xref: /openbmc/linux/drivers/input/input.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * The input core
4  *
5  * Copyright (c) 1999-2002 Vojtech Pavlik
6  */
7 
8 
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
31 
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
35 
36 #define INPUT_MAX_CHAR_DEVICES		1024
37 #define INPUT_FIRST_DYNAMIC_DEV		256
38 static DEFINE_IDA(input_ida);
39 
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
42 
43 /*
44  * input_mutex protects access to both input_dev_list and input_handler_list.
45  * This also causes input_[un]register_device and input_[un]register_handler
46  * be mutually exclusive which simplifies locking in drivers implementing
47  * input handlers.
48  */
49 static DEFINE_MUTEX(input_mutex);
50 
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52 
53 static const unsigned int input_max_code[EV_CNT] = {
54 	[EV_KEY] = KEY_MAX,
55 	[EV_REL] = REL_MAX,
56 	[EV_ABS] = ABS_MAX,
57 	[EV_MSC] = MSC_MAX,
58 	[EV_SW] = SW_MAX,
59 	[EV_LED] = LED_MAX,
60 	[EV_SND] = SND_MAX,
61 	[EV_FF] = FF_MAX,
62 };
63 
64 static inline int is_event_supported(unsigned int code,
65 				     unsigned long *bm, unsigned int max)
66 {
67 	return code <= max && test_bit(code, bm);
68 }
69 
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71 {
72 	if (fuzz) {
73 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 			return old_val;
75 
76 		if (value > old_val - fuzz && value < old_val + fuzz)
77 			return (old_val * 3 + value) / 4;
78 
79 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 			return (old_val + value) / 2;
81 	}
82 
83 	return value;
84 }
85 
86 static void input_start_autorepeat(struct input_dev *dev, int code)
87 {
88 	if (test_bit(EV_REP, dev->evbit) &&
89 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 	    dev->timer.function) {
91 		dev->repeat_key = code;
92 		mod_timer(&dev->timer,
93 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 	}
95 }
96 
97 static void input_stop_autorepeat(struct input_dev *dev)
98 {
99 	del_timer(&dev->timer);
100 }
101 
102 /*
103  * Pass event first through all filters and then, if event has not been
104  * filtered out, through all open handles. This function is called with
105  * dev->event_lock held and interrupts disabled.
106  */
107 static unsigned int input_to_handler(struct input_handle *handle,
108 			struct input_value *vals, unsigned int count)
109 {
110 	struct input_handler *handler = handle->handler;
111 	struct input_value *end = vals;
112 	struct input_value *v;
113 
114 	if (handler->filter) {
115 		for (v = vals; v != vals + count; v++) {
116 			if (handler->filter(handle, v->type, v->code, v->value))
117 				continue;
118 			if (end != v)
119 				*end = *v;
120 			end++;
121 		}
122 		count = end - vals;
123 	}
124 
125 	if (!count)
126 		return 0;
127 
128 	if (handler->events)
129 		handler->events(handle, vals, count);
130 	else if (handler->event)
131 		for (v = vals; v != vals + count; v++)
132 			handler->event(handle, v->type, v->code, v->value);
133 
134 	return count;
135 }
136 
137 /*
138  * Pass values first through all filters and then, if event has not been
139  * filtered out, through all open handles. This function is called with
140  * dev->event_lock held and interrupts disabled.
141  */
142 static void input_pass_values(struct input_dev *dev,
143 			      struct input_value *vals, unsigned int count)
144 {
145 	struct input_handle *handle;
146 	struct input_value *v;
147 
148 	lockdep_assert_held(&dev->event_lock);
149 
150 	if (!count)
151 		return;
152 
153 	rcu_read_lock();
154 
155 	handle = rcu_dereference(dev->grab);
156 	if (handle) {
157 		count = input_to_handler(handle, vals, count);
158 	} else {
159 		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
160 			if (handle->open) {
161 				count = input_to_handler(handle, vals, count);
162 				if (!count)
163 					break;
164 			}
165 	}
166 
167 	rcu_read_unlock();
168 
169 	/* trigger auto repeat for key events */
170 	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
171 		for (v = vals; v != vals + count; v++) {
172 			if (v->type == EV_KEY && v->value != 2) {
173 				if (v->value)
174 					input_start_autorepeat(dev, v->code);
175 				else
176 					input_stop_autorepeat(dev);
177 			}
178 		}
179 	}
180 }
181 
182 #define INPUT_IGNORE_EVENT	0
183 #define INPUT_PASS_TO_HANDLERS	1
184 #define INPUT_PASS_TO_DEVICE	2
185 #define INPUT_SLOT		4
186 #define INPUT_FLUSH		8
187 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
188 
189 static int input_handle_abs_event(struct input_dev *dev,
190 				  unsigned int code, int *pval)
191 {
192 	struct input_mt *mt = dev->mt;
193 	bool is_mt_event;
194 	int *pold;
195 
196 	if (code == ABS_MT_SLOT) {
197 		/*
198 		 * "Stage" the event; we'll flush it later, when we
199 		 * get actual touch data.
200 		 */
201 		if (mt && *pval >= 0 && *pval < mt->num_slots)
202 			mt->slot = *pval;
203 
204 		return INPUT_IGNORE_EVENT;
205 	}
206 
207 	is_mt_event = input_is_mt_value(code);
208 
209 	if (!is_mt_event) {
210 		pold = &dev->absinfo[code].value;
211 	} else if (mt) {
212 		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
213 	} else {
214 		/*
215 		 * Bypass filtering for multi-touch events when
216 		 * not employing slots.
217 		 */
218 		pold = NULL;
219 	}
220 
221 	if (pold) {
222 		*pval = input_defuzz_abs_event(*pval, *pold,
223 						dev->absinfo[code].fuzz);
224 		if (*pold == *pval)
225 			return INPUT_IGNORE_EVENT;
226 
227 		*pold = *pval;
228 	}
229 
230 	/* Flush pending "slot" event */
231 	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
232 		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
233 		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
234 	}
235 
236 	return INPUT_PASS_TO_HANDLERS;
237 }
238 
239 static int input_get_disposition(struct input_dev *dev,
240 			  unsigned int type, unsigned int code, int *pval)
241 {
242 	int disposition = INPUT_IGNORE_EVENT;
243 	int value = *pval;
244 
245 	/* filter-out events from inhibited devices */
246 	if (dev->inhibited)
247 		return INPUT_IGNORE_EVENT;
248 
249 	switch (type) {
250 
251 	case EV_SYN:
252 		switch (code) {
253 		case SYN_CONFIG:
254 			disposition = INPUT_PASS_TO_ALL;
255 			break;
256 
257 		case SYN_REPORT:
258 			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
259 			break;
260 		case SYN_MT_REPORT:
261 			disposition = INPUT_PASS_TO_HANDLERS;
262 			break;
263 		}
264 		break;
265 
266 	case EV_KEY:
267 		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
268 
269 			/* auto-repeat bypasses state updates */
270 			if (value == 2) {
271 				disposition = INPUT_PASS_TO_HANDLERS;
272 				break;
273 			}
274 
275 			if (!!test_bit(code, dev->key) != !!value) {
276 
277 				__change_bit(code, dev->key);
278 				disposition = INPUT_PASS_TO_HANDLERS;
279 			}
280 		}
281 		break;
282 
283 	case EV_SW:
284 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
285 		    !!test_bit(code, dev->sw) != !!value) {
286 
287 			__change_bit(code, dev->sw);
288 			disposition = INPUT_PASS_TO_HANDLERS;
289 		}
290 		break;
291 
292 	case EV_ABS:
293 		if (is_event_supported(code, dev->absbit, ABS_MAX))
294 			disposition = input_handle_abs_event(dev, code, &value);
295 
296 		break;
297 
298 	case EV_REL:
299 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
300 			disposition = INPUT_PASS_TO_HANDLERS;
301 
302 		break;
303 
304 	case EV_MSC:
305 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
306 			disposition = INPUT_PASS_TO_ALL;
307 
308 		break;
309 
310 	case EV_LED:
311 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
312 		    !!test_bit(code, dev->led) != !!value) {
313 
314 			__change_bit(code, dev->led);
315 			disposition = INPUT_PASS_TO_ALL;
316 		}
317 		break;
318 
319 	case EV_SND:
320 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
321 
322 			if (!!test_bit(code, dev->snd) != !!value)
323 				__change_bit(code, dev->snd);
324 			disposition = INPUT_PASS_TO_ALL;
325 		}
326 		break;
327 
328 	case EV_REP:
329 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
330 			dev->rep[code] = value;
331 			disposition = INPUT_PASS_TO_ALL;
332 		}
333 		break;
334 
335 	case EV_FF:
336 		if (value >= 0)
337 			disposition = INPUT_PASS_TO_ALL;
338 		break;
339 
340 	case EV_PWR:
341 		disposition = INPUT_PASS_TO_ALL;
342 		break;
343 	}
344 
345 	*pval = value;
346 	return disposition;
347 }
348 
349 static void input_event_dispose(struct input_dev *dev, int disposition,
350 				unsigned int type, unsigned int code, int value)
351 {
352 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
353 		dev->event(dev, type, code, value);
354 
355 	if (!dev->vals)
356 		return;
357 
358 	if (disposition & INPUT_PASS_TO_HANDLERS) {
359 		struct input_value *v;
360 
361 		if (disposition & INPUT_SLOT) {
362 			v = &dev->vals[dev->num_vals++];
363 			v->type = EV_ABS;
364 			v->code = ABS_MT_SLOT;
365 			v->value = dev->mt->slot;
366 		}
367 
368 		v = &dev->vals[dev->num_vals++];
369 		v->type = type;
370 		v->code = code;
371 		v->value = value;
372 	}
373 
374 	if (disposition & INPUT_FLUSH) {
375 		if (dev->num_vals >= 2)
376 			input_pass_values(dev, dev->vals, dev->num_vals);
377 		dev->num_vals = 0;
378 		/*
379 		 * Reset the timestamp on flush so we won't end up
380 		 * with a stale one. Note we only need to reset the
381 		 * monolithic one as we use its presence when deciding
382 		 * whether to generate a synthetic timestamp.
