252 		}
253 		break;
254 
255 	case EV_SND:
256 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
257 
258 			if (!!test_bit(code, dev->snd) != !!value)
259 				__change_bit(code, dev->snd);
260 			disposition = INPUT_PASS_TO_ALL;
261 		}
262 		break;
263 
264 	case EV_REP:
265 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
266 			dev->rep[code] = value;
267 			disposition = INPUT_PASS_TO_ALL;
268 		}
269 		break;
270 
271 	case EV_FF:
272 		if (value >= 0)
273 			disposition = INPUT_PASS_TO_ALL;
274 		break;
275 
276 	case EV_PWR:
277 		disposition = INPUT_PASS_TO_ALL;
278 		break;
279 	}
280 
281 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
282 		dev->sync = 0;
283 
284 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
285 		dev->event(dev, type, code, value);
286 
287 	if (disposition & INPUT_PASS_TO_HANDLERS)
288 		input_pass_event(dev, type, code, value);
289 }
290 
291 /**
292  * input_event() - report new input event
293  * @dev: device that generated the event
294  * @type: type of the event
295  * @code: event code
296  * @value: value of the event
297  *
298  * This function should be used by drivers implementing various input
299  * devices to report input events. See also input_inject_event().
300  *
301  * NOTE: input_event() may be safely used right after input device was
302  * allocated with input_allocate_device(), even before it is registered
303  * with input_register_device(), but the event will not reach any of the
304  * input handlers. Such early invocation of input_event() may be used
305  * to 'seed' initial state of a switch or initial position of absolute
306  * axis, etc.
307  */
308 void input_event(struct input_dev *dev,
309 		 unsigned int type, unsigned int code, int value)
310 {
311 	unsigned long flags;
312 
313 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
314 
315 		spin_lock_irqsave(&dev->event_lock, flags);
316 		add_input_randomness(type, code, value);
317 		input_handle_event(dev, type, code, value);
318 		spin_unlock_irqrestore(&dev->event_lock, flags);
319 	}
320 }
321 EXPORT_SYMBOL(input_event);
322 
323 /**
324  * input_inject_event() - send input event from input handler
325  * @handle: input handle to send event through
326  * @type: type of the event
327  * @code: event code
328  * @value: value of the event
329  *
330  * Similar to input_event() but will ignore event if device is
331  * "grabbed" and handle injecting event is not the one that owns
332  * the device.
333  */
334 void input_inject_event(struct input_handle *handle,
335 			unsigned int type, unsigned int code, int value)
336 {
337 	struct input_dev *dev = handle->dev;
338 	struct input_handle *grab;
339 	unsigned long flags;
340 
341 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
342 		spin_lock_irqsave(&dev->event_lock, flags);
343 
344 		rcu_read_lock();
345 		grab = rcu_dereference(dev->grab);
346 		if (!grab || grab == handle)
347 			input_handle_event(dev, type, code, value);
348 		rcu_read_unlock();
349 
350 		spin_unlock_irqrestore(&dev->event_lock, flags);
351 	}
352 }
353 EXPORT_SYMBOL(input_inject_event);
354 
355 /**
356  * input_grab_device - grabs device for exclusive use
357  * @handle: input handle that wants to own the device
358  *
359  * When a device is grabbed by an input handle all events generated by
360  * the device are delivered only to this handle. Also events injected
361  * by other input handles are ignored while device is grabbed.
362  */
363 int input_grab_device(struct input_handle *handle)
364 {
365 	struct input_dev *dev = handle->dev;
366 	int retval;
367 
368 	retval = mutex_lock_interruptible(&dev->mutex);
369 	if (retval)
370 		return retval;
371 
372 	if (dev->grab) {
373 		retval = -EBUSY;
374 		goto out;
375 	}
376 
377 	rcu_assign_pointer(dev->grab, handle);
378 	synchronize_rcu();
379 
380  out:
381 	mutex_unlock(&dev->mutex);
382 	return retval;
383 }
384 EXPORT_SYMBOL(input_grab_device);
385 
386 static void __input_release_device(struct input_handle *handle)
387 {
388 	struct input_dev *dev = handle->dev;
389 
390 	if (dev->grab == handle) {
391 		rcu_assign_pointer(dev->grab, NULL);
392 		/* Make sure input_pass_event() notices that grab is gone */
393 		synchronize_rcu();
394 
395 		list_for_each_entry(handle, &dev->h_list, d_node)
396 			if (handle->open && handle->handler->start)
397 				handle->handler->start(handle);
398 	}
399 }
400 
401 /**
402  * input_release_device - release previously grabbed device
403  * @handle: input handle that owns the device
404  *
405  * Releases previously grabbed device so that other input handles can
406  * start receiving input events. Upon release all handlers attached
407  * to the device have their start() method called so they have a change
408  * to synchronize device state with the rest of the system.
409  */
410 void input_release_device(struct input_handle *handle)
411 {
412 	struct input_dev *dev = handle->dev;
413 
414 	mutex_lock(&dev->mutex);
415 	__input_release_device(handle);
416 	mutex_unlock(&dev->mutex);
417 }
418 EXPORT_SYMBOL(input_release_device);
419 
420 /**
421  * input_open_device - open input device
422  * @handle: handle through which device is being accessed
423  *
424  * This function should be called by input handlers when they
425  * want to start receive events from given input device.
426  */
427 int input_open_device(struct input_handle *handle)
428 {
429 	struct input_dev *dev = handle->dev;
430 	int retval;
431 
432 	retval = mutex_lock_interruptible(&dev->mutex);
433 	if (retval)
434 		return retval;
435 
436 	if (dev->going_away) {
437 		retval = -ENODEV;
438 		goto out;
439 	}
440 
441 	handle->open++;
442 
443 	if (!dev->users++ && dev->open)
444 		retval = dev->open(dev);
445 
446 	if (retval) {
447 		dev->users--;
448 		if (!--handle->open) {
449 			/*
450 			 * Make sure we are not delivering any more events
451 			 * through this handle
452 			 */
453 			synchronize_rcu();
454 		}
455 	}
456 
457  out:
458 	mutex_unlock(&dev->mutex);
459 	return retval;
460 }
461 EXPORT_SYMBOL(input_open_device);
462 
463 int input_flush_device(struct input_handle *handle, struct file *file)
464 {
465 	struct input_dev *dev = handle->dev;
466 	int retval;
467 
468 	retval = mutex_lock_interruptible(&dev->mutex);
469 	if (retval)
470 		return retval;
471 
472 	if (dev->flush)
473 		retval = dev->flush(dev, file);
474 
475 	mutex_unlock(&dev->mutex);
476 	return retval;
477 }
478 EXPORT_SYMBOL(input_flush_device);
479 
480 /**
481  * input_close_device - close input device
482  * @handle: handle through which device is being accessed
483  *
484  * This function should be called by input handlers when they
485  * want to stop receive events from given input device.