383 		 */
384 		dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
385 	} else if (dev->num_vals >= dev->max_vals - 2) {
386 		dev->vals[dev->num_vals++] = input_value_sync;
387 		input_pass_values(dev, dev->vals, dev->num_vals);
388 		dev->num_vals = 0;
389 	}
390 }
391 
392 void input_handle_event(struct input_dev *dev,
393 			unsigned int type, unsigned int code, int value)
394 {
395 	int disposition;
396 
397 	lockdep_assert_held(&dev->event_lock);
398 
399 	disposition = input_get_disposition(dev, type, code, &value);
400 	if (disposition != INPUT_IGNORE_EVENT) {
401 		if (type != EV_SYN)
402 			add_input_randomness(type, code, value);
403 
404 		input_event_dispose(dev, disposition, type, code, value);
405 	}
406 }
407 
408 /**
409  * input_event() - report new input event
410  * @dev: device that generated the event
411  * @type: type of the event
412  * @code: event code
413  * @value: value of the event
414  *
415  * This function should be used by drivers implementing various input
416  * devices to report input events. See also input_inject_event().
417  *
418  * NOTE: input_event() may be safely used right after input device was
419  * allocated with input_allocate_device(), even before it is registered
420  * with input_register_device(), but the event will not reach any of the
421  * input handlers. Such early invocation of input_event() may be used
422  * to 'seed' initial state of a switch or initial position of absolute
423  * axis, etc.
424  */
425 void input_event(struct input_dev *dev,
426 		 unsigned int type, unsigned int code, int value)
427 {
428 	unsigned long flags;
429 
430 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
431 
432 		spin_lock_irqsave(&dev->event_lock, flags);
433 		input_handle_event(dev, type, code, value);
434 		spin_unlock_irqrestore(&dev->event_lock, flags);
435 	}
436 }
437 EXPORT_SYMBOL(input_event);
438 
439 /**
440  * input_inject_event() - send input event from input handler
441  * @handle: input handle to send event through
442  * @type: type of the event
443  * @code: event code
444  * @value: value of the event
445  *
446  * Similar to input_event() but will ignore event if device is
447  * "grabbed" and handle injecting event is not the one that owns
448  * the device.
449  */
450 void input_inject_event(struct input_handle *handle,
451 			unsigned int type, unsigned int code, int value)
452 {
453 	struct input_dev *dev = handle->dev;
454 	struct input_handle *grab;
455 	unsigned long flags;
456 
457 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
458 		spin_lock_irqsave(&dev->event_lock, flags);
459 
460 		rcu_read_lock();
461 		grab = rcu_dereference(dev->grab);
462 		if (!grab || grab == handle)
463 			input_handle_event(dev, type, code, value);
464 		rcu_read_unlock();
465 
466 		spin_unlock_irqrestore(&dev->event_lock, flags);
467 	}
468 }
469 EXPORT_SYMBOL(input_inject_event);
470 
471 /**
472  * input_alloc_absinfo - allocates array of input_absinfo structs
473  * @dev: the input device emitting absolute events
474  *
475  * If the absinfo struct the caller asked for is already allocated, this
476  * functions will not do anything.
477  */
478 void input_alloc_absinfo(struct input_dev *dev)
479 {
480 	if (dev->absinfo)
481 		return;
482 
483 	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
484 	if (!dev->absinfo) {
485 		dev_err(dev->dev.parent ?: &dev->dev,
486 			"%s: unable to allocate memory\n", __func__);
487 		/*
488 		 * We will handle this allocation failure in
489 		 * input_register_device() when we refuse to register input
490 		 * device with ABS bits but without absinfo.
491 		 */
492 	}
493 }
494 EXPORT_SYMBOL(input_alloc_absinfo);
495 
496 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
497 			  int min, int max, int fuzz, int flat)
498 {
499 	struct input_absinfo *absinfo;
500 
501 	__set_bit(EV_ABS, dev->evbit);
502 	__set_bit(axis, dev->absbit);
503 
504 	input_alloc_absinfo(dev);
505 	if (!dev->absinfo)
506 		return;
507 
508 	absinfo = &dev->absinfo[axis];
509 	absinfo->minimum = min;
510 	absinfo->maximum = max;
511 	absinfo->fuzz = fuzz;
512 	absinfo->flat = flat;
513 }
514 EXPORT_SYMBOL(input_set_abs_params);
515 
516 /**
517  * input_copy_abs - Copy absinfo from one input_dev to another
518  * @dst: Destination input device to copy the abs settings to
519  * @dst_axis: ABS_* value selecting the destination axis
520  * @src: Source input device to copy the abs settings from
521  * @src_axis: ABS_* value selecting the source axis
522  *
523  * Set absinfo for the selected destination axis by copying it from
524  * the specified source input device's source axis.
525  * This is useful to e.g. setup a pen/stylus input-device for combined
526  * touchscreen/pen hardware where the pen uses the same coordinates as
527  * the touchscreen.
528  */
529 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
530 		    const struct input_dev *src, unsigned int src_axis)
531 {
532 	/* src must have EV_ABS and src_axis set */
533 	if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
534 		      test_bit(src_axis, src->absbit))))
535 		return;
536 
537 	/*
538 	 * input_alloc_absinfo() may have failed for the source. Our caller is
539 	 * expected to catch this when registering the input devices, which may
540 	 * happen after the input_copy_abs() call.
541 	 */
542 	if (!src->absinfo)
543 		return;
544 
545 	input_set_capability(dst, EV_ABS, dst_axis);
546 	if (!dst->absinfo)
547 		return;
548 
549 	dst->absinfo[dst_axis] = src->absinfo[src_axis];
550 }
551 EXPORT_SYMBOL(input_copy_abs);
552 
553 /**
554  * input_grab_device - grabs device for exclusive use
555  * @handle: input handle that wants to own the device
556  *
557  * When a device is grabbed by an input handle all events generated by
558  * the device are delivered only to this handle. Also events injected
559  * by other input handles are ignored while device is grabbed.
560  */
561 int input_grab_device(struct input_handle *handle)
562 {
563 	struct input_dev *dev = handle->dev;
564 	int retval;
565 
566 	retval = mutex_lock_interruptible(&dev->mutex);
567 	if (retval)
568 		return retval;
569 
570 	if (dev->grab) {
571 		retval = -EBUSY;
572 		goto out;
573 	}
574 
575 	rcu_assign_pointer(dev->grab, handle);
576 
577  out:
578 	mutex_unlock(&dev->mutex);
579 	return retval;
580 }
581 EXPORT_SYMBOL(input_grab_device);
582 
583 static void __input_release_device(struct input_handle *handle)
584 {
585 	struct input_dev *dev = handle->dev;
586 	struct input_handle *grabber;
587 
588 	grabber = rcu_dereference_protected(dev->grab,
589 					    lockdep_is_held(&dev->mutex));
590 	if (grabber == handle) {
591 		rcu_assign_pointer(dev->grab, NULL);
592 		/* Make sure input_pass_values() notices that grab is gone */
593 		synchronize_rcu();
594 
595 		list_for_each_entry(handle, &dev->h_list, d_node)
596 			if (handle->open && handle->handler->start)
597 				handle->handler->start(handle);
598 	}
599 }
600 
601 /**
602  * input_release_device - release previously grabbed device
603  * @handle: input handle that owns the device
604  *
605  * Releases previously grabbed device so that other input handles can
606  * start receiving input events. Upon release all handlers attached
607  * to the device have their start() method called so they have a change
608  * to synchronize device state with the rest of the system.
609  */
610 void input_release_device(struct input_handle *handle)
611 {
612 	struct input_dev *dev = handle->dev;
613 
614 	mutex_lock(&dev->mutex);
615 	__input_release_device(handle);
616 	mutex_unlock(&dev->mutex);
617 }
618 EXPORT_SYMBOL(input_release_device);
619 
620 /**
621  * input_open_device - open input device
622  * @handle: handle through which device is being accessed
623  *
624  * This function should be called by input handlers when they
625  * want to start receive events from given input device.
626  */
627 int input_open_device(struct input_handle *handle)
628 {
629 	struct input_dev *dev = handle->dev;
630 	int retval;
631 
632 	retval = mutex_lock_interruptible(&dev->mutex);
633 	if (retval)
634 		return retval;
635 
636 	if (dev->going_away) {
637 		retval = -ENODEV;
638 		goto out;
639 	}
640 
641 	handle->open++;
642 
643 	if (dev->users++ || dev->inhibited) {
644 		/*
645 		 * Device is already opened and/or inhibited,
646 		 * so we can exit immediately and report success.
647 		 */
648 		goto out;
649 	}
650 
651 	if (dev->open) {
652 		retval = dev->open(dev);
653 		if (retval) {
654 			dev->users--;
655 			handle->open--;
656 			/*
657 			 * Make sure we are not delivering any more events
658 			 * through this handle
659 			 */
660 			synchronize_rcu();
661 			goto out;
662 		}
663 	}
664 
665 	if (dev->poller)
666 		input_dev_poller_start(dev->poller);
667 
668  out:
669 	mutex_unlock(&dev->mutex);
670 	return retval;
671 }
672 EXPORT_SYMBOL(input_open_device);
673 
674 int input_flush_device(struct input_handle *handle, struct file *file)
675 {
676 	struct input_dev *dev = handle->dev;
677 	int retval;
678 
679 	retval = mutex_lock_interruptible(&dev->mutex);
680 	if (retval)
681 		return retval;
682 
683 	if (dev->flush)
684 		retval = dev->flush(dev, file);
685 
686 	mutex_unlock(&dev->mutex);
687 	return retval;
688 }
689 EXPORT_SYMBOL(input_flush_device);
690 
691 /**
692  * input_close_device - close input device
693  * @handle: handle through which device is being accessed
694  *
695  * This function should be called by input handlers when they
696  * want to stop receive events from given input device.
697  */
698 void input_close_device(struct input_handle *handle)
699 {
700 	struct input_dev *dev = handle->dev;
701 
702 	mutex_lock(&dev->mutex);
703 
704 	__input_release_device(handle);
705 
706 	if (!--dev->users && !dev->inhibited) {
707 		if (dev->poller)
708 			input_dev_poller_stop(dev->poller);
709 		if (dev->close)
710 			dev->close(dev);
711 	}
712 
713 	if (!--handle->open) {
714 		/*
715 		 * synchronize_rcu() makes sure that input_pass_values()
716 		 * completed and that no more input events are delivered
717 		 * through this handle
718 		 */
719 		synchronize_rcu();
720 	}
721 
722 	mutex_unlock(&dev->mutex);
723 }
724 EXPORT_SYMBOL(input_close_device);
725 
726 /*
727  * Simulate keyup events for all keys that are marked as pressed.
728  * The function must be called with dev->event_lock held.
729  */
730 static bool input_dev_release_keys(struct input_dev *dev)
731 {
732 	bool need_sync = false;
733 	int code;
734 
735 	lockdep_assert_held(&dev->event_lock);
736 
737 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
738 		for_each_set_bit(code, dev->key, KEY_CNT) {
739 			input_handle_event(dev, EV_KEY, code, 0);
740 			need_sync = true;
741 		}
742 	}
743 
744 	return need_sync;
745 }
746 
747 /*
748  * Prepare device for unregistering
749  */
750 static void input_disconnect_device(struct input_dev *dev)
751 {
752 	struct input_handle *handle;
753 
754 	/*
755 	 * Mark device as going away. Note that we take dev->mutex here
756 	 * not to protect access to dev->going_away but rather to ensure
757 	 * that there are no threads in the middle of input_open_device()
758 	 */
759 	mutex_lock(&dev->mutex);
760 	dev->going_away = true;
761 	mutex_unlock(&dev->mutex);
762 
763 	spin_lock_irq(&dev->event_lock);
764 
765 	/*
766 	 * Simulate keyup events for all pressed keys so that handlers
767 	 * are not left with "stuck" keys. The driver may continue
768 	 * generate events even after we done here but they will not
769 	 * reach any handlers.
770 	 */
771 	if (input_dev_release_keys(dev))
772 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
773 
774 	list_for_each_entry(handle, &dev->h_list, d_node)
775 		handle->open = 0;
776 
777 	spin_unlock_irq(&dev->event_lock);
778 }
779 
780 /**
781  * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
782  * @ke: keymap entry containing scancode to be converted.
783  * @scancode: pointer to the location where converted scancode should
784  *	be stored.
785  *
786  * This function is used to convert scancode stored in &struct keymap_entry
787  * into scalar form understood by legacy keymap handling methods. These
788  * methods expect scancodes to be represented as 'unsigned int'.
789  */
790 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
791 			     unsigned int *scancode)
792 {
793 	switch (ke->len) {
794 	case 1:
795 		*scancode = *((u8 *)ke->scancode);
796 		break;
797 
798 	case 2:
799 		*scancode = *((u16 *)ke->scancode);
800 		break;
801 
802 	case 4:
803 		*scancode = *((u32 *)ke->scancode);
804 		break;
805 
806 	default:
807 		return -EINVAL;
808 	}
809 
810 	return 0;
811 }
812 EXPORT_SYMBOL(input_scancode_to_scalar);
813 
814 /*
815  * Those routines handle the default case where no [gs]etkeycode() is
816  * defined. In this case, an array indexed by the scancode is used.
817  */
818 
819 static unsigned int input_fetch_keycode(struct input_dev *dev,
820 					unsigned int index)
821 {
822 	switch (dev->keycodesize) {
823 	case 1:
824 		return ((u8 *)dev->keycode)[index];
825 
826 	case 2:
827 		return ((u16 *)dev->keycode)[index];
828 
829 	default:
830 		return ((u32 *)dev->keycode)[index];
831 	}
832 }
833 
834 static int input_default_getkeycode(struct input_dev *dev,
835 				    struct input_keymap_entry *ke)
836 {
837 	unsigned int index;
838 	int error;
839 
840 	if (!dev->keycodesize)
841 		return -EINVAL;
842 
843 	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
844 		index = ke->index;
845 	else {
846 		error = input_scancode_to_scalar(ke, &index);
847 		if (error)
848 			return error;
849 	}
850 
851 	if (index >= dev->keycodemax)
852 		return -EINVAL;
853 
854 	ke->keycode = input_fetch_keycode(dev, index);
855 	ke->index = index;
856 	ke->len = sizeof(index);
857 	memcpy(ke->scancode, &index, sizeof(index));
858 
859 	return 0;
860 }
861 
862 static int input_default_setkeycode(struct input_dev *dev,
863 				    const struct input_keymap_entry *ke,
864 				    unsigned int *old_keycode)
865 {
866 	unsigned int index;
867 	int error;
868 	int i;
869 
870 	if (!dev->keycodesize)
871 		return -EINVAL;
872 
873 	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
874 		index = ke->index;
875 	} else {
876 		error = input_scancode_to_scalar(ke, &index);
877 		if (error)
878 			return error;
879 	}
880 
881 	if (index >= dev->keycodemax)
882 		return -EINVAL;
883 
884 	if (dev->keycodesize < sizeof(ke->keycode) &&
885 			(ke->keycode >> (dev->keycodesize * 8)))
886 		return -EINVAL;
887 
888 	switch (dev->keycodesize) {
889 		case 1: {
890 			u8 *k = (u8 *)dev->keycode;
891 			*old_keycode = k[index];
892 			k[index] = ke->keycode;
893 			break;
894 		}
895 		case 2: {
896 			u16 *k = (u16 *)dev->keycode;
897 			*old_keycode = k[index];
898 			k[index] = ke->keycode;
899 			break;
900 		}
901 		default: {
902 			u32 *k = (u32 *)dev->keycode;
903 			*old_keycode = k[index];
904 			k[index] = ke->keycode;
905 			break;
906 		}
907 	}
908 
909 	if (*old_keycode <= KEY_MAX) {
910 		__clear_bit(*old_keycode, dev->keybit);
911 		for (i = 0; i < dev->keycodemax; i++) {
912 			if (input_fetch_keycode(dev, i) == *old_keycode) {
913 				__set_bit(*old_keycode, dev->keybit);
914 				/* Setting the bit twice is useless, so break */
915 				break;
916 			}
917 		}
918 	}
919 
920 	__set_bit(ke->keycode, dev->keybit);
921 	return 0;
922 }
923 
924 /**
925  * input_get_keycode - retrieve keycode currently mapped to a given scancode
926  * @dev: input device which keymap is being queried
927  * @ke: keymap entry
928  *
929  * This function should be called by anyone interested in retrieving current
930  * keymap. Presently evdev handlers use it.
931  */
932 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
933 {
934 	unsigned long flags;
935 	int retval;
936 
937 	spin_lock_irqsave(&dev->event_lock, flags);
938 	retval = dev->getkeycode(dev, ke);
939 	spin_unlock_irqrestore(&dev->event_lock, flags);
940 
941 	return retval;
942 }
943 EXPORT_SYMBOL(input_get_keycode);
944 
945 /**
946  * input_set_keycode - attribute a keycode to a given scancode
947  * @dev: input device which keymap is being updated
948  * @ke: new keymap entry
949  *
950  * This function should be called by anyone needing to update current
951  * keymap. Presently keyboard and evdev handlers use it.
952  */
953 int input_set_keycode(struct input_dev *dev,
954 		      const struct input_keymap_entry *ke)
955 {
956 	unsigned long flags;
957 	unsigned int old_keycode;
958 	int retval;
959 
960 	if (ke->keycode > KEY_MAX)
961 		return -EINVAL;
962 
963 	spin_lock_irqsave(&dev->event_lock, flags);
964 
965 	retval = dev->setkeycode(dev, ke, &old_keycode);
966 	if (retval)
967 		goto out;
968 
969 	/* Make sure KEY_RESERVED did not get enabled. */
970 	__clear_bit(KEY_RESERVED, dev->keybit);
971 
972 	/*
973 	 * Simulate keyup event if keycode is not present
974 	 * in the keymap anymore
975 	 */
976 	if (old_keycode > KEY_MAX) {
977 		dev_warn(dev->dev.parent ?: &dev->dev,
978 			 "%s: got too big old keycode %#x\n",
979 			 __func__, old_keycode);
980 	} else if (test_bit(EV_KEY, dev->evbit) &&
981 		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
982 		   __test_and_clear_bit(old_keycode, dev->key)) {
983 		/*
984 		 * We have to use input_event_dispose() here directly instead
985 		 * of input_handle_event() because the key we want to release
986 		 * here is considered no longer supported by the device and
987 		 * input_handle_event() will ignore it.
988 		 */
989 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
990 				    EV_KEY, old_keycode, 0);
991 		input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
992 				    EV_SYN, SYN_REPORT, 1);
993 	}
994 
995  out:
996 	spin_unlock_irqrestore(&dev->event_lock, flags);
997 
998 	return retval;
999 }
1000 EXPORT_SYMBOL(input_set_keycode);
1001 
1002 bool input_match_device_id(const struct input_dev *dev,
1003 			   const struct input_device_id *id)
1004 {
1005 	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
1006 		if (id->bustype != dev->id.bustype)
1007 			return false;
1008 
1009 	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
1010 		if (id->vendor != dev->id.vendor)
1011 			return false;
1012 
1013 	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
1014 		if (id->product != dev->id.product)
1015 			return false;
1016 
1017 	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
1018 		if (id->version != dev->id.version)
1019 			return false;
1020 
1021 	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1022 	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1023 	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1024 	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1025 	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1026 	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1027 	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1028 	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1029 	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1030 	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1031 		return false;
1032 	}
1033 
1034 	return true;
1035 }
1036 EXPORT_SYMBOL(input_match_device_id);
1037 
1038 static const struct input_device_id *input_match_device(struct input_handler *handler,
1039 							struct input_dev *dev)
1040 {
1041 	const struct input_device_id *id;
1042 
1043 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
1044 		if (input_match_device_id(dev, id) &&
1045 		    (!handler->match || handler->match(handler, dev))) {
1046 			return id;
1047 		}
1048 	}
1049 
1050 	return NULL;
1051 }
1052 
1053 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1054 {
1055 	const struct input_device_id *id;
1056 	int error;
1057 
1058 	id = input_match_device(handler, dev);
1059 	if (!id)
1060 		return -ENODEV;
1061 
1062 	error = handler->connect(handler, dev, id);
1063 	if (error && error != -ENODEV)
1064 		pr_err("failed to attach handler %s to device %s, error: %d\n",
1065 		       handler->name, kobject_name(&dev->dev.kobj), error);
1066 
1067 	return error;
1068 }
1069 
1070 #ifdef CONFIG_COMPAT
1071 
1072 static int input_bits_to_string(char *buf, int buf_size,
1073 				unsigned long bits, bool skip_empty)
1074 {
1075 	int len = 0;
1076 
1077 	if (in_compat_syscall()) {
1078 		u32 dword = bits >> 32;
1079 		if (dword || !skip_empty)
1080 			len += snprintf(buf, buf_size, "%x ", dword);
1081 
1082 		dword = bits & 0xffffffffUL;
1083 		if (dword || !skip_empty || len)
1084 			len += snprintf(buf + len, max(buf_size - len, 0),
1085 					"%x", dword);
1086 	} else {
1087 		if (bits || !skip_empty)
1088 			len += snprintf(buf, buf_size, "%lx", bits);
1089 	}
1090 
1091 	return len;
1092 }
1093 
1094 #else /* !CONFIG_COMPAT */
1095 
1096 static int input_bits_to_string(char *buf, int buf_size,
1097 				unsigned long bits, bool skip_empty)
1098 {
1099 	return bits || !skip_empty ?