486  */
487 void input_close_device(struct input_handle *handle)
488 {
489 	struct input_dev *dev = handle->dev;
490 
491 	mutex_lock(&dev->mutex);
492 
493 	__input_release_device(handle);
494 
495 	if (!--dev->users && dev->close)
496 		dev->close(dev);
497 
498 	if (!--handle->open) {
499 		/*
500 		 * synchronize_rcu() makes sure that input_pass_event()
501 		 * completed and that no more input events are delivered
502 		 * through this handle
503 		 */
504 		synchronize_rcu();
505 	}
506 
507 	mutex_unlock(&dev->mutex);
508 }
509 EXPORT_SYMBOL(input_close_device);
510 
511 /*
512  * Prepare device for unregistering
513  */
514 static void input_disconnect_device(struct input_dev *dev)
515 {
516 	struct input_handle *handle;
517 	int code;
518 
519 	/*
520 	 * Mark device as going away. Note that we take dev->mutex here
521 	 * not to protect access to dev->going_away but rather to ensure
522 	 * that there are no threads in the middle of input_open_device()
523 	 */
524 	mutex_lock(&dev->mutex);
525 	dev->going_away = true;
526 	mutex_unlock(&dev->mutex);
527 
528 	spin_lock_irq(&dev->event_lock);
529 
530 	/*
531 	 * Simulate keyup events for all pressed keys so that handlers
532 	 * are not left with "stuck" keys. The driver may continue
533 	 * generate events even after we done here but they will not
534 	 * reach any handlers.
535 	 */
536 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
537 		for (code = 0; code <= KEY_MAX; code++) {
538 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
539 			    __test_and_clear_bit(code, dev->key)) {
540 				input_pass_event(dev, EV_KEY, code, 0);
541 			}
542 		}
543 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
544 	}
545 
546 	list_for_each_entry(handle, &dev->h_list, d_node)
547 		handle->open = 0;
548 
549 	spin_unlock_irq(&dev->event_lock);
550 }
551 
552 static int input_fetch_keycode(struct input_dev *dev, int scancode)
553 {
554 	switch (dev->keycodesize) {
555 		case 1:
556 			return ((u8 *)dev->keycode)[scancode];
557 
558 		case 2:
559 			return ((u16 *)dev->keycode)[scancode];
560 
561 		default:
562 			return ((u32 *)dev->keycode)[scancode];
563 	}
564 }
565 
566 static int input_default_getkeycode(struct input_dev *dev,
567 				    int scancode, int *keycode)
568 {
569 	if (!dev->keycodesize)
570 		return -EINVAL;
571 
572 	if (scancode >= dev->keycodemax)
573 		return -EINVAL;
574 
575 	*keycode = input_fetch_keycode(dev, scancode);
576 
577 	return 0;
578 }
579 
580 static int input_default_setkeycode(struct input_dev *dev,
581 				    int scancode, int keycode)
582 {
583 	int old_keycode;
584 	int i;
585 
586 	if (scancode >= dev->keycodemax)
587 		return -EINVAL;
588 
589 	if (!dev->keycodesize)
590 		return -EINVAL;
591 
592 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
593 		return -EINVAL;
594 
595 	switch (dev->keycodesize) {
596 		case 1: {
597 			u8 *k = (u8 *)dev->keycode;
598 			old_keycode = k[scancode];
599 			k[scancode] = keycode;
600 			break;
601 		}
602 		case 2: {
603 			u16 *k = (u16 *)dev->keycode;
604 			old_keycode = k[scancode];
605 			k[scancode] = keycode;
606 			break;
607 		}
608 		default: {
609 			u32 *k = (u32 *)dev->keycode;
610 			old_keycode = k[scancode];
611 			k[scancode] = keycode;
612 			break;
613 		}
614 	}
615 
616 	clear_bit(old_keycode, dev->keybit);
617 	set_bit(keycode, dev->keybit);
618 
619 	for (i = 0; i < dev->keycodemax; i++) {
620 		if (input_fetch_keycode(dev, i) == old_keycode) {
621 			set_bit(old_keycode, dev->keybit);
622 			break; /* Setting the bit twice is useless, so break */
623 		}
624 	}
625 
626 	return 0;
627 }
628 
629 /**
630  * input_get_keycode - retrieve keycode currently mapped to a given scancode
631  * @dev: input device which keymap is being queried
632  * @scancode: scancode (or its equivalent for device in question) for which
633  *	keycode is needed
634  * @keycode: result
635  *
636  * This function should be called by anyone interested in retrieving current
637  * keymap. Presently keyboard and evdev handlers use it.
638  */
639 int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
640 {
641 	if (scancode < 0)
642 		return -EINVAL;
643 
644 	return dev->getkeycode(dev, scancode, keycode);
645 }
646 EXPORT_SYMBOL(input_get_keycode);
647 
648 /**
649  * input_get_keycode - assign new keycode to a given scancode
650  * @dev: input device which keymap is being updated
651  * @scancode: scancode (or its equivalent for device in question)
652  * @keycode: new keycode to be assigned to the scancode
653  *
654  * This function should be called by anyone needing to update current
655  * keymap. Presently keyboard and evdev handlers use it.