1100 		snprintf(buf, buf_size, "%lx", bits) : 0;
1101 }
1102 
1103 #endif
1104 
1105 #ifdef CONFIG_PROC_FS
1106 
1107 static struct proc_dir_entry *proc_bus_input_dir;
1108 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1109 static int input_devices_state;
1110 
1111 static inline void input_wakeup_procfs_readers(void)
1112 {
1113 	input_devices_state++;
1114 	wake_up(&input_devices_poll_wait);
1115 }
1116 
1117 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1118 {
1119 	poll_wait(file, &input_devices_poll_wait, wait);
1120 	if (file->f_version != input_devices_state) {
1121 		file->f_version = input_devices_state;
1122 		return EPOLLIN | EPOLLRDNORM;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 union input_seq_state {
1129 	struct {
1130 		unsigned short pos;
1131 		bool mutex_acquired;
1132 	};
1133 	void *p;
1134 };
1135 
1136 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1137 {
1138 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1139 	int error;
1140 
1141 	/* We need to fit into seq->private pointer */
1142 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1143 
1144 	error = mutex_lock_interruptible(&input_mutex);
1145 	if (error) {
1146 		state->mutex_acquired = false;
1147 		return ERR_PTR(error);
1148 	}
1149 
1150 	state->mutex_acquired = true;
1151 
1152 	return seq_list_start(&input_dev_list, *pos);
1153 }
1154 
1155 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1156 {
1157 	return seq_list_next(v, &input_dev_list, pos);
1158 }
1159 
1160 static void input_seq_stop(struct seq_file *seq, void *v)
1161 {
1162 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1163 
1164 	if (state->mutex_acquired)
1165 		mutex_unlock(&input_mutex);
1166 }
1167 
1168 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1169 				   unsigned long *bitmap, int max)
1170 {
1171 	int i;
1172 	bool skip_empty = true;
1173 	char buf[18];
1174 
1175 	seq_printf(seq, "B: %s=", name);
1176 
1177 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1178 		if (input_bits_to_string(buf, sizeof(buf),
1179 					 bitmap[i], skip_empty)) {
1180 			skip_empty = false;
1181 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1182 		}
1183 	}
1184 
1185 	/*
1186 	 * If no output was produced print a single 0.
1187 	 */
1188 	if (skip_empty)
1189 		seq_putc(seq, '0');
1190 
1191 	seq_putc(seq, '\n');
1192 }
1193 
1194 static int input_devices_seq_show(struct seq_file *seq, void *v)
1195 {
1196 	struct input_dev *dev = container_of(v, struct input_dev, node);
1197 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1198 	struct input_handle *handle;
1199 
1200 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1201 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1202 
1203 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1204 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1205 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1206 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1207 	seq_puts(seq, "H: Handlers=");
1208 
1209 	list_for_each_entry(handle, &dev->h_list, d_node)
1210 		seq_printf(seq, "%s ", handle->name);
1211 	seq_putc(seq, '\n');
1212 
1213 	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1214 
1215 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1216 	if (test_bit(EV_KEY, dev->evbit))
1217 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1218 	if (test_bit(EV_REL, dev->evbit))
1219 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1220 	if (test_bit(EV_ABS, dev->evbit))
1221 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1222 	if (test_bit(EV_MSC, dev->evbit))
1223 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1224 	if (test_bit(EV_LED, dev->evbit))
1225 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1226 	if (test_bit(EV_SND, dev->evbit))
1227 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1228 	if (test_bit(EV_FF, dev->evbit))
1229 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1230 	if (test_bit(EV_SW, dev->evbit))
1231 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1232 
1233 	seq_putc(seq, '\n');
1234 
1235 	kfree(path);
1236 	return 0;
1237 }
1238 
1239 static const struct seq_operations input_devices_seq_ops = {
1240 	.start	= input_devices_seq_start,
1241 	.next	= input_devices_seq_next,
1242 	.stop	= input_seq_stop,
1243 	.show	= input_devices_seq_show,
1244 };
1245 
1246 static int input_proc_devices_open(struct inode *inode, struct file *file)
1247 {
1248 	return seq_open(file, &input_devices_seq_ops);
1249 }
1250 
1251 static const struct proc_ops input_devices_proc_ops = {
1252 	.proc_open	= input_proc_devices_open,
1253 	.proc_poll	= input_proc_devices_poll,
1254 	.proc_read	= seq_read,
1255 	.proc_lseek	= seq_lseek,
1256 	.proc_release	= seq_release,
1257 };
1258 
1259 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1260 {
1261 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1262 	int error;
1263 
1264 	/* We need to fit into seq->private pointer */
1265 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1266 
1267 	error = mutex_lock_interruptible(&input_mutex);
1268 	if (error) {
1269 		state->mutex_acquired = false;
1270 		return ERR_PTR(error);
1271 	}
1272 
1273 	state->mutex_acquired = true;
1274 	state->pos = *pos;
1275 
1276 	return seq_list_start(&input_handler_list, *pos);
1277 }
1278 
1279 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1280 {
1281 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1282 
1283 	state->pos = *pos + 1;
1284 	return seq_list_next(v, &input_handler_list, pos);
1285 }
1286 
1287 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1288 {
1289 	struct input_handler *handler = container_of(v, struct input_handler, node);
1290 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1291 
1292 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1293 	if (handler->filter)
1294 		seq_puts(seq, " (filter)");
1295 	if (handler->legacy_minors)
1296 		seq_printf(seq, " Minor=%d", handler->minor);
1297 	seq_putc(seq, '\n');
1298 
1299 	return 0;
1300 }
1301 
1302 static const struct seq_operations input_handlers_seq_ops = {
1303 	.start	= input_handlers_seq_start,
1304 	.next	= input_handlers_seq_next,
1305 	.stop	= input_seq_stop,
1306 	.show	= input_handlers_seq_show,
1307 };
1308 
1309 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1310 {
1311 	return seq_open(file, &input_handlers_seq_ops);
1312 }
1313 
1314 static const struct proc_ops input_handlers_proc_ops = {
1315 	.proc_open	= input_proc_handlers_open,
1316 	.proc_read	= seq_read,
1317 	.proc_lseek	= seq_lseek,
1318 	.proc_release	= seq_release,
1319 };
1320 
1321 static int __init input_proc_init(void)
1322 {
1323 	struct proc_dir_entry *entry;
1324 
1325 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1326 	if (!proc_bus_input_dir)
1327 		return -ENOMEM;
1328 
1329 	entry = proc_create("devices", 0, proc_bus_input_dir,
1330 			    &input_devices_proc_ops);
1331 	if (!entry)
1332 		goto fail1;
1333 
1334 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1335 			    &input_handlers_proc_ops);
1336 	if (!entry)
1337 		goto fail2;
1338 
1339 	return 0;
1340 
1341  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1342  fail1: remove_proc_entry("bus/input", NULL);
1343 	return -ENOMEM;
1344 }
1345 
1346 static void input_proc_exit(void)
1347 {
1348 	remove_proc_entry("devices", proc_bus_input_dir);
1349 	remove_proc_entry("handlers", proc_bus_input_dir);
1350 	remove_proc_entry("bus/input", NULL);
1351 }
1352 
1353 #else /* !CONFIG_PROC_FS */
1354 static inline void input_wakeup_procfs_readers(void) { }
1355 static inline int input_proc_init(void) { return 0; }
1356 static inline void input_proc_exit(void) { }
1357 #endif
1358 
1359 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1360 static ssize_t input_dev_show_##name(struct device *dev,		\
1361 				     struct device_attribute *attr,	\
1362 				     char *buf)				\
1363 {									\
1364 	struct input_dev *input_dev = to_input_dev(dev);		\
1365 									\
1366 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1367 			 input_dev->name ? input_dev->name : "");	\
1368 }									\
1369 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1370 
1371 INPUT_DEV_STRING_ATTR_SHOW(name);
1372 INPUT_DEV_STRING_ATTR_SHOW(phys);
1373 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1374 
1375 static int input_print_modalias_bits(char *buf, int size,
1376 				     char name, const unsigned long *bm,
1377 				     unsigned int min_bit, unsigned int max_bit)
1378 {
1379 	int len = 0, i;
1380 
1381 	len += snprintf(buf, max(size, 0), "%c", name);
1382 	for (i = min_bit; i < max_bit; i++)
1383 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1384 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1385 	return len;
1386 }
1387 
1388 static int input_print_modalias(char *buf, int size, const struct input_dev *id,
1389 				int add_cr)
1390 {
1391 	int len;
1392 
1393 	len = snprintf(buf, max(size, 0),
1394 		       "input:b%04Xv%04Xp%04Xe%04X-",
1395 		       id->id.bustype, id->id.vendor,
1396 		       id->id.product, id->id.version);
1397 
1398 	len += input_print_modalias_bits(buf + len, size - len,
1399 				'e', id->evbit, 0, EV_MAX);
1400 	len += input_print_modalias_bits(buf + len, size - len,
1401 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1402 	len += input_print_modalias_bits(buf + len, size - len,
1403 				'r', id->relbit, 0, REL_MAX);
1404 	len += input_print_modalias_bits(buf + len, size - len,
1405 				'a', id->absbit, 0, ABS_MAX);
1406 	len += input_print_modalias_bits(buf + len, size - len,
1407 				'm', id->mscbit, 0, MSC_MAX);
1408 	len += input_print_modalias_bits(buf + len, size - len,
1409 				'l', id->ledbit, 0, LED_MAX);
1410 	len += input_print_modalias_bits(buf + len, size - len,
1411 				's', id->sndbit, 0, SND_MAX);
1412 	len += input_print_modalias_bits(buf + len, size - len,
1413 				'f', id->ffbit, 0, FF_MAX);
1414 	len += input_print_modalias_bits(buf + len, size - len,
1415 				'w', id->swbit, 0, SW_MAX);
1416 
1417 	if (add_cr)
1418 		len += snprintf(buf + len, max(size - len, 0), "\n");
1419 
1420 	return len;
1421 }
1422 
1423 static ssize_t input_dev_show_modalias(struct device *dev,
1424 				       struct device_attribute *attr,
1425 				       char *buf)
1426 {
1427 	struct input_dev *id = to_input_dev(dev);
1428 	ssize_t len;
1429 
1430 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1431 
1432 	return min_t(int, len, PAGE_SIZE);
1433 }
1434 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1435 
1436 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1437 			      int max, int add_cr);
1438 
1439 static ssize_t input_dev_show_properties(struct device *dev,
1440 					 struct device_attribute *attr,
1441 					 char *buf)
1442 {
1443 	struct input_dev *input_dev = to_input_dev(dev);
1444 	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1445 				     INPUT_PROP_MAX, true);
1446 	return min_t(int, len, PAGE_SIZE);
1447 }
1448 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1449 
1450 static int input_inhibit_device(struct input_dev *dev);
1451 static int input_uninhibit_device(struct input_dev *dev);
1452 
1453 static ssize_t inhibited_show(struct device *dev,
1454 			      struct device_attribute *attr,
1455 			      char *buf)
1456 {
1457 	struct input_dev *input_dev = to_input_dev(dev);
1458 
1459 	return scnprintf(buf, PAGE_SIZE, "%d\n", input_dev->inhibited);
1460 }
1461 
1462 static ssize_t inhibited_store(struct device *dev,
1463 			       struct device_attribute *attr, const char *buf,
1464 			       size_t len)
1465 {
1466 	struct input_dev *input_dev = to_input_dev(dev);
1467 	ssize_t rv;
1468 	bool inhibited;
1469 
1470 	if (kstrtobool(buf, &inhibited))
1471 		return -EINVAL;
1472 
1473 	if (inhibited)
1474 		rv = input_inhibit_device(input_dev);
1475 	else
1476 		rv = input_uninhibit_device(input_dev);
1477 
1478 	if (rv != 0)
1479 		return rv;
1480 
1481 	return len;
1482 }
1483 
1484 static DEVICE_ATTR_RW(inhibited);
1485 
1486 static struct attribute *input_dev_attrs[] = {
1487 	&dev_attr_name.attr,
1488 	&dev_attr_phys.attr,
1489 	&dev_attr_uniq.attr,
1490 	&dev_attr_modalias.attr,
1491 	&dev_attr_properties.attr,
1492 	&dev_attr_inhibited.attr,
1493 	NULL
1494 };
1495 
1496 static const struct attribute_group input_dev_attr_group = {
1497 	.attrs	= input_dev_attrs,
1498 };
1499 
1500 #define INPUT_DEV_ID_ATTR(name)						\
1501 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1502 					struct device_attribute *attr,	\
1503 					char *buf)			\
1504 {									\
1505 	struct input_dev *input_dev = to_input_dev(dev);		\
1506 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1507 }									\
1508 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1509 
1510 INPUT_DEV_ID_ATTR(bustype);
1511 INPUT_DEV_ID_ATTR(vendor);
1512 INPUT_DEV_ID_ATTR(product);
1513 INPUT_DEV_ID_ATTR(version);
1514 
1515 static struct attribute *input_dev_id_attrs[] = {
1516 	&dev_attr_bustype.attr,
1517 	&dev_attr_vendor.attr,
1518 	&dev_attr_product.attr,
1519 	&dev_attr_version.attr,
1520 	NULL
1521 };
1522 
1523 static const struct attribute_group input_dev_id_attr_group = {
1524 	.name	= "id",
1525 	.attrs	= input_dev_id_attrs,
1526 };
1527 
1528 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1529 			      int max, int add_cr)
1530 {
1531 	int i;
1532 	int len = 0;
1533 	bool skip_empty = true;
1534 
1535 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1536 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1537 					    bitmap[i], skip_empty);
1538 		if (len) {
1539 			skip_empty = false;
1540 			if (i > 0)
1541 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1542 		}
1543 	}
1544 
1545 	/*
1546 	 * If no output was produced print a single 0.
1547 	 */
1548 	if (len == 0)
1549 		len = snprintf(buf, buf_size, "%d", 0);
1550 
1551 	if (add_cr)
1552 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1553 
1554 	return len;
1555 }
1556 
1557 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1558 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1559 				       struct device_attribute *attr,	\
1560 				       char *buf)			\
1561 {									\
1562 	struct input_dev *input_dev = to_input_dev(dev);		\
1563 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1564 				     input_dev->bm##bit, ev##_MAX,	\
1565 				     true);				\
1566 	return min_t(int, len, PAGE_SIZE);				\
1567 }									\
1568 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1569 
1570 INPUT_DEV_CAP_ATTR(EV, ev);
1571 INPUT_DEV_CAP_ATTR(KEY, key);
1572 INPUT_DEV_CAP_ATTR(REL, rel);
1573 INPUT_DEV_CAP_ATTR(ABS, abs);
1574 INPUT_DEV_CAP_ATTR(MSC, msc);
1575 INPUT_DEV_CAP_ATTR(LED, led);
1576 INPUT_DEV_CAP_ATTR(SND, snd);
1577 INPUT_DEV_CAP_ATTR(FF, ff);
1578 INPUT_DEV_CAP_ATTR(SW, sw);
1579 
1580 static struct attribute *input_dev_caps_attrs[] = {
1581 	&dev_attr_ev.attr,
1582 	&dev_attr_key.attr,
1583 	&dev_attr_rel.attr,
1584 	&dev_attr_abs.attr,
1585 	&dev_attr_msc.attr,
1586 	&dev_attr_led.attr,
1587 	&dev_attr_snd.attr,
1588 	&dev_attr_ff.attr,
1589 	&dev_attr_sw.attr,
1590 	NULL
1591 };
1592 
1593 static const struct attribute_group input_dev_caps_attr_group = {
1594 	.name	= "capabilities",
1595 	.attrs	= input_dev_caps_attrs,
1596 };
1597 
1598 static const struct attribute_group *input_dev_attr_groups[] = {
1599 	&input_dev_attr_group,
1600 	&input_dev_id_attr_group,
1601 	&input_dev_caps_attr_group,
1602 	&input_poller_attribute_group,
1603 	NULL
1604 };
1605 
1606 static void input_dev_release(struct device *device)
1607 {
1608 	struct input_dev *dev = to_input_dev(device);
1609 
1610 	input_ff_destroy(dev);
1611 	input_mt_destroy_slots(dev);
1612 	kfree(dev->poller);
1613 	kfree(dev->absinfo);
1614 	kfree(dev->vals);
1615 	kfree(dev);
1616 
1617 	module_put(THIS_MODULE);
1618 }
1619 
1620 /*
1621  * Input uevent interface - loading event handlers based on
1622  * device bitfields.
1623  */
1624 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1625 				   const char *name, const unsigned long *bitmap, int max)
1626 {
1627 	int len;
1628 
1629 	if (add_uevent_var(env, "%s", name))
1630 		return -ENOMEM;
1631 
1632 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1633 				 sizeof(env->buf) - env->buflen,
1634 				 bitmap, max, false);
1635 	if (len >= (sizeof(env->buf) - env->buflen))
1636 		return -ENOMEM;
1637 
1638 	env->buflen += len;
1639 	return 0;
1640 }
1641 
1642 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1643 					 const struct input_dev *dev)
1644 {
1645 	int len;
1646 
1647 	if (add_uevent_var(env, "MODALIAS="))
1648 		return -ENOMEM;
1649 
1650 	len = input_print_modalias(&env->buf[env->buflen - 1],
1651 				   sizeof(env->buf) - env->buflen,
1652 				   dev, 0);
1653 	if (len >= (sizeof(env->buf) - env->buflen))
1654 		return -ENOMEM;
1655 
1656 	env->buflen += len;
1657 	return 0;
1658 }
1659 
1660 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1661 	do {								\
1662 		int err = add_uevent_var(env, fmt, val);		\
1663 		if (err)						\
1664 			return err;					\
1665 	} while (0)
1666 
1667 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1668 	do {								\
1669 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1670 		if (err)						\
1671 			return err;					\
1672 	} while (0)
1673 
1674 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1675 	do {								\
1676 		int err = input_add_uevent_modalias_var(env, dev);	\
1677 		if (err)						\
1678 			return err;					\
1679 	} while (0)
1680 
1681 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1682 {
1683 	const struct input_dev *dev = to_input_dev(device);
1684 
1685 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1686 				dev->id.bustype, dev->id.vendor,
1687 				dev->id.product, dev->id.version);
1688 	if (dev->name)
1689 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1690 	if (dev->phys)
1691 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1692 	if (dev->uniq)
1693 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1694 
1695 	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1696 
1697 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1698 	if (test_bit(EV_KEY, dev->evbit))
1699 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1700 	if (test_bit(EV_REL, dev->evbit))
1701 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1702 	if (test_bit(EV_ABS, dev->evbit))
1703 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1704 	if (test_bit(EV_MSC, dev->evbit))
1705 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1706 	if (test_bit(EV_LED, dev->evbit))
1707 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1708 	if (test_bit(EV_SND, dev->evbit))
1709 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1710 	if (test_bit(EV_FF, dev->evbit))
1711 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1712 	if (test_bit(EV_SW, dev->evbit))
1713 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1714 
1715 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1716 
1717 	return 0;
1718 }
1719 
1720 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1721 	do {								\
1722 		int i;							\
1723 		bool active;						\
1724 									\
1725 		if (!test_bit(EV_##type, dev->evbit))			\
1726 			break;						\
1727 									\
1728 		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1729 			active = test_bit(i, dev->bits);		\
1730 			if (!active && !on)				\
1731 				continue;				\
1732 									\
1733 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1734 		}							\
1735 	} while (0)
1736 
1737 static void input_dev_toggle(struct input_dev *dev, bool activate)
1738 {
1739 	if (!dev->event)
1740 		return;
1741 
1742 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1743 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1744 
1745 	if (activate && test_bit(EV_REP, dev->evbit)) {
1746 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1747 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1748 	}
1749 }
1750 
1751 /**
1752  * input_reset_device() - reset/restore the state of input device
1753  * @dev: input device whose state needs to be reset
1754  *
1755  * This function tries to reset the state of an opened input device and
1756  * bring internal state and state if the hardware in sync with each other.