656  */
657 int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
658 {
659 	unsigned long flags;
660 	int old_keycode;
661 	int retval;
662 
663 	if (scancode < 0)
664 		return -EINVAL;
665 
666 	if (keycode < 0 || keycode > KEY_MAX)
667 		return -EINVAL;
668 
669 	spin_lock_irqsave(&dev->event_lock, flags);
670 
671 	retval = dev->getkeycode(dev, scancode, &old_keycode);
672 	if (retval)
673 		goto out;
674 
675 	retval = dev->setkeycode(dev, scancode, keycode);
676 	if (retval)
677 		goto out;
678 
679 	/*
680 	 * Simulate keyup event if keycode is not present
681 	 * in the keymap anymore
682 	 */
683 	if (test_bit(EV_KEY, dev->evbit) &&
684 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
685 	    __test_and_clear_bit(old_keycode, dev->key)) {
686 
687 		input_pass_event(dev, EV_KEY, old_keycode, 0);
688 		if (dev->sync)
689 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
690 	}
691 
692  out:
693 	spin_unlock_irqrestore(&dev->event_lock, flags);
694 
695 	return retval;
696 }
697 EXPORT_SYMBOL(input_set_keycode);
698 
699 #define MATCH_BIT(bit, max) \
700 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
701 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
702 				break; \
703 		if (i != BITS_TO_LONGS(max)) \
704 			continue;
705 
706 static const struct input_device_id *input_match_device(const struct input_device_id *id,
707 							struct input_dev *dev)
708 {
709 	int i;
710 
711 	for (; id->flags || id->driver_info; id++) {
712 
713 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
714 			if (id->bustype != dev->id.bustype)
715 				continue;
716 
717 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
718 			if (id->vendor != dev->id.vendor)
719 				continue;
720 
721 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
722 			if (id->product != dev->id.product)
723 				continue;
724 
725 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
726 			if (id->version != dev->id.version)
727 				continue;
728 
729 		MATCH_BIT(evbit,  EV_MAX);
730 		MATCH_BIT(keybit, KEY_MAX);
731 		MATCH_BIT(relbit, REL_MAX);
732 		MATCH_BIT(absbit, ABS_MAX);
733 		MATCH_BIT(mscbit, MSC_MAX);
734 		MATCH_BIT(ledbit, LED_MAX);
735 		MATCH_BIT(sndbit, SND_MAX);
736 		MATCH_BIT(ffbit,  FF_MAX);
737 		MATCH_BIT(swbit,  SW_MAX);
738 
739 		return id;
740 	}
741 
742 	return NULL;
743 }
744 
745 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
746 {
747 	const struct input_device_id *id;
748 	int error;
749 
750 	if (handler->blacklist && input_match_device(handler->blacklist, dev))
751 		return -ENODEV;
752 
753 	id = input_match_device(handler->id_table, dev);
754 	if (!id)
755 		return -ENODEV;
756 
757 	error = handler->connect(handler, dev, id);
758 	if (error && error != -ENODEV)
759 		printk(KERN_ERR
760 			"input: failed to attach handler %s to device %s, "
761 			"error: %d\n",
762 			handler->name, kobject_name(&dev->dev.kobj), error);
763 
764 	return error;
765 }
766 
767 
768 #ifdef CONFIG_PROC_FS
769 
770 static struct proc_dir_entry *proc_bus_input_dir;
771 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
772 static int input_devices_state;
773 
774 static inline void input_wakeup_procfs_readers(void)
775 {
776 	input_devices_state++;
777 	wake_up(&input_devices_poll_wait);
778 }
779 
780 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
781 {
782 	poll_wait(file, &input_devices_poll_wait, wait);
783 	if (file->f_version != input_devices_state) {
784 		file->f_version = input_devices_state;
785 		return POLLIN | POLLRDNORM;
786 	}
787 
788 	return 0;
789 }
790 
791 union input_seq_state {
792 	struct {
793 		unsigned short pos;
794 		bool mutex_acquired;
795 	};
796 	void *p;
797 };
798 
799 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
800 {
801 	union input_seq_state *state = (union input_seq_state *)&seq->private;
802 	int error;
803 
804 	/* We need to fit into seq->private pointer */
805 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
806 
807 	error = mutex_lock_interruptible(&input_mutex);
808 	if (error) {
809 		state->mutex_acquired = false;
810 		return ERR_PTR(error);
811 	}
812 
813 	state->mutex_acquired = true;
814 
815 	return seq_list_start(&input_dev_list, *pos);
816 }
817 
818 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
819 {
820 	return seq_list_next(v, &input_dev_list, pos);
821 }
822 
823 static void input_seq_stop(struct seq_file *seq, void *v)
824 {
825 	union input_seq_state *state = (union input_seq_state *)&seq->private;
826 
827 	if (state->mutex_acquired)
828 		mutex_unlock(&input_mutex);
829 }
830 
831 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
832 				   unsigned long *bitmap, int max)
833 {
834 	int i;
835 
836 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
837 		if (bitmap[i])
838 			break;
839 
840 	seq_printf(seq, "B: %s=", name);
841 	for (; i >= 0; i--)
842 		seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
843 	seq_putc(seq, '\n');
844 }
845 
846 static int input_devices_seq_show(struct seq_file *seq, void *v)
847 {
848 	struct input_dev *dev = container_of(v, struct input_dev, node);
849 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
850 	struct input_handle *handle;
851 
852 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
853 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
854 
855 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
856 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