1757  * We mark all keys as released, restore LED state, repeat rate, etc.
1758  */
1759 void input_reset_device(struct input_dev *dev)
1760 {
1761 	unsigned long flags;
1762 
1763 	mutex_lock(&dev->mutex);
1764 	spin_lock_irqsave(&dev->event_lock, flags);
1765 
1766 	input_dev_toggle(dev, true);
1767 	if (input_dev_release_keys(dev))
1768 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1769 
1770 	spin_unlock_irqrestore(&dev->event_lock, flags);
1771 	mutex_unlock(&dev->mutex);
1772 }
1773 EXPORT_SYMBOL(input_reset_device);
1774 
1775 static int input_inhibit_device(struct input_dev *dev)
1776 {
1777 	mutex_lock(&dev->mutex);
1778 
1779 	if (dev->inhibited)
1780 		goto out;
1781 
1782 	if (dev->users) {
1783 		if (dev->close)
1784 			dev->close(dev);
1785 		if (dev->poller)
1786 			input_dev_poller_stop(dev->poller);
1787 	}
1788 
1789 	spin_lock_irq(&dev->event_lock);
1790 	input_mt_release_slots(dev);
1791 	input_dev_release_keys(dev);
1792 	input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1793 	input_dev_toggle(dev, false);
1794 	spin_unlock_irq(&dev->event_lock);
1795 
1796 	dev->inhibited = true;
1797 
1798 out:
1799 	mutex_unlock(&dev->mutex);
1800 	return 0;
1801 }
1802 
1803 static int input_uninhibit_device(struct input_dev *dev)
1804 {
1805 	int ret = 0;
1806 
1807 	mutex_lock(&dev->mutex);
1808 
1809 	if (!dev->inhibited)
1810 		goto out;
1811 
1812 	if (dev->users) {
1813 		if (dev->open) {
1814 			ret = dev->open(dev);
1815 			if (ret)
1816 				goto out;
1817 		}
1818 		if (dev->poller)
1819 			input_dev_poller_start(dev->poller);
1820 	}
1821 
1822 	dev->inhibited = false;
1823 	spin_lock_irq(&dev->event_lock);
1824 	input_dev_toggle(dev, true);
1825 	spin_unlock_irq(&dev->event_lock);
1826 
1827 out:
1828 	mutex_unlock(&dev->mutex);
1829 	return ret;
1830 }
1831 
1832 static int input_dev_suspend(struct device *dev)
1833 {
1834 	struct input_dev *input_dev = to_input_dev(dev);
1835 
1836 	spin_lock_irq(&input_dev->event_lock);
1837 
1838 	/*
1839 	 * Keys that are pressed now are unlikely to be
1840 	 * still pressed when we resume.
1841 	 */
1842 	if (input_dev_release_keys(input_dev))
1843 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1844 
1845 	/* Turn off LEDs and sounds, if any are active. */
1846 	input_dev_toggle(input_dev, false);
1847 
1848 	spin_unlock_irq(&input_dev->event_lock);
1849 
1850 	return 0;
1851 }
1852 
1853 static int input_dev_resume(struct device *dev)
1854 {
1855 	struct input_dev *input_dev = to_input_dev(dev);
1856 
1857 	spin_lock_irq(&input_dev->event_lock);
1858 
1859 	/* Restore state of LEDs and sounds, if any were active. */
1860 	input_dev_toggle(input_dev, true);
1861 
1862 	spin_unlock_irq(&input_dev->event_lock);
1863 
1864 	return 0;
1865 }
1866 
1867 static int input_dev_freeze(struct device *dev)
1868 {
1869 	struct input_dev *input_dev = to_input_dev(dev);
1870 
1871 	spin_lock_irq(&input_dev->event_lock);
1872 
1873 	/*
1874 	 * Keys that are pressed now are unlikely to be
1875 	 * still pressed when we resume.
1876 	 */
1877 	if (input_dev_release_keys(input_dev))
1878 		input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1879 
1880 	spin_unlock_irq(&input_dev->event_lock);
1881 
1882 	return 0;
1883 }
1884 
1885 static int input_dev_poweroff(struct device *dev)
1886 {
1887 	struct input_dev *input_dev = to_input_dev(dev);
1888 
1889 	spin_lock_irq(&input_dev->event_lock);
1890 
1891 	/* Turn off LEDs and sounds, if any are active. */
1892 	input_dev_toggle(input_dev, false);
1893 
1894 	spin_unlock_irq(&input_dev->event_lock);
1895 
1896 	return 0;
1897 }
1898 
1899 static const struct dev_pm_ops input_dev_pm_ops = {
1900 	.suspend	= input_dev_suspend,
1901 	.resume		= input_dev_resume,
1902 	.freeze		= input_dev_freeze,
1903 	.poweroff	= input_dev_poweroff,
1904 	.restore	= input_dev_resume,
1905 };
1906 
1907 static const struct device_type input_dev_type = {
1908 	.groups		= input_dev_attr_groups,
1909 	.release	= input_dev_release,
1910 	.uevent		= input_dev_uevent,
1911 	.pm		= pm_sleep_ptr(&input_dev_pm_ops),
1912 };
1913 
1914 static char *input_devnode(const struct device *dev, umode_t *mode)
1915 {
1916 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1917 }
1918 
1919 struct class input_class = {
1920 	.name		= "input",
1921 	.devnode	= input_devnode,
1922 };
1923 EXPORT_SYMBOL_GPL(input_class);
1924 
1925 /**
1926  * input_allocate_device - allocate memory for new input device
1927  *
1928  * Returns prepared struct input_dev or %NULL.
1929  *
1930  * NOTE: Use input_free_device() to free devices that have not been
1931  * registered; input_unregister_device() should be used for already
1932  * registered devices.
1933  */
1934 struct input_dev *input_allocate_device(void)
1935 {
1936 	static atomic_t input_no = ATOMIC_INIT(-1);
1937 	struct input_dev *dev;
1938 
1939 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1940 	if (dev) {
1941 		dev->dev.type = &input_dev_type;
1942 		dev->dev.class = &input_class;
1943 		device_initialize(&dev->dev);
1944 		mutex_init(&dev->mutex);
1945 		spin_lock_init(&dev->event_lock);
1946 		timer_setup(&dev->timer, NULL, 0);
1947 		INIT_LIST_HEAD(&dev->h_list);
1948 		INIT_LIST_HEAD(&dev->node);
1949 
1950 		dev_set_name(&dev->dev, "input%lu",
1951 			     (unsigned long)atomic_inc_return(&input_no));
1952 
1953 		__module_get(THIS_MODULE);
1954 	}
1955 
1956 	return dev;
1957 }
1958 EXPORT_SYMBOL(input_allocate_device);
1959 
1960 struct input_devres {
1961 	struct input_dev *input;
1962 };
1963 
1964 static int devm_input_device_match(struct device *dev, void *res, void *data)
1965 {
1966 	struct input_devres *devres = res;
1967 
1968 	return devres->input == data;
1969 }
1970 
1971 static void devm_input_device_release(struct device *dev, void *res)
1972 {
1973 	struct input_devres *devres = res;
1974 	struct input_dev *input = devres->input;
1975 
1976 	dev_dbg(dev, "%s: dropping reference to %s\n",
1977 		__func__, dev_name(&input->dev));
1978 	input_put_device(input);
1979 }
1980 
1981 /**
1982  * devm_input_allocate_device - allocate managed input device
1983  * @dev: device owning the input device being created
1984  *
1985  * Returns prepared struct input_dev or %NULL.
1986  *
1987  * Managed input devices do not need to be explicitly unregistered or
1988  * freed as it will be done automatically when owner device unbinds from
1989  * its driver (or binding fails). Once managed input device is allocated,
1990  * it is ready to be set up and registered in the same fashion as regular
1991  * input device. There are no special devm_input_device_[un]register()
1992  * variants, regular ones work with both managed and unmanaged devices,
1993  * should you need them. In most cases however, managed input device need
1994  * not be explicitly unregistered or freed.
1995  *
1996  * NOTE: the owner device is set up as parent of input device and users
1997  * should not override it.
1998  */
1999 struct input_dev *devm_input_allocate_device(struct device *dev)
2000 {
2001 	struct input_dev *input;
2002 	struct input_devres *devres;
2003 
2004 	devres = devres_alloc(devm_input_device_release,
2005 			      sizeof(*devres), GFP_KERNEL);
2006 	if (!devres)
2007 		return NULL;
2008 
2009 	input = input_allocate_device();
2010 	if (!input) {
2011 		devres_free(devres);
2012 		return NULL;
2013 	}
2014 
2015 	input->dev.parent = dev;
2016 	input->devres_managed = true;
2017 
2018 	devres->input = input;
2019 	devres_add(dev, devres);
2020 
2021 	return input;
2022 }
2023 EXPORT_SYMBOL(devm_input_allocate_device);
2024 
2025 /**
2026  * input_free_device - free memory occupied by input_dev structure
2027  * @dev: input device to free
2028  *
2029  * This function should only be used if input_register_device()
2030  * was not called yet or if it failed. Once device was registered
2031  * use input_unregister_device() and memory will be freed once last
2032  * reference to the device is dropped.
2033  *
2034  * Device should be allocated by input_allocate_device().
2035  *
2036  * NOTE: If there are references to the input device then memory
2037  * will not be freed until last reference is dropped.