857 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
858 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
859 	seq_printf(seq, "H: Handlers=");
860 
861 	list_for_each_entry(handle, &dev->h_list, d_node)
862 		seq_printf(seq, "%s ", handle->name);
863 	seq_putc(seq, '\n');
864 
865 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
866 	if (test_bit(EV_KEY, dev->evbit))
867 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
868 	if (test_bit(EV_REL, dev->evbit))
869 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
870 	if (test_bit(EV_ABS, dev->evbit))
871 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
872 	if (test_bit(EV_MSC, dev->evbit))
873 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
874 	if (test_bit(EV_LED, dev->evbit))
875 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
876 	if (test_bit(EV_SND, dev->evbit))
877 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
878 	if (test_bit(EV_FF, dev->evbit))
879 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
880 	if (test_bit(EV_SW, dev->evbit))
881 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
882 
883 	seq_putc(seq, '\n');
884 
885 	kfree(path);
886 	return 0;
887 }
888 
889 static const struct seq_operations input_devices_seq_ops = {
890 	.start	= input_devices_seq_start,
891 	.next	= input_devices_seq_next,
892 	.stop	= input_seq_stop,
893 	.show	= input_devices_seq_show,
894 };
895 
896 static int input_proc_devices_open(struct inode *inode, struct file *file)
897 {
898 	return seq_open(file, &input_devices_seq_ops);
899 }
900 
901 static const struct file_operations input_devices_fileops = {
902 	.owner		= THIS_MODULE,
903 	.open		= input_proc_devices_open,
904 	.poll		= input_proc_devices_poll,
905 	.read		= seq_read,
906 	.llseek		= seq_lseek,
907 	.release	= seq_release,
908 };
909 
910 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
911 {
912 	union input_seq_state *state = (union input_seq_state *)&seq->private;
913 	int error;
914 
915 	/* We need to fit into seq->private pointer */
916 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
917 
918 	error = mutex_lock_interruptible(&input_mutex);
919 	if (error) {
920 		state->mutex_acquired = false;
921 		return ERR_PTR(error);
922 	}
923 
924 	state->mutex_acquired = true;
925 	state->pos = *pos;
926 
927 	return seq_list_start(&input_handler_list, *pos);
928 }
929 
930 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
931 {
932 	union input_seq_state *state = (union input_seq_state *)&seq->private;
933 
934 	state->pos = *pos + 1;
935 	return seq_list_next(v, &input_handler_list, pos);
936 }
937 
938 static int input_handlers_seq_show(struct seq_file *seq, void *v)
939 {
940 	struct input_handler *handler = container_of(v, struct input_handler, node);
941 	union input_seq_state *state = (union input_seq_state *)&seq->private;
942 
943 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
944 	if (handler->fops)
945 		seq_printf(seq, " Minor=%d", handler->minor);
946 	seq_putc(seq, '\n');
947 
948 	return 0;
949 }
950 
951 static const struct seq_operations input_handlers_seq_ops = {
952 	.start	= input_handlers_seq_start,
953 	.next	= input_handlers_seq_next,
954 	.stop	= input_seq_stop,
955 	.show	= input_handlers_seq_show,
956 };
957 
958 static int input_proc_handlers_open(struct inode *inode, struct file *file)
959 {
960 	return seq_open(file, &input_handlers_seq_ops);
961 }
962 
963 static const struct file_operations input_handlers_fileops = {
964 	.owner		= THIS_MODULE,
965 	.open		= input_proc_handlers_open,
966 	.read		= seq_read,
967 	.llseek		= seq_lseek,
968 	.release	= seq_release,
969 };
970 
971 static int __init input_proc_init(void)
972 {
973 	struct proc_dir_entry *entry;
974 
975 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
976 	if (!proc_bus_input_dir)
977 		return -ENOMEM;
978 
979 	entry = proc_create("devices", 0, proc_bus_input_dir,
980 			    &input_devices_fileops);
981 	if (!entry)
982 		goto fail1;
983 
984 	entry = proc_create("handlers", 0, proc_bus_input_dir,
985 			    &input_handlers_fileops);
986 	if (!entry)
987 		goto fail2;
988 
989 	return 0;
990 
991  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
992  fail1: remove_proc_entry("bus/input", NULL);
993 	return -ENOMEM;
994 }
995 
996 static void input_proc_exit(void)
997 {
998 	remove_proc_entry("devices", proc_bus_input_dir);
999 	remove_proc_entry("handlers", proc_bus_input_dir);
1000 	remove_proc_entry("bus/input", NULL);
1001 }
1002 
1003 #else /* !CONFIG_PROC_FS */
1004 static inline void input_wakeup_procfs_readers(void) { }
1005 static inline int input_proc_init(void) { return 0; }
1006 static inline void input_proc_exit(void) { }
1007 #endif
1008 
1009 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1010 static ssize_t input_dev_show_##name(struct device *dev,		\
1011 				     struct device_attribute *attr,	\
1012 				     char *buf)				\
1013 {									\
1014 	struct input_dev *input_dev = to_input_dev(dev);		\
1015 									\
1016 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1017 			 input_dev->name ? input_dev->name : "");	\
1018 }									\
1019 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1020 
1021 INPUT_DEV_STRING_ATTR_SHOW(name);
1022 INPUT_DEV_STRING_ATTR_SHOW(phys);
1023 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1024 
1025 static int input_print_modalias_bits(char *buf, int size,
1026 				     char name, unsigned long *bm,
1027 				     unsigned int min_bit, unsigned int max_bit)