2038  */
2039 void input_free_device(struct input_dev *dev)
2040 {
2041 	if (dev) {
2042 		if (dev->devres_managed)
2043 			WARN_ON(devres_destroy(dev->dev.parent,
2044 						devm_input_device_release,
2045 						devm_input_device_match,
2046 						dev));
2047 		input_put_device(dev);
2048 	}
2049 }
2050 EXPORT_SYMBOL(input_free_device);
2051 
2052 /**
2053  * input_set_timestamp - set timestamp for input events
2054  * @dev: input device to set timestamp for
2055  * @timestamp: the time at which the event has occurred
2056  *   in CLOCK_MONOTONIC
2057  *
2058  * This function is intended to provide to the input system a more
2059  * accurate time of when an event actually occurred. The driver should
2060  * call this function as soon as a timestamp is acquired ensuring
2061  * clock conversions in input_set_timestamp are done correctly.
2062  *
2063  * The system entering suspend state between timestamp acquisition and
2064  * calling input_set_timestamp can result in inaccurate conversions.
2065  */
2066 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2067 {
2068 	dev->timestamp[INPUT_CLK_MONO] = timestamp;
2069 	dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2070 	dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2071 							   TK_OFFS_BOOT);
2072 }
2073 EXPORT_SYMBOL(input_set_timestamp);
2074 
2075 /**
2076  * input_get_timestamp - get timestamp for input events
2077  * @dev: input device to get timestamp from
2078  *
2079  * A valid timestamp is a timestamp of non-zero value.
2080  */
2081 ktime_t *input_get_timestamp(struct input_dev *dev)
2082 {
2083 	const ktime_t invalid_timestamp = ktime_set(0, 0);
2084 
2085 	if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2086 		input_set_timestamp(dev, ktime_get());
2087 
2088 	return dev->timestamp;
2089 }
2090 EXPORT_SYMBOL(input_get_timestamp);
2091 
2092 /**
2093  * input_set_capability - mark device as capable of a certain event
2094  * @dev: device that is capable of emitting or accepting event
2095  * @type: type of the event (EV_KEY, EV_REL, etc...)
2096  * @code: event code
2097  *
2098  * In addition to setting up corresponding bit in appropriate capability
2099  * bitmap the function also adjusts dev->evbit.
2100  */
2101 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2102 {
2103 	if (type < EV_CNT && input_max_code[type] &&
2104 	    code > input_max_code[type]) {
2105 		pr_err("%s: invalid code %u for type %u\n", __func__, code,
2106 		       type);
2107 		dump_stack();
2108 		return;
2109 	}
2110 
2111 	switch (type) {
2112 	case EV_KEY:
2113 		__set_bit(code, dev->keybit);
2114 		break;
2115 
2116 	case EV_REL:
2117 		__set_bit(code, dev->relbit);
2118 		break;
2119 
2120 	case EV_ABS:
2121 		input_alloc_absinfo(dev);
2122 		__set_bit(code, dev->absbit);
2123 		break;
2124 
2125 	case EV_MSC:
2126 		__set_bit(code, dev->mscbit);
2127 		break;
2128 
2129 	case EV_SW:
2130 		__set_bit(code, dev->swbit);
2131 		break;
2132 
2133 	case EV_LED:
2134 		__set_bit(code, dev->ledbit);
2135 		break;
2136 
2137 	case EV_SND:
2138 		__set_bit(code, dev->sndbit);
2139 		break;
2140 
2141 	case EV_FF:
2142 		__set_bit(code, dev->ffbit);
2143 		break;
2144 
2145 	case EV_PWR:
2146 		/* do nothing */
2147 		break;
2148 
2149 	default:
2150 		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2151 		dump_stack();
2152 		return;
2153 	}
2154 
2155 	__set_bit(type, dev->evbit);
2156 }
2157 EXPORT_SYMBOL(input_set_capability);
2158 
2159 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2160 {
2161 	int mt_slots;
2162 	int i;
2163 	unsigned int events;
2164 
2165 	if (dev->mt) {
2166 		mt_slots = dev->mt->num_slots;
2167 	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2168 		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2169 			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2170 		mt_slots = clamp(mt_slots, 2, 32);
2171 	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2172 		mt_slots = 2;
2173 	} else {
2174 		mt_slots = 0;
2175 	}
2176 
2177 	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2178 
2179 	if (test_bit(EV_ABS, dev->evbit))
2180 		for_each_set_bit(i, dev->absbit, ABS_CNT)
2181 			events += input_is_mt_axis(i) ? mt_slots : 1;
2182 
2183 	if (test_bit(EV_REL, dev->evbit))
2184 		events += bitmap_weight(dev->relbit, REL_CNT);
2185 
2186 	/* Make room for KEY and MSC events */
2187 	events += 7;
2188 
2189 	return events;
2190 }
2191 
2192 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2193 	do {								\
2194 		if (!test_bit(EV_##type, dev->evbit))			\
2195 			memset(dev->bits##bit, 0,			\
2196 				sizeof(dev->bits##bit));		\
2197 	} while (0)
2198 
2199 static void input_cleanse_bitmasks(struct input_dev *dev)
2200 {
2201 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2202 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2203 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2204 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2205 	INPUT_CLEANSE_BITMASK(dev, LED, led);
2206 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2207 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2208 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2209 }
2210 
2211 static void __input_unregister_device(struct input_dev *dev)
2212 {
2213 	struct input_handle *handle, *next;
2214 
2215 	input_disconnect_device(dev);
2216 
2217 	mutex_lock(&input_mutex);
2218 
2219 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2220 		handle->handler->disconnect(handle);
2221 	WARN_ON(!list_empty(&dev->h_list));
2222 
2223 	del_timer_sync(&dev->timer);
2224 	list_del_init(&dev->node);
2225 
2226 	input_wakeup_procfs_readers();
2227 
2228 	mutex_unlock(&input_mutex);
2229 
2230 	device_del(&dev->dev);
2231 }
2232 
2233 static void devm_input_device_unregister(struct device *dev, void *res)
2234 {
2235 	struct input_devres *devres = res;
2236 	struct input_dev *input = devres->input;
2237 
2238 	dev_dbg(dev, "%s: unregistering device %s\n",
2239 		__func__, dev_name(&input->dev));
2240 	__input_unregister_device(input);
2241 }
2242 
2243 /*
2244  * Generate software autorepeat event. Note that we take
2245  * dev->event_lock here to avoid racing with input_event
2246  * which may cause keys get "stuck".
2247  */
2248 static void input_repeat_key(struct timer_list *t)
2249 {
2250 	struct input_dev *dev = from_timer(dev, t, timer);
2251 	unsigned long flags;
2252 
2253 	spin_lock_irqsave(&dev->event_lock, flags);
2254 
2255 	if (!dev->inhibited &&
2256 	    test_bit(dev->repeat_key, dev->key) &&
2257 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2258 
2259 		input_set_timestamp(dev, ktime_get());
2260 		input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2261 		input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2262 
2263 		if (dev->rep[REP_PERIOD])
2264 			mod_timer(&dev->timer, jiffies +
2265 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
2266 	}
2267 
2268 	spin_unlock_irqrestore(&dev->event_lock, flags);
2269 }
2270 
2271 /**
2272  * input_enable_softrepeat - enable software autorepeat
2273  * @dev: input device
2274  * @delay: repeat delay
2275  * @period: repeat period
2276  *
2277  * Enable software autorepeat on the input device.
2278  */
2279 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2280 {
2281 	dev->timer.function = input_repeat_key;
2282 	dev->rep[REP_DELAY] = delay;
2283 	dev->rep[REP_PERIOD] = period;
2284 }
2285 EXPORT_SYMBOL(input_enable_softrepeat);
2286 
2287 bool input_device_enabled(struct input_dev *dev)
2288 {
2289 	lockdep_assert_held(&dev->mutex);
2290 
2291 	return !dev->inhibited && dev->users > 0;
2292 }
2293 EXPORT_SYMBOL_GPL(input_device_enabled);
2294 
2295 /**
2296  * input_register_device - register device with input core
2297  * @dev: device to be registered
2298  *
2299  * This function registers device with input core. The device must be
2300  * allocated with input_allocate_device() and all it's capabilities
2301  * set up before registering.
2302  * If function fails the device must be freed with input_free_device().
2303  * Once device has been successfully registered it can be unregistered
2304  * with input_unregister_device(); input_free_device() should not be
2305  * called in this case.
2306  *
2307  * Note that this function is also used to register managed input devices
2308  * (ones allocated with devm_input_allocate_device()). Such managed input
2309  * devices need not be explicitly unregistered or freed, their tear down
2310  * is controlled by the devres infrastructure. It is also worth noting
2311  * that tear down of managed input devices is internally a 2-step process:
2312  * registered managed input device is first unregistered, but stays in
2313  * memory and can still handle input_event() calls (although events will
2314  * not be delivered anywhere). The freeing of managed input device will
2315  * happen later, when devres stack is unwound to the point where device
2316  * allocation was made.
2317  */
2318 int input_register_device(struct input_dev *dev)
2319 {
2320 	struct input_devres *devres = NULL;
2321 	struct input_handler *handler;
2322 	unsigned int packet_size;
2323 	const char *path;
2324 	int error;
2325 
2326 	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2327 		dev_err(&dev->dev,
2328 			"Absolute device without dev->absinfo, refusing to register\n");
2329 		return -EINVAL;
2330 	}
2331 
2332 	if (dev->devres_managed) {
2333 		devres = devres_alloc(devm_input_device_unregister,
2334 				      sizeof(*devres), GFP_KERNEL);
2335 		if (!devres)
2336 			return -ENOMEM;
2337 
2338 		devres->input = dev;
2339 	}
2340 
2341 	/* Every input device generates EV_SYN/SYN_REPORT events. */
2342 	__set_bit(EV_SYN, dev->evbit);
2343 
2344 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2345 	__clear_bit(KEY_RESERVED, dev->keybit);
2346 
2347 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2348 	input_cleanse_bitmasks(dev);
2349 
2350 	packet_size = input_estimate_events_per_packet(dev);
2351 	if (dev->hint_events_per_packet < packet_size)
2352 		dev->hint_events_per_packet = packet_size;
2353 
2354 	dev->max_vals = dev->hint_events_per_packet + 2;
2355 	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2356 	if (!dev->vals) {
2357 		error = -ENOMEM;
2358 		goto err_devres_free;
2359 	}
2360 
2361 	/*
2362 	 * If delay and period are pre-set by the driver, then autorepeating
2363 	 * is handled by the driver itself and we don't do it in input.c.