1028 {
1029 	int len = 0, i;
1030 
1031 	len += snprintf(buf, max(size, 0), "%c", name);
1032 	for (i = min_bit; i < max_bit; i++)
1033 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1034 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1035 	return len;
1036 }
1037 
1038 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1039 				int add_cr)
1040 {
1041 	int len;
1042 
1043 	len = snprintf(buf, max(size, 0),
1044 		       "input:b%04Xv%04Xp%04Xe%04X-",
1045 		       id->id.bustype, id->id.vendor,
1046 		       id->id.product, id->id.version);
1047 
1048 	len += input_print_modalias_bits(buf + len, size - len,
1049 				'e', id->evbit, 0, EV_MAX);
1050 	len += input_print_modalias_bits(buf + len, size - len,
1051 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1052 	len += input_print_modalias_bits(buf + len, size - len,
1053 				'r', id->relbit, 0, REL_MAX);
1054 	len += input_print_modalias_bits(buf + len, size - len,
1055 				'a', id->absbit, 0, ABS_MAX);
1056 	len += input_print_modalias_bits(buf + len, size - len,
1057 				'm', id->mscbit, 0, MSC_MAX);
1058 	len += input_print_modalias_bits(buf + len, size - len,
1059 				'l', id->ledbit, 0, LED_MAX);
1060 	len += input_print_modalias_bits(buf + len, size - len,
1061 				's', id->sndbit, 0, SND_MAX);
1062 	len += input_print_modalias_bits(buf + len, size - len,
1063 				'f', id->ffbit, 0, FF_MAX);
1064 	len += input_print_modalias_bits(buf + len, size - len,
1065 				'w', id->swbit, 0, SW_MAX);
1066 
1067 	if (add_cr)
1068 		len += snprintf(buf + len, max(size - len, 0), "\n");
1069 
1070 	return len;
1071 }
1072 
1073 static ssize_t input_dev_show_modalias(struct device *dev,
1074 				       struct device_attribute *attr,
1075 				       char *buf)
1076 {
1077 	struct input_dev *id = to_input_dev(dev);
1078 	ssize_t len;
1079 
1080 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1081 
1082 	return min_t(int, len, PAGE_SIZE);
1083 }
1084 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1085 
1086 static struct attribute *input_dev_attrs[] = {
1087 	&dev_attr_name.attr,
1088 	&dev_attr_phys.attr,
1089 	&dev_attr_uniq.attr,
1090 	&dev_attr_modalias.attr,
1091 	NULL
1092 };
1093 
1094 static struct attribute_group input_dev_attr_group = {
1095 	.attrs	= input_dev_attrs,
1096 };
1097 
1098 #define INPUT_DEV_ID_ATTR(name)						\
1099 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1100 					struct device_attribute *attr,	\
1101 					char *buf)			\
1102 {									\
1103 	struct input_dev *input_dev = to_input_dev(dev);		\
1104 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1105 }									\
1106 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1107 
1108 INPUT_DEV_ID_ATTR(bustype);
1109 INPUT_DEV_ID_ATTR(vendor);
1110 INPUT_DEV_ID_ATTR(product);
1111 INPUT_DEV_ID_ATTR(version);
1112 
1113 static struct attribute *input_dev_id_attrs[] = {
1114 	&dev_attr_bustype.attr,
1115 	&dev_attr_vendor.attr,
1116 	&dev_attr_product.attr,
1117 	&dev_attr_version.attr,
1118 	NULL
1119 };
1120 
1121 static struct attribute_group input_dev_id_attr_group = {
1122 	.name	= "id",
1123 	.attrs	= input_dev_id_attrs,
1124 };
1125 
1126 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1127 			      int max, int add_cr)
1128 {
1129 	int i;
1130 	int len = 0;
1131 
1132 	for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
1133 		if (bitmap[i])
1134 			break;
1135 
1136 	for (; i >= 0; i--)
1137 		len += snprintf(buf + len, max(buf_size - len, 0),
1138 				"%lx%s", bitmap[i], i > 0 ? " " : "");
1139 
1140 	if (add_cr)
1141 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1142 
1143 	return len;
1144 }
1145 
1146 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1147 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1148 				       struct device_attribute *attr,	\
1149 				       char *buf)			\
1150 {									\
1151 	struct input_dev *input_dev = to_input_dev(dev);		\
1152 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1153 				     input_dev->bm##bit, ev##_MAX, 1);	\
1154 	return min_t(int, len, PAGE_SIZE);				\
1155 }									\
1156 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1157 
1158 INPUT_DEV_CAP_ATTR(EV, ev);
1159 INPUT_DEV_CAP_ATTR(KEY, key);
1160 INPUT_DEV_CAP_ATTR(REL, rel);
1161 INPUT_DEV_CAP_ATTR(ABS, abs);
1162 INPUT_DEV_CAP_ATTR(MSC, msc);
1163 INPUT_DEV_CAP_ATTR(LED, led);
1164 INPUT_DEV_CAP_ATTR(SND, snd);
1165 INPUT_DEV_CAP_ATTR(FF, ff);
1166 INPUT_DEV_CAP_ATTR(SW, sw);
1167 
1168 static struct attribute *input_dev_caps_attrs[] = {
1169 	&dev_attr_ev.attr,
1170 	&dev_attr_key.attr,
1171 	&dev_attr_rel.attr,
1172 	&dev_attr_abs.attr,
1173 	&dev_attr_msc.attr,
1174 	&dev_attr_led.attr,
1175 	&dev_attr_snd.attr,
1176 	&dev_attr_ff.attr,
1177 	&dev_attr_sw.attr,
1178 	NULL
1179 };
1180 
1181 static struct attribute_group input_dev_caps_attr_group = {
1182 	.name	= "capabilities",
1183 	.attrs	= input_dev_caps_attrs,
1184 };
1185 
1186 static const struct attribute_group *input_dev_attr_groups[] = {
1187 	&input_dev_attr_group,
1188 	&input_dev_id_attr_group,
1189 	&input_dev_caps_attr_group,
1190 	NULL
1191 };
1192 
1193 static void input_dev_release(struct device *device)
1194 {
1195 	struct input_dev *dev = to_input_dev(device);
1196 
1197 	input_ff_destroy(dev);
1198 	kfree(dev);
1199 
1200 	module_put(THIS_MODULE);
1201 }
1202 
1203 /*
1204  * Input uevent interface - loading event handlers based on
1205  * device bitfields.
1206  */
1207 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1208 				   const char *name, unsigned long *bitmap, int max)
1209 {
1210 	int len;
1211 
1212 	if (add_uevent_var(env, "%s=", name))
1213 		return -ENOMEM;
1214 
1215 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1216 				 sizeof(env->buf) - env->buflen,
1217 				 bitmap, max, 0);
1218 	if (len >= (sizeof(env->buf) - env->buflen))
1219 		return -ENOMEM;
1220 
1221 	env->buflen += len;
1222 	return 0;
1223 }
1224 
1225 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1226 					 struct input_dev *dev)
1227 {
1228 	int len;
1229 
1230 	if (add_uevent_var(env, "MODALIAS="))
1231 		return -ENOMEM;
1232 
1233 	len = input_print_modalias(&env->buf[env->buflen - 1],
1234 				   sizeof(env->buf) - env->buflen,
1235 				   dev, 0);
1236 	if (len >= (sizeof(env->buf) - env->buflen))
1237 		return -ENOMEM;
1238 
1239 	env->buflen += len;
1240 	return 0;
1241 }
1242 
1243 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1244 	do {								\
1245 		int err = add_uevent_var(env, fmt, val);		\
1246 		if (err)						\
1247 			return err;					\
1248 	} while (0)
1249 
1250 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1251 	do {								\
1252 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1253 		if (err)						\
1254 			return err;					\
1255 	} while (0)
1256 
1257 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1258 	do {								\
1259 		int err = input_add_uevent_modalias_var(env, dev);	\
1260 		if (err)						\
1261 			return err;					\
1262 	} while (0)
1263 
1264 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1265 {
1266 	struct input_dev *dev = to_input_dev(device);
1267 
1268 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1269 				dev->id.bustype, dev->id.vendor,
1270 				dev->id.product, dev->id.version);
1271 	if (dev->name)
1272 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1273 	if (dev->phys)
1274 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1275 	if (dev->uniq)
1276 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1277 
1278 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1279 	if (test_bit(EV_KEY, dev->evbit))
1280 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1281 	if (test_bit(EV_REL, dev->evbit))
1282 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1283 	if (test_bit(EV_ABS, dev->evbit))
1284 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1285 	if (test_bit(EV_MSC, dev->evbit))
1286 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1287 	if (test_bit(EV_LED, dev->evbit))
1288 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1289 	if (test_bit(EV_SND, dev->evbit))
1290 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1291 	if (test_bit(EV_FF, dev->evbit))
1292 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1293 	if (test_bit(EV_SW, dev->evbit))
1294 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1295 
1296 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1297 
1298 	return 0;
1299 }
1300 
1301 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1302 	do {								\
1303 		int i;							\
1304 		bool active;						\
1305 									\
1306 		if (!test_bit(EV_##type, dev->evbit))			\
1307 			break;						\
1308 									\
1309 		for (i = 0; i < type##_MAX; i++) {			\
1310 			if (!test_bit(i, dev->bits##bit))		\
1311 				continue;				\
1312 									\
1313 			active = test_bit(i, dev->bits);		\
1314 			if (!active && !on)				\
1315 				continue;				\
1316 									\
1317 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1318 		}							\
1319 	} while (0)
1320 
1321 #ifdef CONFIG_PM
1322 static void input_dev_reset(struct input_dev *dev, bool activate)
1323 {
1324 	if (!dev->event)
1325 		return;
1326 
1327 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1328 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1329 
1330 	if (activate && test_bit(EV_REP, dev->evbit)) {
1331 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1332 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1333 	}
1334 }
1335 
1336 static int input_dev_suspend(struct device *dev)
1337 {
1338 	struct input_dev *input_dev = to_input_dev(dev);
1339 
1340 	mutex_lock(&input_dev->mutex);
1341 	input_dev_reset(input_dev, false);
1342 	mutex_unlock(&input_dev->mutex);
1343 
1344 	return 0;
1345 }
1346 
1347 static int input_dev_resume(struct device *dev)
1348 {
1349 	struct input_dev *input_dev = to_input_dev(dev);
1350 
1351 	mutex_lock(&input_dev->mutex);
1352 	input_dev_reset(input_dev, true);
1353 	mutex_unlock(&input_dev->mutex);
1354 
1355 	return 0;
1356 }
1357 
1358 static const struct dev_pm_ops input_dev_pm_ops = {
1359 	.suspend	= input_dev_suspend,
1360 	.resume		= input_dev_resume,
1361 	.poweroff	= input_dev_suspend,
1362 	.restore	= input_dev_resume,
1363 };
1364 #endif /* CONFIG_PM */
1365 
1366 static struct device_type input_dev_type = {
1367 	.groups		= input_dev_attr_groups,
1368 	.release	= input_dev_release,
1369 	.uevent		= input_dev_uevent,
1370 #ifdef CONFIG_PM
1371 	.pm		= &input_dev_pm_ops,
1372 #endif
1373 };
1374 
1375 static char *input_devnode(struct device *dev, mode_t *mode)
1376 {
1377 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1378 }
1379 
1380 struct class input_class = {
1381 	.name		= "input",
1382 	.devnode	= input_devnode,
1383 };
1384 EXPORT_SYMBOL_GPL(input_class);
1385 
1386 /**
1387  * input_allocate_device - allocate memory for new input device
1388  *
1389  * Returns prepared struct input_dev or NULL.
1390  *
1391  * NOTE: Use input_free_device() to free devices that have not been
1392  * registered; input_unregister_device() should be used for already
1393  * registered devices.
1394  */
1395 struct input_dev *input_allocate_device(void)
1396 {
1397 	struct input_dev *dev;
1398 
1399 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1400 	if (dev) {
1401 		dev->dev.type = &input_dev_type;
1402 		dev->dev.class = &input_class;
1403 		device_initialize(&dev->dev);
1404 		mutex_init(&dev->mutex);
1405 		spin_lock_init(&dev->event_lock);
1406 		INIT_LIST_HEAD(&dev->h_list);
1407 		INIT_LIST_HEAD(&dev->node);
1408 
1409 		__module_get(THIS_MODULE);
1410 	}
1411 
1412 	return dev;
1413 }
1414 EXPORT_SYMBOL(input_allocate_device);
1415 
1416 /**
1417  * input_free_device - free memory occupied by input_dev structure
1418  * @dev: input device to free
1419  *
1420  * This function should only be used if input_register_device()
1421  * was not called yet or if it failed. Once device was registered
1422  * use input_unregister_device() and memory will be freed once last
1423  * reference to the device is dropped.
1424  *
1425  * Device should be allocated by input_allocate_device().
1426  *
1427  * NOTE: If there are references to the input device then memory
1428  * will not be freed until last reference is dropped.
1429  */
1430 void input_free_device(struct input_dev *dev)
1431 {
1432 	if (dev)
1433 		input_put_device(dev);
1434 }
1435 EXPORT_SYMBOL(input_free_device);
1436 
1437 /**
1438  * input_set_capability - mark device as capable of a certain event
1439  * @dev: device that is capable of emitting or accepting event
1440  * @type: type of the event (EV_KEY, EV_REL, etc...)
1441  * @code: event code
1442  *
1443  * In addition to setting up corresponding bit in appropriate capability
1444  * bitmap the function also adjusts dev->evbit.