2364 	 */
2365 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2366 		input_enable_softrepeat(dev, 250, 33);
2367 
2368 	if (!dev->getkeycode)
2369 		dev->getkeycode = input_default_getkeycode;
2370 
2371 	if (!dev->setkeycode)
2372 		dev->setkeycode = input_default_setkeycode;
2373 
2374 	if (dev->poller)
2375 		input_dev_poller_finalize(dev->poller);
2376 
2377 	error = device_add(&dev->dev);
2378 	if (error)
2379 		goto err_free_vals;
2380 
2381 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2382 	pr_info("%s as %s\n",
2383 		dev->name ? dev->name : "Unspecified device",
2384 		path ? path : "N/A");
2385 	kfree(path);
2386 
2387 	error = mutex_lock_interruptible(&input_mutex);
2388 	if (error)
2389 		goto err_device_del;
2390 
2391 	list_add_tail(&dev->node, &input_dev_list);
2392 
2393 	list_for_each_entry(handler, &input_handler_list, node)
2394 		input_attach_handler(dev, handler);
2395 
2396 	input_wakeup_procfs_readers();
2397 
2398 	mutex_unlock(&input_mutex);
2399 
2400 	if (dev->devres_managed) {
2401 		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2402 			__func__, dev_name(&dev->dev));
2403 		devres_add(dev->dev.parent, devres);
2404 	}
2405 	return 0;
2406 
2407 err_device_del:
2408 	device_del(&dev->dev);
2409 err_free_vals:
2410 	kfree(dev->vals);
2411 	dev->vals = NULL;
2412 err_devres_free:
2413 	devres_free(devres);
2414 	return error;
2415 }
2416 EXPORT_SYMBOL(input_register_device);
2417 
2418 /**
2419  * input_unregister_device - unregister previously registered device
2420  * @dev: device to be unregistered
2421  *
2422  * This function unregisters an input device. Once device is unregistered
2423  * the caller should not try to access it as it may get freed at any moment.
2424  */
2425 void input_unregister_device(struct input_dev *dev)
2426 {
2427 	if (dev->devres_managed) {
2428 		WARN_ON(devres_destroy(dev->dev.parent,
2429 					devm_input_device_unregister,
2430 					devm_input_device_match,
2431 					dev));
2432 		__input_unregister_device(dev);
2433 		/*
2434 		 * We do not do input_put_device() here because it will be done
2435 		 * when 2nd devres fires up.
2436 		 */
2437 	} else {
2438 		__input_unregister_device(dev);
2439 		input_put_device(dev);
2440 	}
2441 }
2442 EXPORT_SYMBOL(input_unregister_device);
2443 
2444 /**
2445  * input_register_handler - register a new input handler
2446  * @handler: handler to be registered
2447  *
2448  * This function registers a new input handler (interface) for input
2449  * devices in the system and attaches it to all input devices that
2450  * are compatible with the handler.
2451  */
2452 int input_register_handler(struct input_handler *handler)
2453 {
2454 	struct input_dev *dev;
2455 	int error;
2456 
2457 	error = mutex_lock_interruptible(&input_mutex);
2458 	if (error)
2459 		return error;
2460 
2461 	INIT_LIST_HEAD(&handler->h_list);
2462 
2463 	list_add_tail(&handler->node, &input_handler_list);
2464 
2465 	list_for_each_entry(dev, &input_dev_list, node)
2466 		input_attach_handler(dev, handler);
2467 
2468 	input_wakeup_procfs_readers();
2469 
2470 	mutex_unlock(&input_mutex);
2471 	return 0;
2472 }
2473 EXPORT_SYMBOL(input_register_handler);
2474 
2475 /**
2476  * input_unregister_handler - unregisters an input handler
2477  * @handler: handler to be unregistered
2478  *
2479  * This function disconnects a handler from its input devices and
2480  * removes it from lists of known handlers.
2481  */
2482 void input_unregister_handler(struct input_handler *handler)
2483 {
2484 	struct input_handle *handle, *next;
2485 
2486 	mutex_lock(&input_mutex);
2487 
2488 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2489 		handler->disconnect(handle);
2490 	WARN_ON(!list_empty(&handler->h_list));
2491 
2492 	list_del_init(&handler->node);
2493 
2494 	input_wakeup_procfs_readers();
2495 
2496 	mutex_unlock(&input_mutex);
2497 }
2498 EXPORT_SYMBOL(input_unregister_handler);
2499 
2500 /**
2501  * input_handler_for_each_handle - handle iterator
2502  * @handler: input handler to iterate
2503  * @data: data for the callback
2504  * @fn: function to be called for each handle
2505  *
2506  * Iterate over @bus's list of devices, and call @fn for each, passing
2507  * it @data and stop when @fn returns a non-zero value. The function is
2508  * using RCU to traverse the list and therefore may be using in atomic
2509  * contexts. The @fn callback is invoked from RCU critical section and
2510  * thus must not sleep.
2511  */
2512 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2513 				  int (*fn)(struct input_handle *, void *))
2514 {
2515 	struct input_handle *handle;
2516 	int retval = 0;
2517 
2518 	rcu_read_lock();
2519 
2520 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2521 		retval = fn(handle, data);
2522 		if (retval)
2523 			break;
2524 	}
2525 
2526 	rcu_read_unlock();
2527 
2528 	return retval;
2529 }
2530 EXPORT_SYMBOL(input_handler_for_each_handle);
2531 
2532 /**
2533  * input_register_handle - register a new input handle
2534  * @handle: handle to register
2535  *
2536  * This function puts a new input handle onto device's
2537  * and handler's lists so that events can flow through
2538  * it once it is opened using input_open_device().
2539  *
2540  * This function is supposed to be called from handler's
2541  * connect() method.
2542  */
2543 int input_register_handle(struct input_handle *handle)
2544 {
2545 	struct input_handler *handler = handle->handler;
2546 	struct input_dev *dev = handle->dev;
2547 	int error;
2548 
2549 	/*
2550 	 * We take dev->mutex here to prevent race with
2551 	 * input_release_device().
2552 	 */
2553 	error = mutex_lock_interruptible(&dev->mutex);
2554 	if (error)
2555 		return error;
2556 
2557 	/*
2558 	 * Filters go to the head of the list, normal handlers
2559 	 * to the tail.
2560 	 */
2561 	if (handler->filter)
2562 		list_add_rcu(&handle->d_node, &dev->h_list);
2563 	else
2564 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2565 
2566 	mutex_unlock(&dev->mutex);
2567 
2568 	/*
2569 	 * Since we are supposed to be called from ->connect()
2570 	 * which is mutually exclusive with ->disconnect()
2571 	 * we can't be racing with input_unregister_handle()
2572 	 * and so separate lock is not needed here.
2573 	 */
2574 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2575 
2576 	if (handler->start)
2577 		handler->start(handle);
2578 
2579 	return 0;
2580 }
2581 EXPORT_SYMBOL(input_register_handle);
2582 
2583 /**
2584  * input_unregister_handle - unregister an input handle
2585  * @handle: handle to unregister
2586  *
2587  * This function removes input handle from device's
2588  * and handler's lists.
2589  *
2590  * This function is supposed to be called from handler's
2591  * disconnect() method.
2592  */
2593 void input_unregister_handle(struct input_handle *handle)
2594 {
2595 	struct input_dev *dev = handle->dev;
2596 
2597 	list_del_rcu(&handle->h_node);
2598 
2599 	/*
2600 	 * Take dev->mutex to prevent race with input_release_device().
2601 	 */
2602 	mutex_lock(&dev->mutex);
2603 	list_del_rcu(&handle->d_node);
2604 	mutex_unlock(&dev->mutex);
2605 
2606 	synchronize_rcu();
2607 }
2608 EXPORT_SYMBOL(input_unregister_handle);
2609 
2610 /**
2611  * input_get_new_minor - allocates a new input minor number
2612  * @legacy_base: beginning or the legacy range to be searched
2613  * @legacy_num: size of legacy range
2614  * @allow_dynamic: whether we can also take ID from the dynamic range
2615  *
2616  * This function allocates a new device minor for from input major namespace.
2617  * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2618  * parameters and whether ID can be allocated from dynamic range if there are
2619  * no free IDs in legacy range.
2620  */
2621 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2622 			bool allow_dynamic)
2623 {
2624 	/*
2625 	 * This function should be called from input handler's ->connect()
2626 	 * methods, which are serialized with input_mutex, so no additional
2627 	 * locking is needed here.
2628 	 */
2629 	if (legacy_base >= 0) {
2630 		int minor = ida_simple_get(&input_ida,
2631 					   legacy_base,
2632 					   legacy_base + legacy_num,
2633 					   GFP_KERNEL);
2634 		if (minor >= 0 || !allow_dynamic)
2635 			return minor;
2636 	}
2637 
2638 	return ida_simple_get(&input_ida,
2639 			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2640 			      GFP_KERNEL);
2641 }
2642 EXPORT_SYMBOL(input_get_new_minor);
2643 
2644 /**
2645  * input_free_minor - release previously allocated minor
2646  * @minor: minor to be released
2647  *
2648  * This function releases previously allocated input minor so that it can be
2649  * reused later.
2650  */
2651 void input_free_minor(unsigned int minor)
2652 {
2653 	ida_simple_remove(&input_ida, minor);
2654 }
2655 EXPORT_SYMBOL(input_free_minor);
2656 
2657 static int __init input_init(void)
2658 {
2659 	int err;
2660 
2661 	err = class_register(&input_class);
2662 	if (err) {
2663 		pr_err("unable to register input_dev class\n");
2664 		return err;
2665 	}
2666 
2667 	err = input_proc_init();
2668 	if (err)
2669 		goto fail1;
2670 
2671 	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2672 				     INPUT_MAX_CHAR_DEVICES, "input");
2673 	if (err) {
2674 		pr_err("unable to register char major %d", INPUT_MAJOR);
2675 		goto fail2;
2676 	}
2677 
2678 	return 0;
2679 
2680  fail2:	input_proc_exit();
2681  fail1:	class_unregister(&input_class);
2682 	return err;
2683 }
2684 
2685 static void __exit input_exit(void)
2686 {
2687 	input_proc_exit();
2688 	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2689 				 INPUT_MAX_CHAR_DEVICES);
2690 	class_unregister(&input_class);
2691 }
2692 
2693 subsys_initcall(input_init);
2694 module_exit(input_exit);
2695