1445  */
1446 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1447 {
1448 	switch (type) {
1449 	case EV_KEY:
1450 		__set_bit(code, dev->keybit);
1451 		break;
1452 
1453 	case EV_REL:
1454 		__set_bit(code, dev->relbit);
1455 		break;
1456 
1457 	case EV_ABS:
1458 		__set_bit(code, dev->absbit);
1459 		break;
1460 
1461 	case EV_MSC:
1462 		__set_bit(code, dev->mscbit);
1463 		break;
1464 
1465 	case EV_SW:
1466 		__set_bit(code, dev->swbit);
1467 		break;
1468 
1469 	case EV_LED:
1470 		__set_bit(code, dev->ledbit);
1471 		break;
1472 
1473 	case EV_SND:
1474 		__set_bit(code, dev->sndbit);
1475 		break;
1476 
1477 	case EV_FF:
1478 		__set_bit(code, dev->ffbit);
1479 		break;
1480 
1481 	case EV_PWR:
1482 		/* do nothing */
1483 		break;
1484 
1485 	default:
1486 		printk(KERN_ERR
1487 			"input_set_capability: unknown type %u (code %u)\n",
1488 			type, code);
1489 		dump_stack();
1490 		return;
1491 	}
1492 
1493 	__set_bit(type, dev->evbit);
1494 }
1495 EXPORT_SYMBOL(input_set_capability);
1496 
1497 /**
1498  * input_register_device - register device with input core
1499  * @dev: device to be registered
1500  *
1501  * This function registers device with input core. The device must be
1502  * allocated with input_allocate_device() and all it's capabilities
1503  * set up before registering.
1504  * If function fails the device must be freed with input_free_device().
1505  * Once device has been successfully registered it can be unregistered
1506  * with input_unregister_device(); input_free_device() should not be
1507  * called in this case.
1508  */
1509 int input_register_device(struct input_dev *dev)
1510 {
1511 	static atomic_t input_no = ATOMIC_INIT(0);
1512 	struct input_handler *handler;
1513 	const char *path;
1514 	int error;
1515 
1516 	__set_bit(EV_SYN, dev->evbit);
1517 
1518 	/*
1519 	 * If delay and period are pre-set by the driver, then autorepeating
1520 	 * is handled by the driver itself and we don't do it in input.c.
1521 	 */
1522 
1523 	init_timer(&dev->timer);
1524 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1525 		dev->timer.data = (long) dev;
1526 		dev->timer.function = input_repeat_key;
1527 		dev->rep[REP_DELAY] = 250;
1528 		dev->rep[REP_PERIOD] = 33;
1529 	}
1530 
1531 	if (!dev->getkeycode)
1532 		dev->getkeycode = input_default_getkeycode;
1533 
1534 	if (!dev->setkeycode)
1535 		dev->setkeycode = input_default_setkeycode;
1536 
1537 	dev_set_name(&dev->dev, "input%ld",
1538 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1539 
1540 	error = device_add(&dev->dev);
1541 	if (error)
1542 		return error;
1543 
1544 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1545 	printk(KERN_INFO "input: %s as %s\n",
1546 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1547 	kfree(path);
1548 
1549 	error = mutex_lock_interruptible(&input_mutex);
1550 	if (error) {
1551 		device_del(&dev->dev);
1552 		return error;
1553 	}
1554 
1555 	list_add_tail(&dev->node, &input_dev_list);
1556 
1557 	list_for_each_entry(handler, &input_handler_list, node)
1558 		input_attach_handler(dev, handler);
1559 
1560 	input_wakeup_procfs_readers();
1561 
1562 	mutex_unlock(&input_mutex);
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL(input_register_device);
1567 
1568 /**
1569  * input_unregister_device - unregister previously registered device
1570  * @dev: device to be unregistered
1571  *
1572  * This function unregisters an input device. Once device is unregistered
1573  * the caller should not try to access it as it may get freed at any moment.
1574  */
1575 void input_unregister_device(struct input_dev *dev)
1576 {
1577 	struct input_handle *handle, *next;
1578 
1579 	input_disconnect_device(dev);
1580 
1581 	mutex_lock(&input_mutex);
1582 
1583 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1584 		handle->handler->disconnect(handle);
1585 	WARN_ON(!list_empty(&dev->h_list));
1586 
1587 	del_timer_sync(&dev->timer);
1588 	list_del_init(&dev->node);
1589 
1590 	input_wakeup_procfs_readers();
1591 
1592 	mutex_unlock(&input_mutex);
1593 
1594 	device_unregister(&dev->dev);
1595 }
1596 EXPORT_SYMBOL(input_unregister_device);
1597 
1598 /**
1599  * input_register_handler - register a new input handler
1600  * @handler: handler to be registered
1601  *
1602  * This function registers a new input handler (interface) for input
1603  * devices in the system and attaches it to all input devices that
1604  * are compatible with the handler.
1605  */
1606 int input_register_handler(struct input_handler *handler)
1607 {
1608 	struct input_dev *dev;
1609 	int retval;
1610 
1611 	retval = mutex_lock_interruptible(&input_mutex);
1612 	if (retval)
1613 		return retval;
1614 
1615 	INIT_LIST_HEAD(&handler->h_list);
1616 
1617 	if (handler->fops != NULL) {
1618 		if (input_table[handler->minor >> 5]) {
1619 			retval = -EBUSY;
1620 			goto out;
1621 		}
1622 		input_table[handler->minor >> 5] = handler;
1623 	}
1624 
1625 	list_add_tail(&handler->node, &input_handler_list);
1626 
1627 	list_for_each_entry(dev, &input_dev_list, node)
1628 		input_attach_handler(dev, handler);
1629 
1630 	input_wakeup_procfs_readers();
1631 
1632  out:
1633 	mutex_unlock(&input_mutex);
1634 	return retval;
1635 }
1636 EXPORT_SYMBOL(input_register_handler);
1637 
1638 /**
1639  * input_unregister_handler - unregisters an input handler
1640  * @handler: handler to be unregistered
1641  *
1642  * This function disconnects a handler from its input devices and
1643  * removes it from lists of known handlers.
1644  */
1645 void input_unregister_handler(struct input_handler *handler)
1646 {
1647 	struct input_handle *handle, *next;
1648 
1649 	mutex_lock(&input_mutex);
1650 
1651 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1652 		handler->disconnect(handle);
1653 	WARN_ON(!list_empty(&handler->h_list));
1654 
1655 	list_del_init(&handler->node);
1656 
1657 	if (handler->fops != NULL)
1658 		input_table[handler->minor >> 5] = NULL;
1659 
1660 	input_wakeup_procfs_readers();
1661 
1662 	mutex_unlock(&input_mutex);
1663 }
1664 EXPORT_SYMBOL(input_unregister_handler);
1665 
1666 /**
1667  * input_handler_for_each_handle - handle iterator
1668  * @handler: input handler to iterate
1669  * @data: data for the callback
1670  * @fn: function to be called for each handle
1671  *
1672  * Iterate over @bus's list of devices, and call @fn for each, passing
1673  * it @data and stop when @fn returns a non-zero value. The function is
1674  * using RCU to traverse the list and therefore may be usind in atonic
1675  * contexts. The @fn callback is invoked from RCU critical section and
1676  * thus must not sleep.
1677  */
1678 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1679 				  int (*fn)(struct input_handle *, void *))
1680 {
1681 	struct input_handle *handle;
1682 	int retval = 0;
1683 
1684 	rcu_read_lock();
1685 
1686 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1687 		retval = fn(handle, data);
1688 		if (retval)
1689 			break;
1690 	}
1691 
1692 	rcu_read_unlock();
1693 
1694 	return retval;
1695 }
1696 EXPORT_SYMBOL(input_handler_for_each_handle);
1697 
1698 /**
1699  * input_register_handle - register a new input handle
1700  * @handle: handle to register
1701  *
1702  * This function puts a new input handle onto device's
1703  * and handler's lists so that events can flow through
1704  * it once it is opened using input_open_device().
1705  *
1706  * This function is supposed to be called from handler's
1707  * connect() method.
1708  */
1709 int input_register_handle(struct input_handle *handle)
1710 {
1711 	struct input_handler *handler = handle->handler;
1712 	struct input_dev *dev = handle->dev;
1713 	int error;
1714 
1715 	/*
1716 	 * We take dev->mutex here to prevent race with
1717 	 * input_release_device().
1718 	 */
1719 	error = mutex_lock_interruptible(&dev->mutex);
1720 	if (error)
1721 		return error;
1722 	list_add_tail_rcu(&handle->d_node, &dev->h_list);
1723 	mutex_unlock(&dev->mutex);
1724 
1725 	/*
1726 	 * Since we are supposed to be called from ->connect()
1727 	 * which is mutually exclusive with ->disconnect()
1728 	 * we can't be racing with input_unregister_handle()
1729 	 * and so separate lock is not needed here.
1730 	 */
1731 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
1732 
1733 	if (handler->start)
1734 		handler->start(handle);
1735 
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL(input_register_handle);
1739 
1740 /**
1741  * input_unregister_handle - unregister an input handle
1742  * @handle: handle to unregister
1743  *
1744  * This function removes input handle from device's
1745  * and handler's lists.
1746  *
1747  * This function is supposed to be called from handler's
1748  * disconnect() method.
1749  */
1750 void input_unregister_handle(struct input_handle *handle)
1751 {
1752 	struct input_dev *dev = handle->dev;
1753 
1754 	list_del_rcu(&handle->h_node);
1755 
1756 	/*
1757 	 * Take dev->mutex to prevent race with input_release_device().
1758 	 */
1759 	mutex_lock(&dev->mutex);
1760 	list_del_rcu(&handle->d_node);
1761 	mutex_unlock(&dev->mutex);
1762 
1763 	synchronize_rcu();
1764 }
1765 EXPORT_SYMBOL(input_unregister_handle);
1766 
1767 static int input_open_file(struct inode *inode, struct file *file)
1768 {
1769 	struct input_handler *handler;
1770 	const struct file_operations *old_fops, *new_fops = NULL;
1771 	int err;
1772 
1773 	lock_kernel();
1774 	/* No load-on-demand here? */
1775 	handler = input_table[iminor(inode) >> 5];
1776 	if (!handler || !(new_fops = fops_get(handler->fops))) {
1777 		err = -ENODEV;
1778 		goto out;
1779 	}
1780 
1781 	/*
1782 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
1783 	 * not "no device". Oh, well...
1784 	 */
1785 	if (!new_fops->open) {
1786 		fops_put(new_fops);
1787 		err = -ENODEV;
1788 		goto out;
1789 	}
1790 	old_fops = file->f_op;
1791 	file->f_op = new_fops;
1792 
1793 	err = new_fops->open(inode, file);
1794 
1795 	if (err) {
1796 		fops_put(file->f_op);
1797 		file->f_op = fops_get(old_fops);
1798 	}
1799 	fops_put(old_fops);
1800 out:
1801 	unlock_kernel();
1802 	return err;
1803 }
1804 
1805 static const struct file_operations input_fops = {
1806 	.owner = THIS_MODULE,
1807 	.open = input_open_file,
1808 };
1809 
1810 static void __init input_init_abs_bypass(void)
1811 {
1812 	const unsigned int *p;
1813 
1814 	for (p = input_abs_bypass_init_data; *p; p++)
1815 		input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1816 }
1817 
1818 static int __init input_init(void)
1819 {
1820 	int err;
1821 
1822 	input_init_abs_bypass();
1823 
1824 	err = class_register(&input_class);
1825 	if (err) {
1826 		printk(KERN_ERR "input: unable to register input_dev class\n");
1827 		return err;
1828 	}
1829 
1830 	err = input_proc_init();
1831 	if (err)
1832 		goto fail1;
1833 
1834 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1835 	if (err) {
1836 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1837 		goto fail2;
1838 	}
1839 
1840 	return 0;
1841 
1842  fail2:	input_proc_exit();
1843  fail1:	class_unregister(&input_class);
1844 	return err;
1845 }
1846 
1847 static void __exit input_exit(void)
1848 {
1849 	input_proc_exit();
1850 	unregister_chrdev(INPUT_MAJOR, "input");
1851 	class_unregister(&input_class);
1852 }
1853 
1854 subsys_initcall(input_init);
1855 module_exit(input_exit);
1856